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Abstract— Multithreaded processors increase throughput by 

executing multiple independent programs on a single pipeline. 

Simultaneous Multithreaded (SMT) processors execute multiple 

threads simultaneously thus add a significant dimension to the 

design complexity. Dealing with this complexity calls for extended 

and innovative design verification efforts. This paper develops an 

analytic model based SMT random test generation technique. 

SMT analytic model parameters are applied to create random 

tests with high utilization and increased contention. To 

demonstrate the methodology, parameters extracted from the 

PPC ISA and sample processor configurations are simulated on 

the SMT analytic model. The methodology focuses on exploiting 

data/control and structural hazards to guide the random test 

generator to create effective SMT tests.  

Keywords-simultaneous multithreading; superscalar ; analytic 

model; Markov chains; data hazards; control hazards; structural 
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I.  INTRODUCTION 

A Multithreaded (MT) processor executes multiple 
independent programs on a single pipeline. Increased pipeline 
utilization leads to improvement in overall throughput. Given 
the increase in performance, several commercial processors 
implement multithreading [1][2][3]. Multithreading techniques 
may be broadly classified as interleaved multithreading (IMT), 
blocked multithreading (BMT) and simultaneous 
multithreading (SMT) [4]. However, the act of simultaneously 
tracking multiple threads in the pipeline significantly adds to 
the overall design complexity [5].   

Increased design complexity leads to the need for extended 
and innovative design verification techniques. Published 
literature on pre-silicon SMT design verification techniques is 

sparse. Intel Hyper-Threading validation is discussed in [6]. 
SMT test application techniques are presented in [7] and [8]. 

Intel Hyper-Threading verification effort augmented the 
standard verification methodologies by paying special attention 
to the cross product of architectural state space, logical 
processor data sharing, logical processor forward progress, 
atomic operations and self-modifying code.  
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IBM’s Power 7 SMT verification focused on MP-based 
SMT verification where the separate scenarios are described for 
each thread to emphasize collisions between shared resources 
such as memory, caches and registers. They also introduce 
thread irritation techniques to facilitate thread coordination and 
result checking. 

Simulation based verification continues to dominate the 
overall pre-silicon processor design verification effort. Random 
test generators are indispensable in this endeavor. Functional 
coverage terms help quantify the stimulus quality and 
effectiveness but it is impossible to think of and implement 
coverage terms for all possible corner cases. Completely 
random tests will require exorbitant amount of compute 
resources to adequately target all areas of the design. 
Therefore, it is necessary to develop and apply techniques to 
effectively focus the random test generator output to exercise 
the desired design feature. Such a technique to randomly 
generate effective SMT tests is presented in this paper.  

This work is based on the analytic model developed in [9]. 
We implement the analytic model and derive parameters to 
drive the random test generator. The resulting process creates 
tests boasting optimal unit utilization with high inter-
instruction dependencies. Thus, verification quality and 
efficiency is improved by utilizing key design parameters to 
tailor the random tests. Without such enhancements, the 
probability of random generators exercising subtle corner cases 
in the design is significantly reduced. The paper focuses on 
data/control and structural hazard parameters to drive the test 
generator. 

Section II presents the SMT analytic model. Section III 
applies the PPC instruction set to three sample SMT processor 
configurations. Section IV derives the model data/control 
hazard parameter to feed the random generator. Section V 
introduces a methodology to adjust the test instruction mix to 
control the structural hazards. Finally, section VI summarizes 
the work and presents directions for future effort. 

II. THE MODEL 

Multithreaded analytic model developed by Yamamoto et al 
[9] is implemented. We implement the model to compute 
processor Instructions executed Per Cycle (IPC) as a function 
of processor configuration and workload. The resulting data 



help generate optimal multithreaded tests for simulation based 
processor design verification. The model defines IPC as: 

IPC = Pw * IPCw

w=1

G

∑  (1) 

where Pw is the probability of having w instructions in the 
global window and IPCw is the expected IPC measured for a 
global window size w. IPCw models the effects of structural 
hazards. Pw is the performance degradation due to data and 
control hazards. When two or more instructions contend for the 
same hardware resource a structural hazard occurs. Data 
hazards occur when instructions with data dependency modify 
data in different stages of the pipeline. Branches cause control 
hazards. A global issue window consists of all instructions free 
of data or control hazards ready to be dispatched to the 
functional units. Vector M represents the global issue window 
state: 

  

M w = [m1 ,m2LmT ],w = mi

i=1

T

∑  (2) 

where mi is the number of instructions of type i in the global 
issue window and T is the total number of functional units. The 
total number of states for global window size w and T 

functional unit types will be 
w +T −1

T −1

 

 
 

 

 
 . Im is the total number 

of instructions that can be dispatched given the global issue 
window is in state M.  

IM = ix ,ix = min(cx ,mx )
x=1

T

∑  (3) 

where mx is the number of instructions of type x in the window 
and cx is the number of functional units of type x. The 
configuration vector is C = [c1, c2, … cT] representing all the 
functional units in the processor. Then the structural hazard 
driven IPC is: 

IPCw = IM QM

M

∑  (4) 

where QM is calculated by obtaining the steady state 
probabilities of a Markov chain involving the states of the 
global issue window M. All possible next states are determined 
by the number of instructions that can be executed for a given 
processor configuration and global window state. The 
workload instruction mix vector V determines the state 
transition probabilities. For example, a workload with 25% 
integer, 30% floating point, 35% SIMD and 10% branch 
instructions will be represented as V=[0.25,0.30,0.35,0.1]. The 
IPC degradation due to data and control hazard is represented 
in (5). 

Pw = A
e

−1

w!
 (5) 

A is the dependency degradation factor.  As the instruction 

count in the issue window increases then the chances of inter- 

instruction dependencies also increase. 

The next section describes the simulation of the PPC 
instruction set on three processor configurations to compute the 
IPC based on the above SMT processor analytic model. 

III. PPC ISA AND SMT ANALYTIC MODEL 

The PPC Instruction Set Architecture (ISA) contains 728 
unique instructions [10]. If the random generator assigns equal 
weight to each instruction then the runtime instruction mix 
vector V for PPC is constructed as in Table I. For example, 
there are 128 load-store instructions, thus v5=128/728=0.18.  

TABLE I.  PPC RUNTIME INSTRUCTION MIX VECTOR 

Functional Units V Configurations 

C1 C2 C3 

Fixed Point v1 0.13 2 2 2 

Decimal Floating Point v2 0.07 4 1 1 

Double Precision Fixed Point v3 0.13 1 2 1 

Vector v4 0.46 1 2 4 

Load-Store v5 0.18 2 2 2 

Branch v6 0.01 1 1 1 

Condition Register Logic v7 0.02 1 1 1 

 

Table I also lists the three sample processor configurations 
that will be analyzed in this paper. There are 7 functional unit 
types in each configuration and 12, 11 and 12 total functional 
units in configurations C1, C2 and C3 respectively. 

For the experiment, the number of threads N = 2, the thread 
issue window size S = 3, and the global issue window G = N*S 
= 6. To effectively apply the analytic model for test generation, 
a function to model the data and control hazard degradation 
(Pw) is introduced in (6). It is similar to (5) in that the 
probability of dependencies increases as the number of 
instructions (w) increases.  

Pw =
1

w
d

 (6) 

where d is the degradation parameter. Data and control hazards 
determine Pw. Inter-instruction dependencies cause data 
hazards and are categorized as Read-After-Write (RAW), 
Write-After-Read (WAR) and Write-After-Write (WAW). 
Inter-instruction dependencies are resolved through various 
static and dynamic techniques. Methods also exist to analyze 
and predict hazards in a given program [11]. The ISA, program 
characteristics and underlying micro-architecture interact to 
determine the affects of data and control hazards on the overall 
IPC.  As the number of instructions in a given window size 
increase, the probability of dependencies increase. Adjusting 
the random test generator input parameters can control the rate 
at which the inter-instruction dependencies increase with the 
window size.  

In all configurations, the overall IPC is constrained by the 
small window size S. A value of 3 is selected to keep the 
number of states in the Markov chain model manageable. The 



SIMD instructions dominate the PPC ISA with runtime 
instruction mix probability v4 of 0.46 for the vector unit. The 
number of vector units in configurations C1, C2 and C3 are set 
to 1, 2 and 4 respectively. Consequently, the throughput of 
random tests increases with IPC=3.463, 4.064 and 4.264 for 
C1, C2 and C3 respectively when d=0.001. The results 
demonstrate the improvements in IPC as number of vector 
units are increased. Section IV develops steps to utilize the IPC 
results for effective SMT test generation. 

IV. OPTIMIZED DEGRADATION PARAMETER DERIVATION 

Average functional unit utilization is highest when IPC is at 
it’s maximum. When runtime mix vector V and processor 
configuration vector C are held constant then data and control 
hazard degradation probability Pw is the key determinant in the 
IPC computation.  A random test generator may bias the inter-
instruction dependencies while preserving the random selection 
of instructions. Degradation parameter d may be used as the 
input into the random test generator to generate high utilization 
tests with optimal data and control hazards. Objective is to find 
the degradation parameter d resulting in maximum IPC with 
maximum data and control hazards.  Thus, keeping the 
functional units maximally occupied within a stressful 
instruction stream with maximal data and control hazards.  

 Degradation parameter d in a completely random test is set 
to around 0.5. This will rarely result in maximum possible IPC 
in a processor. Thus, the tests will exercise the part 
inadequately. When d=0.5 IPC drops by 23, 16 and 10 percent 
from maximum IPC for C1, C2 and C3 respectively. However, 
by tailoring the biasing of the data and control hazards based 
on the Markov chain model enables superior SMT test 
generation. 

To further bias the test generator towards creating effective 
SMT tests, degradation d is modulated during the duration of 
the test.  Consequently, the functional units experience a range 
of utilization while working through various levels of inter-
instruction dependencies. A logical choice is to modulate d in a 
sinusoidal manner as represented in (7). 

d = β sin(µ*g) (7)  

where d is degradation parameter, β is d with maximum IPC, µ 
is the modulation frequency and g is determined by instructions 
per test. In the example configurations, IPC start settling to a 

constant around d=3, thus β=3. For example, in configuration 
C1, to modulate IPC a single cycle within a 500-instruction 

test, µ≈0.012. 

Two additional variations in d will further improve the test 
quality: 

• Constrain data/control hazards on thread basis. 

• Constrain data/control hazards on functional unit basis. 

The global issue window distributes the instructions to the 
functional units. The instructions in the global issue window 
are free of data and control hazards. Thus, beyond this point the 
data/control at thread or functional unit level granularity are 

irrelevant. However, the hardware leading up to the global 
issue window must sort through these dependencies. Skewed 
dependency burdens may introduce unusual backlogs leading 
to rare corner cases. Thus, during test generation degradation 
parameter may be broken down and varied according to (8) and 
(9). 

d = f(d0, d1, d2 … dN) (8) 

where d0-dN are the degradation parameters for each thread. 
Typically, d will be the average degradation across all threads 
but sophisticated variations to the function in (8) may be 
introduced. The degradation on functional unit basis will be a 
multidimensional function: 

  

d = f

d00 L d0T

M O M

d N 0 L d NT

 

 

 
 
 

 

 

 
 
 
  (9) 

where dNT is the degradation in thread N due to instruction type 
T. In the current example, the degradation is uniform across all 
threads. The runtime instruction mix vector in Table I 
influences the instruction type degradation. A random test is 
dominated by SIMD instructions (v4=0.46). Under these 
conditions the dependencies within the SIMD instruction data 
and registers drive the effective degradation parameter. 
However, it is possible to create potent data/control hazard 
driven SMT tests by selectively manipulating d00-dNT in (9). 

Calculating QM in (4) is the most compute intensive step. 
The number of Markov chain states increase significantly as 
the thread count, window size and functional unit count 
increase.  But for a given configuration it has to be computed 
once, then QM may be used for various optimization 
computations. This section introduced effective ways of 
deriving degradation parameter d to drive the SMT test 
generator. Next section proposes a methodology to adjust 
runtime instruction mix vector V to generate effective SMT 
tests. 

V. RUNTIME INSTRUCTION MIX VECTOR V 

Average functional unit utilization is highest when IPC is at 
it’s maximum. Degradation parameter in an unconstrained 
randomly generated test is set to 0.5. The runtime mix vector  
for a randomly generated PPC SMT test is 
V=[0.13,0.07,0.13,0.46,0.18,0.01,0.02]. The resulting IPC are 
2.65, 3.41 and 3.82 for configurations C1, C2 and C3 
respectively. The random V does not produce optimal 
utilization of the functional units.  To balance the load evenly 
onto all functional units vectors, V is derived from C as in (10). 

Vopt =
C

f total

 (10) 

where ftotal is the total number of  functional units. Thus, (10) 
sets the instruction probability according to the number of 
functional units of a particular type. For example, in 
configuration C1, total number of functional units (ftotal) is 12. 



The number of decimal floating-point units (c4) is 4. The 
resulting probability of picking a decimal floating-point 
instruction (v4) is set to c4/ftotal = 4/12 = 0.333. 

On redistributing V according to (10) with data/control 
hazards remaining random (d=0.5) then the IPC are 3.8, 4.5 
and 5.6 for configurations C1, C2 and C3 respectively. These 
IPC numbers represent the optimal utilization of functional 
units with data/control hazards left unconstrained. Vopt will 
keep the functional units busy but two related factors remain to 
be addressed: 

• Fair distribution of instructions in the tests 

• Backlog on functional units to stress the design 

In a test with unbiased distribution of instructions, each 
instruction in the ISA has equal probability of being selected. 
This provides greater variations in the test with all instructions 
experiencing equal exposure. Runtime instruction mix vector V 
according to Table I represents a fair distribution of PPC 
instructions and henceforth will be referred to as VISA.  

To induce extreme backlog the runtime instruction mix 
vector is skewed to 1 for each functional unit type. For 
example, to create a backlog on the fixed-point unit we set 
V=[1,0,0,0,0,0,0]. Such vectors are termed Vbklg0 through VbklgT. 
Therefore, to optimally exercise the SMT processor the tests 
must oscillate among the vectors Vopt, VISA and Vbklg0-VbklgT.  

Rather than abruptly changing instruction probabilities v0 
through vT while transitioning between Vopt, VISA and VbklgT, 
their values are changed gradually. One approach is 

incrementing or decrementing v0-vT by some value ∆v till the 
current V matches the subsequent instruction vector mix. 
Another approach is to assure that the IPC does not change 
abruptly. Smooth transition between IPCopt, IPCISA and IPCbklg 
can be created by increasing or decreasing IPC by a 

predetermined amount ∆IPC. The matching Vtransition for the 

∆IPC is derived from the SMT analytic model. With the aid of 
a preliminary high-level model of the processor, the SMT test 
generator will create an effective mix of instructions to 
strategically modulate the overall IPC during the test. 

VI. SUMMARY AND FUTURE WORK 

Standard verification methodologies continue to serve in 
validating SMT processor correctness. Targeted random 
stimulus is indispensable in leading the design into difficult to 
reach corner cases.  

We implemented the analytic model from [9] and developed 
a hazard-based methodology to drive the SMT test generator. 
Three sample processor configurations and the PPC ISA profile 
helped demonstrate the model. Data/control hazards degrade 
IPC in each configuration. The IPC vs. degradation parameter 
d profile varies from configuration to configuration. This paper 
developed a generalized method to vary d as a function of test 
length for a given configuration (C) and runtime instruction 
mix vector (V). Simple random SMT tests will hover around 
sub-optimal IPC (23, 16 and 10 percent below the maximum 
IPC). Thus, exercising the functional units at low utilization. In 
contrast, the methods developed here significantly increase the 

SMT test potency by strategically varying degradation 
parameter d across the test to alternate between maximum and 
minimum IPC in a sinusoidal fashion. The paper also started to 
explore degradation as a function of thread count and 
functional unit type. 

Section V introduced a formula to compute optimal runtime 
instruction mix vector Vopt. Functional unit utilization is 
significantly higher with Vopt, thus exposing the machine to a 
more realistic and stressful traffic than a completely random 
SMT test generated with VISA. Vbklg stresses individual 
functional unit types to the extreme. Vtransition facilitates 
transitions between different instruction mix vector V types. 
VISA leads to sub-optimal IPCISA, which result in low quality 
tests. Strategically varying Vopt, VISA, Vbklg and Vtransition across a 
test lead to potent SMT tests. 

The techniques presented in this paper may be expanded into 
several directions. Optimally determining degradation 
parameter sub components in (8) and (9) is an interesting topic. 
Optimally selecting Vopt, VISA, Vbklg and Vtransition based on test 
size will further improve the test quality. Future experiments 
may also explore simultaneous variation of d and V. 
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