
A High-Performance Dense Block Matching
Solution for Automotive 6D-Vision

Henning Sahlbach, Sean Whitty, Rolf Ernst
Institute of Computer and Network Engineering
Technische Universität Braunschweig, Germany

sahlbach|whitty|ernst@ida.ing.tu-bs.de

Abstract—Camera-based driver assistance systems have at-
tracted the attention of all major automotive manufacturers in
the past several years and are increasingly utilized to differentiate
a vendor’s vehicles from its competitors. The calculation of
depth information and Motion Estimation can be considered as
two fundamental image processing applications in these systems,
which have already been evaluated in diverse research scenarios.
However, in order to push these computation-intensive features
towards series integration, future in-vehicle implementations
must adhere to the automotive industry’s strict power consump-
tion and cost constraints.

As an answer to this challenge, this paper presents a high-
performance FPGA-based dense block matching solution, which
enables the calculation of both object motion and the extrac-
tion of depth information on shared hardware resources. This
novel single-design approach significantly reduces the amount of
logic resources required, resulting in valuable cost and power
savings. The acquired sensor information can be fusioned into
3D positions with an associated 3D motion vector, which enables
a robust perception of the vehicle’s environment. The modular
implementation offers enhanced configuration features at design
and execution time and achieves up to 418 GOPS at a moderate
energy consumption of 10 Watts, providing a flexible solution for
a future series integration.

I. INTRODUCTION

Current urban traffic scenarios pose challenging tasks for
the drivers of today’s vehicles, which will worsen in the future
due to increasing traffic density. In order to support the drivers,
automotive research has focused on the development of differ-
ent sensor types with associated Advanced Driver Assistance
Systems (ADAS), which are already capable of driving au-
tonomously in predefined scenarios. As the executed ADAS
applications often come with massive computation require-
ments, prototypic systems usually combine their sensors with
several high-performance PCs. However, as these research
systems cannot meet the severe cost and power constraints
of production vehicles, specialized hardware-accelerated im-
plementations are inevitable.

As a consequence, various Graphics Processing Unit (GPU)
solutions, Field Programmable Gate Array (FPGA) imple-
mentations and other automotive accelerators [1] have been
presented in the last few years. Because of their flexible
interconnect, the ability of in-field updates, and high pro-
cessing performance at modest power consumption, FPGAs
provide several valuable advantages for an automotive use
case when compared to other accelerators. However, only a
select few FPGA architectures provide support for run-time
reuse for multiple applications [2]. Instead, they focus on static
execution of one fixed application, resulting in considerable

resource, cost and power overheads due to the requirement of
multiple devices.

In the considered application class, Stereo Vision (SV)
and Motion Estimation (ME) are important representatives
with more than one algorithmic implementation, including
dense block matching in both cases. Exploiting this common
variant, this paper presents an efficient implementation of both
applications on shared hardware resources. The implementa-
tion is based on an existing stream processing architecture,
which enables a modular design approach and run-time reuse
of hardware components [3], and achieves high-performance
processing of 418 GOPS at modest power consumption of 10
Watts. From the ADAS perspective, the obtained processing
results can be utilized for the construction of 6D image
coordinates, consisting of a 3D pixel with associated 3D
motion information. Similar to other vision approaches [4],
these coordinates enable a robust perception and reconstruction
of the vehicle’s environment, which is crucial in the targeted
application domain.

The rest of the paper is organized as follows. Section
II gives an overview of existing approaches for ME and
SV, followed by the presentation of the selected variant and
its implementation in Section III. A thorough application
evaluation is presented in Section IV and Section V concludes
the paper.

II. ALGORITHM EVALUATION

In order to guarantee the suitability of the selected algorith-
mic approach, a comparsion with other automotive solutions
was conducted before implementation. For the reconstruction
of the 3D coordinate of a certain world point out of 2D image
information, a matching in at least two camera image planes
is necessary. In the past, different matching approaches have
been presented. Usually, a cost table for different disparities
is constructed, which is typically the most computation in-
tensive task. For the optimization of the obtained disparity
fields, different approaches such as a simple winner-takes-it-
all algorithm or global optimization techniques, graph-cuts or
semi-global matching are implemented, which are compared
in an existing evaluation database [5]. For the calculation of
disparity costs, two major techniques are the census transfor-
mation [6] and derivatives of the sum-of-absolute differences
metric [7], which are also used in our solution.

For ME, several methods have been developed in the past,
which typically are based on differential or block matching
techniques. In the field of differential algorithms, most solu-
tions use optical flow or gradient calculations for the determi-
nation of motion [8], [9]. Several hardware implementations978-3-9810801-8-6/DATE12/ c©2012 EDAA

DDR2-SDRAM

M
u
x

Stream
to Memory S

y
n
c

ME Array 0

Merge /
Compare

SAD

Split

Position
2Vector

zCalc

Motion

Depth
RGB2Y

FPGA

Rotate

Rotate

Rotate

RGB2Y

Img0

Img1

Memory
to Stream

Clip

Clip

Clip

Figure 1. Dense Matching Architecture

are based on these two differential approaches [10]; however,
these implementations typically relax the optimization crite-
rion or do not perform sufficient iterations to refine the flow
vector field to an acceptable quality level as found in software
solutions. Block matching techniques are typically used in the
field of video encoding and frame interpolation. Thanks to
the regular computational structure, they are well-suited for
hardware implementations [11]. In contrast to video encoding,
ADAS require the most accurate match for each pixel and even
sub-pixel accuracy to enable a robust and exact classification
of moving objects. To our knowledge, this paper’s dense block
matching solution is currently the only full search FPGA
implementation achieving the required processing performance
for this ambitious automotive use case.

III. DENSE BLOCK MATCHING

For our implementation, the combination of a full block
search variant and Sum of Absolute Differences (SAD) as the
matching kernel has been selected in order to achieve high-
quality processing results. This variant comes with massive
computation requirements, as up to 105 algorithmic operations
must be executed for each pixel, depending on block size and
search area. The basic formula for the calculation of a single
SAD(x, y, sx, sy) for a given block B with origin x, y and
search offsets sx, sy is presented in Equation 1,

SAD(x, y, sx, sy)=

x+B∑
i=x

y+B∑
j=y

|b0(i, j)− b1(i+ sx, j + sy)| (1)

with b0(i, j) as the reference block pixels and b1(i+sx, j+sy)
as the search block pixels provided by the previous or next
frame. The minimum SAD is then utilized to determine the
best match M(x, y) in a defined search area (Equation 2).

M(x, y)=min{SAD(x, y, sx, sy)|∀sx∈Sx, ∀sy∈Sy} (2)

with Sx, Sy∈[−N..N];N∈N. 2D motion vectors dx, dy can
then be derived from the SAD’s position in the search area.

For the calculation of depth information, a second stereo-
scopic camera is added. Using dense block matching for
the identification of corresponding pixels in the two rectified
stereo frames enables the calculation of the pixel’s distance
z(x, y) via the intercept theorem (Equation 3),

z(x, y)=
b ∗ f
d(x, y)

(3)

with b as the distance of the cameras, f as the camera’s focal
length and d(x, y) as the pixel’s disparity, which is derived
from the horizontal component of the motion vector.

Using a pixel’s 2D motion vector dxn, dyn and depth
information from two neighboring frames n and n − 1, the

missing motion vector dzn can be easily calculated in a post
processing stage as

dzn=z(x, y)n − z(x− dxn, y − dyn)n−1. (4)

A. FPGA-based Architecture
The general architecture of the implementation can be

seen in Figure 1. Grayscale image data is either directly
received from automotive cameras or can be transferred from
an external PC harddisk via PCI-Express (PCIe), combined
with on-chip colorspace conversion modules. As ME requires
two succeeding frames, the images must be stored in an
external framebuffer with two write and three read ports, which
implement the required block-based memory accesses. This is
achieved by run-time programmable address generators, which
enable the execution of multiple address patterns for the two
different applications. All programmable elements, which are
marked by small boxes in the element’s corners in Figure 1,
are customizable by element-specific instructions, which can
be efficiently modified at application run-time via a dedicated
parameter interface. This technique, which is explained in
detail in [3], enables efficient run-time modification and reuse
of hardware elements in multiple designs and applications.

Next, image data is rotated and image clipping and padding
is performed in order to fill the image borders of all three
memory streams. Block matching is then performed in a
cascade of matching arrays, which are explained in more detail
in Section III-B, and whose results are merged in a dedicated
compare/merge unit. As each application has a unique post-
processing stage, result data is split into two different branches,
which also return the final processing results to an external
PC. Except for the post-processing stages, both applications
utilize the same hardware resources, resulting in an efficient
implementation with a high degree of hardware reuse.

B. Matching Array Implementation
The proposed block matching implementation is based

on an existing sparse matching approach [12], which is
enhanced with several valuable extensions: the Processing
Elements (PE), which are presented in Section III-C, have
been redesigned and are now able to calculate dense block
matchings, the search area size can be easily customized and
extended in horizontal and vertical directions, and the run-
time programmable approach enables a utilization in multiple
application scenarios. Furthermore, the implementation scales
efficiently in space and time, exploiting recent FPGAs’ fast
clock frequencies via time-multiplexed reuse of matching
arrays and large FPGA chip areas via the cascaded assembly
of arrays, each covering a certain part of the search area.

Figure 2b shows an example configuration with one array
and a block size of B=8. The array is organized in a systolic

Ref

Up

Low

t = 0

(a) Array Data Flow

PE0,7 PE7,7PE1,7 PE2,7

PE0,6 PE7,6PE1,6 PE2,6

PE0,0

PE0,1

PE1,0 PE7,0

PE7,1PE1,1

PE2,0

PE2,1

ref0

search
(up | low)

ref1

(b) Dense Matching Array with block size B=8

Figure 2. Matching Array Architecture

fashion and contains B2 elements, which are chained in a deep
pipeline. Reference pixels are forwarded between the elements
with a one cycle delay, while search pixels are transmitted
to each PE synchronously. Inside the array, each single PE
represents a specific matching position, which results in B2

different block matchings per array. Depending on the PE’s
vertical position in the array, the upper or lower part of the
search window are required to calculate the correct block
matching, which also results in the need for a third image
stream (Figure 2a). The previously performed rotation of pixel
blocks from a row- to a column-wise representation enables
the exploitation of data localities in the pipeline as matching
columns are reused for the calculation of multiple matchings
inside the array. This results in a gapless pixel stream within
one complete frame, as overflow effects occuring at the image
borders can be disregarded.

C. Processing Element Architecture
Besides an efficient internal organization, the architecture of

the PEs is a key aspect for a high-performance implementation,
which is due to the large amount of PEs per array and the
requirement for a fast and area efficient implementation in
the automotive context. The VLSI architecture of the PEs
is shown in Figure 3. The PEs consist of one subtractor
for the calculation of the absolute difference and up to B
accumulators. These are organized in a shift register fashion,
each storing an SAD for a different position. At reset, each
accumulator forwards its intermediate result to the next stage
and the element outputs the result of the last accumulator into
its output multiplexer. In the output stage, all results of one
vertical matching column are multiplexed and forwarded to a
second multiplexing level that merges associated SADs for the
following selection of the best matches.

D. Array Customizations
An automotive block matching solution demands a high

degree of flexibility in order to cover different environmental
situations. The required search area can vary for each camera
device, its position, the traffic scenario and the vehicle’s
velocity. Furthermore, the matching quality is influenced by
various parameters such as the pixel bit width, which also
are related to the performance of the implementation and the
amount of logic resources consumed.

In order to obtain a flexible yet efficient hardware im-
plementation, all parameters with a strong influence on the
required chip area such as the image block size or the

SUB

Acc.Acc.Acc.Acc.

sad_prev

reference
up

low
select
reset

sad

reset_d1

ref_d1

Figure 3. Processing Element Architecture

amount of parallel matching arrays, can be customized at
synthesis time via VHDL generics. Secondary parameters
such as the SAD accuracy or the bit width of the grayscale
pixels also influence the array size and matching quality,
and are customizable as well. In addition, the implementation
provides several run-time configurable parameters such as the
degree of time-multiplexed reuse, which can be controlled
via the flexible address generators. Using these parameters,
multiple configurations become feasible, a selection of which
is evaluated in the next section.

IV. EXPERIMENTAL RESULTS

In order to quantify the general processing performance and
latency of the implementation and to evaluate the benefits
of the shared resource approach, several experiments have
been conducted. All presented variants have been implemented
on a Xilinx Virtex 5 FPGA (XC5VSX240T) running at 125
MHz. For all experiments, a sequence of RGB images with
an automotive image size of 512x384 pixels and 10 bits per
color component has been used as input data. During the tests,
the execution time is measured after each 250 images and an
average value for the frames per second is calculated based
on all received results.

All implemented variants are based on a block size of
8x8 pixels. The performance and latency of the shared resource
approach is compared with separated versions of both of the
selected applications, and a sparse matching version, which
represents a typical video processing use case. Finally, the
implementation’s power and cost efficiency is evaluated with
regard to automotive constraints.

A. Performance Evaluation
The performance results of the different implementations are

summarized in Table I. All benchmarked variants implement
a cascade of three matching arrays, which are also reused in a
time-multiplexed fashion for three times if applicable. Sparse
ME (line 1), which calculates only one matching position per
block, achieves the best results in terms of frames per second,
which is due to the reduced computation requirements when
compared with a dense ME implementation calculating B2

positions.
The dedicated implementations of Dense ME (line 2) and

SV (line 3) are able to fulfill the frame rate requirement of
24 FPS and show high processing performance of several
hundred GOPS, which specifies the amount of executed integer
operations within one second. Compared to the standard SV
application using two cameras, a modified Motion Stereo
version (line 4) based on two succeeding frames from one
monocular camera, provides minor performance advantages.
This is explained by a reduced amount of memory transfers,
as only one instead of two parallel image streams need to be
buffered. This comparison also shows the general influence

Application FPS GOPS Latency in µs
1 Motion Estimation (Sparse) 211.00 72.50 11.12
2 Motion Estimation (Dense) 26.86 417.69 77.14
3 Stereo Vision 76.65 397.27 5.9
4 Motion Stereo 80.53 417.51 4.3
5 Motion + Stereo 20.15 418.00 120.4

Table I
PERFORMANCE RESULTS: BLOCK SIZE 8X8, SEARCH AREA SIZE 32X32

of memory performance in the targeted application domain,
which often is the limiting factor.

The joint implementation of both parts (line 5) achieves
the best performance in terms of GOPS, but slighty fails to
achieve the original frame rate requirement. However, this can
be attributed to the comparatively slow application clock fre-
quency of 125 MHz, which does not represent the performance
limit of the matching array. Therefore, it is expected that the
existing small gap can be easily closed via a slightly faster
array clock frequency in future application revisions.

The last column of Table I presents the latency results of
the implementations, which is the measured time between the
start of a memory read transfer and the availability of the
corresponding results at the FPGA output. For an automotive
setup, all latencies are not considered critical, as the appli-
cation latency is dominated by the image capturing process,
which typically requires up to 40 ms. When compared to all
other implementations, the SV latencies differ significantly.
This is related to the absence of run-time reuse, resulting from
the fixed mounting of the cameras on the same vertical axis.

B. Power and Cost Considerations

As mentioned before, power consumption and hardware
costs are important aspects for automotive computer archi-
tectures, as systems for series vehicles must adhere to strict
constraints in both areas. In order to evaluate these aspects,
Table II presents the chip area requirements, the FPGA power
dissipation, and the computation density for all considered
applications. The power consumption figures have been calcu-
lated by Xilinx XPower, which provides an analysis of FPGA
power consumption for Xilinx devices.

With the exception of Sparse ME, which exhibits reduced
application complexity, all implementations require approx-
imately the same amount of resources. This is explained
by the same physical size of the matching array, which
consumes the largest part of the chip area. Regarding the
power consumption, all implementations show similar values,
which is related to the selected Virtex 5 FPGA device that
does not provide power saving techniques such as clock or
power gating of unused resources. It is expected that the power
consumption figures for recent low-power FPGA generations
providing these features would be significantly smaller and
correlated to the consumed chip area.

The last column presents the computation density of the

Application Chip Area Power Cons. GOPS/W
1 Motion Estimation (Sparse) 27 % 10.19 W 7.11
2 Motion Estimation (Dense) 43 % 10.48 W 39.86
3 Stereo Vision 44 % 10.46 W 37.98
4 Motion Stereo 43 % 10.47 W 39.88
5 Motion + Stereo 45 % 10.56 W 39.58
6 Motion + Stereo add. 43 % + 44 % 20.95 W 38.90

Table II
POWER CONSUMPTION EVALUATION

implementations expressed in GOPS/W. Compared to the
dedicated implementations, the joint solution of SV and ME
reaches similar performance results, which clearly demon-
strates the efficiency of the shared resource approach. Fur-
thermore, a direct comparsion with two separated implemen-
tations, each running on a dedicated chip (line 6), reveals
the advantages of the presented solution (line 5) for the
automotive domain: one single chip, which still achieves
the required processing performance via a high computation
density, consumes significantly less electrical power, requiring
only one single hardware device for the implementation of two
distinct applications.

V. CONCLUSION

In this paper, we have presented a high-performance dense
block matching solution for automotive image processing,
which permits the extraction of depth as well as motion
information. These results can be fusioned into 6D image
coordinates, which enable robust object detection and environ-
ment perception. Major parts of both considered applications
are executed on shared hardware resources, which is achieved
by flexible computation and data transport elements that en-
able run-time reuse of logic resources. This results in high
computation density and an efficient implementation in terms
of chip area and power consumption, which are both crucial
factors for the future integration of such systems in cost- and
energy-constrained series vehicles. Although several aspects
such as safety questions or matching quality improvements
remain unexplored, the general applicability of the presented
novel single-chip approach has been successfully demon-
strated, showing a viable path for an application integration
in future series vehicles.

REFERENCES

[1] S. Kyo and S. Okazaki, “In-vehicle vision processors for driver assis-
tance systems,” in Proc. of ASP-DAC ’08, 2008.

[2] C. Claus, W. Stechele, and A. Herkersdorf, “Autovision – A Run-
time Reconfigurable MPSoC Architecture for Future Driver Assistance
Systems,” Information Technology, vol. 49, pp. 181–187, 2007.

[3] A. do Carmo Lucas, H. Sahlbach, S. Whitty, S. Heithecker, and R. Ernst,
“Application development with the FlexWAFE real-time stream process-
ing architecture for FPGAs,” ACM TECS, Special Issue on Configuring
Algorithms, Processes and Architecture (CAPA), vol. 9, p. 23, 2009.

[4] U. Franke, C. Rabe, H. Badino, and S. Gehrig, “6d-vision: Fusion
of stereo and motion for robust environment perception,” in Pattern
Recognition. Springer Berlin / Heidelberg, 2005.

[5] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International Journal of
Computer Vision, vol. 47, pp. 7–42, 2002.

[6] K. Ambrosch and W. Kubinger, “Accurate hardware-based stereo vi-
sion,” Computer Vision and Image Understanding, vol. 114, no. 11, pp.
1303–1316, Nov. 2010.

[7] S. Gehrig, F. Eberli, and T. Meyer, “A real-time low-power stereo
vision engine using semi-global matching,” in Computer Vision Systems.
Springer Berlin / Heidelberg, 2009.

[8] B. K. P. Horn and B. G. Schunck, “Determining Optical Flow,” Artifical
Intelligence, vol. 17, pp. 185–203, 1981.

[9] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proceedings of Imaging Under-
standing Workshop, 1981.

[10] P. Cobos and F. Monasterio, “Fpga implementation of the horn & shunk
optical flow algorithm for motion detection in real time images,” in Proc.
of DCIS’ 98, 1998.

[11] M. Kim, I. Hwang, and S. Chae, “A fast vlsi architecture for full-search
variable block size motion estimation in mpeg-4 avc/h. 264,” in Proc.
of ASP-DAC ’05, 2005.

[12] C. Sanz, M. J. Garrido, and J. M. Meneses, “VLSI Architecture for
Motion Estimation using the Block-Matching Algorithm,” in EDTC,
1996, p. 310.

