
Hazard Driven Test Generation for SMT Processors

Padmaraj Singh

Nvidia

Portland, OR USA

Vijaykrishnan Narayanan
†

Department of Computer Science & Engineering

Pennsylvania State University

University Park, PA USA

David L. Landis

Department of Materials Science & Engineering

Carnegie Mellon University

Pittsburgh, PA USA

Abstract— Multithreaded processors increase throughput by

executing multiple independent programs on a single pipeline.

Simultaneous Multithreaded (SMT) processors execute multiple

threads simultaneously thus add a significant dimension to the

design complexity. Dealing with this complexity calls for extended

and innovative design verification efforts. This paper develops an

analytic model based SMT random test generation technique.

SMT analytic model parameters are applied to create random

tests with high utilization and increased contention. To

demonstrate the methodology, parameters extracted from the

PPC ISA and sample processor configurations are simulated on

the SMT analytic model. The methodology focuses on exploiting

data/control and structural hazards to guide the random test

generator to create effective SMT tests.

Keywords-simultaneous multithreading; superscalar ; analytic

model; Markov chains; data hazards; control hazards; structural

hazards; random test generation

I. INTRODUCTION

A Multithreaded (MT) processor executes multiple
independent programs on a single pipeline. Increased pipeline
utilization leads to improvement in overall throughput. Given
the increase in performance, several commercial processors
implement multithreading [1][2][3]. Multithreading techniques
may be broadly classified as interleaved multithreading (IMT),
blocked multithreading (BMT) and simultaneous
multithreading (SMT) [4]. However, the act of simultaneously
tracking multiple threads in the pipeline significantly adds to
the overall design complexity [5].

Increased design complexity leads to the need for extended
and innovative design verification techniques. Published
literature on pre-silicon SMT design verification techniques is

sparse. Intel Hyper-Threading validation is discussed in [6].
SMT test application techniques are presented in [7] and [8].

Intel Hyper-Threading verification effort augmented the
standard verification methodologies by paying special attention
to the cross product of architectural state space, logical
processor data sharing, logical processor forward progress,
atomic operations and self-modifying code.

†
This work was supported in part by NSF grants 1147388,0916887 & 0903432.

978-3-9810801-8-6/DATE12/2012 EDAA

IBM’s Power 7 SMT verification focused on MP-based
SMT verification where the separate scenarios are described for
each thread to emphasize collisions between shared resources
such as memory, caches and registers. They also introduce
thread irritation techniques to facilitate thread coordination and
result checking.

Simulation based verification continues to dominate the
overall pre-silicon processor design verification effort. Random
test generators are indispensable in this endeavor. Functional
coverage terms help quantify the stimulus quality and
effectiveness but it is impossible to think of and implement
coverage terms for all possible corner cases. Completely
random tests will require exorbitant amount of compute
resources to adequately target all areas of the design.
Therefore, it is necessary to develop and apply techniques to
effectively focus the random test generator output to exercise
the desired design feature. Such a technique to randomly
generate effective SMT tests is presented in this paper.

This work is based on the analytic model developed in [9].
We implement the analytic model and derive parameters to
drive the random test generator. The resulting process creates
tests boasting optimal unit utilization with high inter-
instruction dependencies. Thus, verification quality and
efficiency is improved by utilizing key design parameters to
tailor the random tests. Without such enhancements, the
probability of random generators exercising subtle corner cases
in the design is significantly reduced. The paper focuses on
data/control and structural hazard parameters to drive the test
generator.

Section II presents the SMT analytic model. Section III
applies the PPC instruction set to three sample SMT processor
configurations. Section IV derives the model data/control
hazard parameter to feed the random generator. Section V
introduces a methodology to adjust the test instruction mix to
control the structural hazards. Finally, section VI summarizes
the work and presents directions for future effort.

II. THE MODEL

Multithreaded analytic model developed by Yamamoto et al
[9] is implemented. We implement the model to compute
processor Instructions executed Per Cycle (IPC) as a function
of processor configuration and workload. The resulting data

help generate optimal multithreaded tests for simulation based
processor design verification. The model defines IPC as:

IPC = Pw * IPCw

w=1

G

∑ (1)

where Pw is the probability of having w instructions in the
global window and IPCw is the expected IPC measured for a
global window size w. IPCw models the effects of structural
hazards. Pw is the performance degradation due to data and
control hazards. When two or more instructions contend for the
same hardware resource a structural hazard occurs. Data
hazards occur when instructions with data dependency modify
data in different stages of the pipeline. Branches cause control
hazards. A global issue window consists of all instructions free
of data or control hazards ready to be dispatched to the
functional units. Vector M represents the global issue window
state:

M w = [m1 ,m2LmT],w = mi

i=1

T

∑ (2)

where mi is the number of instructions of type i in the global
issue window and T is the total number of functional units. The
total number of states for global window size w and T

functional unit types will be
w +T −1

T −1

 . Im is the total number

of instructions that can be dispatched given the global issue
window is in state M.

IM = ix ,ix = min(cx ,mx)
x=1

T

∑ (3)

where mx is the number of instructions of type x in the window
and cx is the number of functional units of type x. The
configuration vector is C = [c1, c2, … cT] representing all the
functional units in the processor. Then the structural hazard
driven IPC is:

IPCw = IM QM

M

∑ (4)

where QM is calculated by obtaining the steady state
probabilities of a Markov chain involving the states of the
global issue window M. All possible next states are determined
by the number of instructions that can be executed for a given
processor configuration and global window state. The
workload instruction mix vector V determines the state
transition probabilities. For example, a workload with 25%
integer, 30% floating point, 35% SIMD and 10% branch
instructions will be represented as V=[0.25,0.30,0.35,0.1]. The
IPC degradation due to data and control hazard is represented
in (5).

Pw = A
e

−1

w!
 (5)

A is the dependency degradation factor. As the instruction

count in the issue window increases then the chances of inter-

instruction dependencies also increase.

The next section describes the simulation of the PPC
instruction set on three processor configurations to compute the
IPC based on the above SMT processor analytic model.

III. PPC ISA AND SMT ANALYTIC MODEL

The PPC Instruction Set Architecture (ISA) contains 728
unique instructions [10]. If the random generator assigns equal
weight to each instruction then the runtime instruction mix
vector V for PPC is constructed as in Table I. For example,
there are 128 load-store instructions, thus v5=128/728=0.18.

TABLE I. PPC RUNTIME INSTRUCTION MIX VECTOR

Functional Units V Configurations

C1 C2 C3

Fixed Point v1 0.13 2 2 2

Decimal Floating Point v2 0.07 4 1 1

Double Precision Fixed Point v3 0.13 1 2 1

Vector v4 0.46 1 2 4

Load-Store v5 0.18 2 2 2

Branch v6 0.01 1 1 1

Condition Register Logic v7 0.02 1 1 1

Table I also lists the three sample processor configurations
that will be analyzed in this paper. There are 7 functional unit
types in each configuration and 12, 11 and 12 total functional
units in configurations C1, C2 and C3 respectively.

For the experiment, the number of threads N = 2, the thread
issue window size S = 3, and the global issue window G = N*S
= 6. To effectively apply the analytic model for test generation,
a function to model the data and control hazard degradation
(Pw) is introduced in (6). It is similar to (5) in that the
probability of dependencies increases as the number of
instructions (w) increases.

Pw =
1

w
d

 (6)

where d is the degradation parameter. Data and control hazards
determine Pw. Inter-instruction dependencies cause data
hazards and are categorized as Read-After-Write (RAW),
Write-After-Read (WAR) and Write-After-Write (WAW).
Inter-instruction dependencies are resolved through various
static and dynamic techniques. Methods also exist to analyze
and predict hazards in a given program [11]. The ISA, program
characteristics and underlying micro-architecture interact to
determine the affects of data and control hazards on the overall
IPC. As the number of instructions in a given window size
increase, the probability of dependencies increase. Adjusting
the random test generator input parameters can control the rate
at which the inter-instruction dependencies increase with the
window size.

In all configurations, the overall IPC is constrained by the
small window size S. A value of 3 is selected to keep the
number of states in the Markov chain model manageable. The

SIMD instructions dominate the PPC ISA with runtime
instruction mix probability v4 of 0.46 for the vector unit. The
number of vector units in configurations C1, C2 and C3 are set
to 1, 2 and 4 respectively. Consequently, the throughput of
random tests increases with IPC=3.463, 4.064 and 4.264 for
C1, C2 and C3 respectively when d=0.001. The results
demonstrate the improvements in IPC as number of vector
units are increased. Section IV develops steps to utilize the IPC
results for effective SMT test generation.

IV. OPTIMIZED DEGRADATION PARAMETER DERIVATION

Average functional unit utilization is highest when IPC is at
it’s maximum. When runtime mix vector V and processor
configuration vector C are held constant then data and control
hazard degradation probability Pw is the key determinant in the
IPC computation. A random test generator may bias the inter-
instruction dependencies while preserving the random selection
of instructions. Degradation parameter d may be used as the
input into the random test generator to generate high utilization
tests with optimal data and control hazards. Objective is to find
the degradation parameter d resulting in maximum IPC with
maximum data and control hazards. Thus, keeping the
functional units maximally occupied within a stressful
instruction stream with maximal data and control hazards.

 Degradation parameter d in a completely random test is set
to around 0.5. This will rarely result in maximum possible IPC
in a processor. Thus, the tests will exercise the part
inadequately. When d=0.5 IPC drops by 23, 16 and 10 percent
from maximum IPC for C1, C2 and C3 respectively. However,
by tailoring the biasing of the data and control hazards based
on the Markov chain model enables superior SMT test
generation.

To further bias the test generator towards creating effective
SMT tests, degradation d is modulated during the duration of
the test. Consequently, the functional units experience a range
of utilization while working through various levels of inter-
instruction dependencies. A logical choice is to modulate d in a
sinusoidal manner as represented in (7).

d = β sin(µ*g) (7)

where d is degradation parameter, β is d with maximum IPC, µ
is the modulation frequency and g is determined by instructions
per test. In the example configurations, IPC start settling to a

constant around d=3, thus β=3. For example, in configuration
C1, to modulate IPC a single cycle within a 500-instruction

test, µ≈0.012.

Two additional variations in d will further improve the test
quality:

• Constrain data/control hazards on thread basis.

• Constrain data/control hazards on functional unit basis.

The global issue window distributes the instructions to the
functional units. The instructions in the global issue window
are free of data and control hazards. Thus, beyond this point the
data/control at thread or functional unit level granularity are

irrelevant. However, the hardware leading up to the global
issue window must sort through these dependencies. Skewed
dependency burdens may introduce unusual backlogs leading
to rare corner cases. Thus, during test generation degradation
parameter may be broken down and varied according to (8) and
(9).

d = f(d0, d1, d2 … dN) (8)

where d0-dN are the degradation parameters for each thread.
Typically, d will be the average degradation across all threads
but sophisticated variations to the function in (8) may be
introduced. The degradation on functional unit basis will be a
multidimensional function:

d = f

d00 L d0T

M O M

d N 0 L d NT

 (9)

where dNT is the degradation in thread N due to instruction type
T. In the current example, the degradation is uniform across all
threads. The runtime instruction mix vector in Table I
influences the instruction type degradation. A random test is
dominated by SIMD instructions (v4=0.46). Under these
conditions the dependencies within the SIMD instruction data
and registers drive the effective degradation parameter.
However, it is possible to create potent data/control hazard
driven SMT tests by selectively manipulating d00-dNT in (9).

Calculating QM in (4) is the most compute intensive step.
The number of Markov chain states increase significantly as
the thread count, window size and functional unit count
increase. But for a given configuration it has to be computed
once, then QM may be used for various optimization
computations. This section introduced effective ways of
deriving degradation parameter d to drive the SMT test
generator. Next section proposes a methodology to adjust
runtime instruction mix vector V to generate effective SMT
tests.

V. RUNTIME INSTRUCTION MIX VECTOR V

Average functional unit utilization is highest when IPC is at
it’s maximum. Degradation parameter in an unconstrained
randomly generated test is set to 0.5. The runtime mix vector
for a randomly generated PPC SMT test is
V=[0.13,0.07,0.13,0.46,0.18,0.01,0.02]. The resulting IPC are
2.65, 3.41 and 3.82 for configurations C1, C2 and C3
respectively. The random V does not produce optimal
utilization of the functional units. To balance the load evenly
onto all functional units vectors, V is derived from C as in (10).

Vopt =
C

f total

 (10)

where ftotal is the total number of functional units. Thus, (10)
sets the instruction probability according to the number of
functional units of a particular type. For example, in
configuration C1, total number of functional units (ftotal) is 12.

The number of decimal floating-point units (c4) is 4. The
resulting probability of picking a decimal floating-point
instruction (v4) is set to c4/ftotal = 4/12 = 0.333.

On redistributing V according to (10) with data/control
hazards remaining random (d=0.5) then the IPC are 3.8, 4.5
and 5.6 for configurations C1, C2 and C3 respectively. These
IPC numbers represent the optimal utilization of functional
units with data/control hazards left unconstrained. Vopt will
keep the functional units busy but two related factors remain to
be addressed:

• Fair distribution of instructions in the tests

• Backlog on functional units to stress the design

In a test with unbiased distribution of instructions, each
instruction in the ISA has equal probability of being selected.
This provides greater variations in the test with all instructions
experiencing equal exposure. Runtime instruction mix vector V
according to Table I represents a fair distribution of PPC
instructions and henceforth will be referred to as VISA.

To induce extreme backlog the runtime instruction mix
vector is skewed to 1 for each functional unit type. For
example, to create a backlog on the fixed-point unit we set
V=[1,0,0,0,0,0,0]. Such vectors are termed Vbklg0 through VbklgT.
Therefore, to optimally exercise the SMT processor the tests
must oscillate among the vectors Vopt, VISA and Vbklg0-VbklgT.

Rather than abruptly changing instruction probabilities v0
through vT while transitioning between Vopt, VISA and VbklgT,
their values are changed gradually. One approach is

incrementing or decrementing v0-vT by some value ∆v till the
current V matches the subsequent instruction vector mix.
Another approach is to assure that the IPC does not change
abruptly. Smooth transition between IPCopt, IPCISA and IPCbklg
can be created by increasing or decreasing IPC by a

predetermined amount ∆IPC. The matching Vtransition for the

∆IPC is derived from the SMT analytic model. With the aid of
a preliminary high-level model of the processor, the SMT test
generator will create an effective mix of instructions to
strategically modulate the overall IPC during the test.

VI. SUMMARY AND FUTURE WORK

Standard verification methodologies continue to serve in
validating SMT processor correctness. Targeted random
stimulus is indispensable in leading the design into difficult to
reach corner cases.

We implemented the analytic model from [9] and developed
a hazard-based methodology to drive the SMT test generator.
Three sample processor configurations and the PPC ISA profile
helped demonstrate the model. Data/control hazards degrade
IPC in each configuration. The IPC vs. degradation parameter
d profile varies from configuration to configuration. This paper
developed a generalized method to vary d as a function of test
length for a given configuration (C) and runtime instruction
mix vector (V). Simple random SMT tests will hover around
sub-optimal IPC (23, 16 and 10 percent below the maximum
IPC). Thus, exercising the functional units at low utilization. In
contrast, the methods developed here significantly increase the

SMT test potency by strategically varying degradation
parameter d across the test to alternate between maximum and
minimum IPC in a sinusoidal fashion. The paper also started to
explore degradation as a function of thread count and
functional unit type.

Section V introduced a formula to compute optimal runtime
instruction mix vector Vopt. Functional unit utilization is
significantly higher with Vopt, thus exposing the machine to a
more realistic and stressful traffic than a completely random
SMT test generated with VISA. Vbklg stresses individual
functional unit types to the extreme. Vtransition facilitates
transitions between different instruction mix vector V types.
VISA leads to sub-optimal IPCISA, which result in low quality
tests. Strategically varying Vopt, VISA, Vbklg and Vtransition across a
test lead to potent SMT tests.

The techniques presented in this paper may be expanded into
several directions. Optimally determining degradation
parameter sub components in (8) and (9) is an interesting topic.
Optimally selecting Vopt, VISA, Vbklg and Vtransition based on test
size will further improve the test quality. Future experiments
may also explore simultaneous variation of d and V.

REFERENCES

[1] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd, “Power7: IBM’s
next-generation server processor,” IEEE Micro, vol. 30, issue 2, pp. 7-
15, March 2010.

[2] D. Koufaty and D.T. Marr, “Hyperthreading technology in the netburst
microarchitecture,” IEEE Micro, vol. 23, issue 2, pp. 56-65, March
2003.

[3] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: a 32-way
multithreaded Sparc processor,” IEEE Micro, vol. 25, issue 2, pp. 21-29,
March 2005.

[4] T. Ungerer, B. Robic, J. Silc, “A survey of processors with explicit
multithreading,” ACM Computing Surveys, vol. 35, no. 1, pp. 29-63,
March 2003.

[5] J.L.Lo, J.S.Emer, H.M.Levy, R.L.Stamm, D.M.Tullsen and S.J.Eggers,
“Converting thread-level parallelism to instruction-level parallelism via
simultaneous multithreading,” ACM Trans. On Comp. Sys. (TOCS),
vol. 15, issue 3, pp. 322-354, Aug. 1997.

[6] D.Burns, “Pre-Silicon Validation of Hyper-Threading Technology,”
Intel Technology Journal, vol. 6, issue 1, Feb. 2002.

[7] K.D. Schubert, “POWER7: verification challenge of a multi-core
processsor,” ICCAD ’09 Proc. Int. Conf. on Comp. Aided Design, pp.
809-812, Nov. 2009.

[8] J.M.Ludden, M.Rimon, B.G.Hickerson, and A.Adir, “Advances in
simultaneous multithreading testcase generation methods,” HVC’10
Proc. Int. Conf. on HW & SW Verif. & Testing, Oct. 2010.
(http://www.research.ibm.com/haifa/conferences/hvc2010/present/Adva
nces_in_Simultaneous_Multithreading_Testcase_Generation_Methods.p
df)

[9] W.Yamamoto, M.J.Serrano, A.R.Talcott, R.C.Wood, and
M.Nemirovsky, “Performance estimation of multistreamed, superscalar
processors,” In Proc. 27th Hawaii Int. Conf. on Sys. Sc., IEEE Comp.
Soc., pp 95-204, Jan. 1994.

[10] Power ISATM Version 2.06, IBM 2009.
(https://www.power.org/resources/downloads/PowerISA_V2.06B_V2_P
UBLIC.pdf)

[11] T.M. Austin, and G.S. Sohi, “Dynamic Dependency Analysis of
Ordinary Programs,” In Proc. 19th Int. Symp. on Comp. Arch., IEEE and
ACM,pp342-351,May1992.

