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Abstract—Target sensitive tasks have an execution window for
feasibility and must execute at a target point in time for maximum
utility. In the gravitational task model, a task can express a
target point, and the utility decay as a function of the deviation
from this point. A method called equilibrium approximates the
schedule with maximum utility accrual based on an analogy
with physical pendulums. In this paper, we propose a scheduling
algorithm for this task model to schedule periodic tasks. The
basic idea of our solution is to combine the equilibrium with
Earliest Deadline First (EDF) in order to reuse EDF’s well studied
timeliness analysis. We present simulation results and an example
multimedia application to show the benefits of our solution.

I. INTRODUCTION

Target sensitive real-time applications have jobs with target

points at which execution results in highest utility; the utility

degrades as a function of the deviation from this point.

Scheduling must be able to defer work in order to ensure job

execution at the target point, and must account for the arrival

of future jobs in order to not cause deadline misses. In case

of periodic task scheduling, if phases are 0 and deadlines are

less than or equal to the period, the scheduler must consider all

jobs within the hyper-period to guarantee timing constraints.

Let us define N as the number of jobs, and n as the number

of periodic tasks. In a schedule, the number of jobs within

the hyper-period can grow in factorial scale with the number

of periodic tasks (N = n!). Therefore, scheduling algorithms

that defer work have a factorial worst case complexity with the

number of periodic tasks (O(n!)). If phase and deadlines are

arbitrary, the number of jobs may be unbounded [1]. On-line

scheduling under these conditions is impractical.

One examples of periodic target sensitive application is high

media processing, where frames must be displayed strictly pe-

riodically and at target points for maximum perceived quality

of video. Frames have to be displayed right after decoding

e.g. for consumer electronics, and hence, buffering is not an

option in this case [2]. If the decoding takes too long and

cannot be completed by its deadline, either the decoding has

to be aborted or the display delayed. The perceived quality

may be higher upon delayed display, provided that the impact

on subsequent frames is limited and the final utility clear.

In TUF schedulers, tasks aggregate a given amount of utility

to the system as a function of when they complete; the goal of

the scheduler is to maximize system utility. A best-effort work-

conserving algorithm for resource allocation in computing

systems is proposed in [3]. The TUF scheduler proposed in [4]

is non-work-conserving, assumes arbitrary types of utility

function, and approximates the optimum in O(N3) under the

constraint that all jobs are within the same busy period. In [5],

the authors propose a TUF scheduling algorithm with O(N2)
assuming only non-increasing TUFs. The result is used in

Ethernet packet scheduling to define the ordering. This work is

extended in [6] and [7] to support variable cost functions and

mutual exclusion of resources, respectively. In [8] an energy-

aware TUF scheduler is proposed, but the focus is to satisfy

statistical performance requirements. All these approaches are

not capable to defer work to their respective target points (i.e.

work-conserving), with exception of the approach proposed

in [4]. However, this approach has high on-line overhead (since

in the worst case N = n!) and imposes a very restrictive

limitation: there must be no idle time in the schedule, which

is very unlikely to happen.

The gravitational task model [9], [10], [11] uses a method

called equilibrium to compute the trade-off among the ex-

ecution of jobs for increased accrued utility. This method

has linear complexity w.r.t. the number of jobs, approximates

the optimum, and holds provided the order jobs execute

is given and jobs have elliptical utility functions. In [10],

the authors presented an on-line scheduler with complexity

O(N × log(N)) for the gravitational task model that uses the

equilibrium and an utility density based heuristic to reorder

the execution sequence of jobs for increased utility accrual;

scheduling consists of sorting and deferring the execution of

jobs. Through the rest of this paper, we will refer to this

scheduler as Grav-DST. In the case of periodic tasks, in the

worst case N = n!.

In this paper, we propose a gravitational task model based

scheduling algorithm for periodic tasks which is inspired on

a mix of EDF and Grav-DST. We call this algorithm Grav-

EDF-swap. This algorithm uses an interval of time called equi-

librium window to limit the amount of jobs when computing

the equilibrium; we limit the number of jobs to N = n2.

We, then, propose a method to compute the equilibrium of

jobs which guarantees the timing constraints of jobs outside

the equilibrium window. Finally, we propose an heuristic to

reorder the execution sequence which increases utility accrual

and does not violate timing constraints.

Our apporach significantly reduces the overhead to schedule

periodic tasks to O(N = n2). This lower overhead does not

come at the expense of restricted feasibility, and simulation

results show that there is a negligible impact on the utility978-3-9810801-8-6/DATE12/ c©2012 EDAA



accrual compared to methods that consider full knowledge of

the arrival of future jobs.

The rest of this paper is organized as follows. Section II re-

calls the gravitational task model, and section III describes the

Grav-EDF-swap. Section IV brings results from a simulation

study. Section V an example multimedia application enhanced

with our scheduling algorithm. Finally, section VI concludes

the paper.

II. THE GRAVITATIONAL TASK MODEL

The gravitational task model assumes jobs ji with earliest

start time esti, relative deadline dli, worst case execution time

WCETi, target point tpi and importance impi; these jobs may

be instances of periodic tasks or not. The execution window of

a job ji is, then, the interval [esti, esti+dli]. A job obtains its

highest utility at the target point; executing somewhat before

or after is feasible, but at lower utility. As the whole execution

of a job cannot happen in one point in time, the target point

relates to an anchor point within the job execution. The value

of an anchor point (αi) is the portion of execution of job ji
that executes before this anchor point (0 ≤ αi ≤ 1) and di is

the amount of execution time in between αi and αi+1. Jobs

are not allowed to execute out of their execution window. Each

job can express an utility decay as a function of its deviation

from its target point. They may or may not be instances of

recurring tasks. The importance represents the flexibility of a

job to be shifted from its target point in the presence of other

jobs. Finally, the utility density is defined as impi/WCETi.

Equation (1), called equilibrium, calculates the deviation xn

of the last job in a busy period from its target point so that

the utility accrual of the whole busy period approximates the

maximum. Table I shows the calculation each parameter in

this equation using task parameters. Refer to [9], [11] for a

complete description of the equilibrium calculation.

xn =

∑n−1

i=1
Wi × (

∑n−1

j=i (dj) + Pi − Pn)
∑n

i=1
Wi

(1)

equilibrium parameters task parameters

Wi 2× impi/(dli −WCETi)
Ri (dli −WCETi)/2
Pi esti + (dli −WCETi)/2 + αiWCETi

di (1− αi)WCETi + αi+1WCETi+1

TABLE I: Task and equilibrium parameters.

III. THE SCHEDULING ALGORITHM

For the sake of simplicity, we split the description of the

algorithm into 2 parts: first we describe the algorithm to

combine the Gravitational Task Model with EDF (Grav-EDF),

and then we extend this algorithm to swap the execution of

jobs for increased utility accrual (Grav-EDF-swap).

Algorithm of Grav-EDF. First, let us define an interval

of time ew called equilibrium window. This interval starts at

tc, and ends at ew_end (hence, ew = [tc, ew_end[)). In this

work, we calculate ew_end so that the equilibrium windows

contains n2 jobs. This restriction in the length of the execution

window provides for lower complexity and, as we will see

in the evaluation section, has negligible impact on the utility

accrual of the schedule.

At system start-up, the scheduler

• calculates ew_end so that n2 jobs arrive within the

interval [0, ew_end[.
• Then, schedules the execution of all jobs that arrive

within the equilibrium window as in work-conserving

non-preemptive EDF.

• Finally, computes the equilibrium of all jobs under

the constraint that no work is deferred in the interval

[ew_end,∞[, i.e. the schedule outside the equilibrium

window is as in work-conserving non-preemptive EDF.

During runtime

• Upon completion of a job, the scheduler sets ew_end to

the arrival time of the next job outside the current equi-

librium window, orders the execution of incoming jobs

with the other jobs using EDF, computes the equilibrium

of all jobs as described above.

Restricting the equilibrium to delay jobs only within the

execution window guarantees that the execution sequence that

EDF generates prevails.

The complexity of Grav-EDF is linear with the number

of jobs in the equilibrium window, which is the complexity

to compute the equilibrium. As we limit the number of jobs

within the equilibrium window to n2, the complexity is O(n2).
Algorithm of Grav-EDF-swap. Grav-EDF-swap initially

applies Grav-EDF as described in section III. Then, it scans all

jobs within the equilibrium window, and swaps 2 adjacent jobs

if (i) they are in the same busy period and, (ii) upon swap, no

timing constraint is violated and (iii) the job with higher utility

density lies closer to its target point. In case both jobs have

the same utility density, the sum of their absolute deviations

must decrease. Only jobs in the same busy period compete for

their target points, and hence, are considered for swap. After

scanning all jobs, Grav-EDF-swap computes the equilibrium

for the jobs once again. The number of times that Grav-EDF-

swap scans the jobs for swap is customizable, but simulations

results show that more than one round brings little increase in

the utility accrual. At runtime, we apply the steps above every

time the scheduler admits a new job in the schedule.

Example. Table II contains the parameters of 2 periodic

tasks, and table III the first 3 jobs that arrive in the system (τi,j
is the jth instance of task τi). For the sake of simplicity, we

assume ew_end = 4. The equilibrium window is ew = [0, 4[
at tc = 0, and the jobs arriving in this interval are τ1,1,

τ2,1, and τ1,2. Scheduling these jobs with EDF results in the

schedule depicted in figure 1a. Then, the scheduler computes

the equilibrium, resulting in the schedule depicted in figure 1b.

Jobs τ2,1 and τ1,2 compete for their target points in this

scenario. We apply, then, the reordering heuristic. Jobs τ2,1
and τ1,2 have adjacent executions, and the same utility density

— same importance and same execution time. Their deviations



τ1 τ2

EST 0 0
period 2 5
WCET 1 1
relative tp 0.5 0.875
anchor point 0.5 0.5
importance 1 1

TABLE II: Task set.

τ1,1 τ1,2 τ2,1

EST 0 2 0
deadline 2 4 5
WCET 1 1 1
target point 1 3 4
anchor point 0.5 0.5 0.5
importance 1 1 1

TABLE III: Job set.

before swap are x(τ2,1) = −1.5 and x(τ1,2) = 0.5, and upon

swap x′(τ2,1) = −0.5 and x(τ1,2) = −0.5. As upon swap the

sum of their absolute deviations from their target points gets

smaller, the heuristic swaps them, resulting in the schedule

of figure 1c. The scheduler computes, finally, the equilibrium,

which does not change the schedule because the completion

of τ2,1 may not be deferred beyond the equilibrium window.

(a) Schedule at tc = 0
before equilibrium

(b) Schedule at tc = 0
after equilibrium

(c) Schedule at tc =
0 after equilibrium and

swap heuristic

Fig. 1: Intermediate schedules for Grav-EDF-swap.

Scanning the job list has complexity O(N = n2), swapping

adjacent jobs has constant complexity, and may happen at most

N − 1 times (complexity O(N = n2)). Finally, the equilib-

rium calculation performed at the end has linear complexity.

Therefore, the complexity of EDF-swap is O(N = n2).

IV. EVALUATION

In our experiments, we compare Grav-EDF-swap with Grav-

DST [10] and the Generic Utility Scheduler (GUS) [7]. GUS is

a recent work-conserving TUF scheduler (i.e. does not defer

work) and we include it in the comparison due to the non-

existence of a non-work-conserving TUF scheduler that can

handle idle times in the schedule.

In our simulations, the number of periodic tasks in each task

set is a random integer uniformly distributed in the interval

[2, 10]. The system utilization categories varies in the range

[0.1, 0.9] with granularity 0.1. Each utilization category com-

prises 1000 randomly generated task sets, including infeasible

ones. The period and importance of each task are integer

numbers uniformly distributed in the interval [1, 10]. Deadlines

are equal to the period, offsets are 0 and target points vary

across experiments. The computation times were uniformly

distributed such that the generated task set has the desired

utilization. In each schedule, we considered all jobs within

the hyper-period. Our results are within a confidence level of

95% with significance level of 0.05.

In the experiment results depicted in figure 2, we compare

GUS, Grav-DST, Grav-EDF, Grav-EDF-swap with 1 round

of the swap heuristic (‘Grav-EDF-swap 1’), and EDF-swap
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Fig. 2: Utility accrual for different scheduling algorithms.

with 5 rounds of the swap heuristic (‘Grav-EDF-swap 5’).

As can be seen, applying one round of the swap heuristic

results in ∼ 5% utility increase, while more rounds of the swap

heuristic result in negligible increase. Therefore, we conclude

that the acceptance ratio of the schedule has more impact on

the utility accrual than the actual execution sequence of jobs.

Comparing the results for Grav-EDF and Grav-EDF swap, we

also conclude that most of the increase in the utility accrual

comes from the equilibrium of jobs, and not from the execution

sequence of jobs. As expected, GUS performs poorly due to its

incapability of deferring work to their respective target points.

We can also observe that ‘Grav-EDF-swap 1’ is statistically

superior or equivalent to Grav-DST in most cases for target

point equal to 0.5. Varying the target points does not affect the

performance of Grav-EDF-swap, while Grav-DST has up to

50% decrease in utility accrual (compare figures 2a and 2b).

V. MULTIMEDIA APPLICATION

A. Modeling in the gravitational task model

We use Grav-EDF to schedule the decoding and display

tasks without the need to buffer extra decoded frames or

compromise feasibility; we do not use swap because frames

must be decoded in a specific order, and EDF can guarantee

this order [2]. The period of each decoding and display

task is 1/framerate; the deadline is the length of the GOP

(group of pictures) so that the high variability of decoding

times do not compromise feasibility. The computation time

of each decoding task instance is the decoding time of the

respective frame (thus, we consider the exact execution time).

The decoding task is not target sensitive (only the display),

and hence, we set importance 0, which dismisses the need for

a target point. Display tasks have execution time 0 (negligible

because DMA module handles data transfer between decoding

buffer and display buffer), importance of the stream to the user,

the target point is the desired display time, and the anchor

point is 0 (start of data transfer). The pendulum equilibrium

is suitable to schedule the frame display tasks because their

utility functions have a concave nature [12].

B. Experiments

We generate periodic task sets from decoding times of

5 MPEG-2 streams originating from DVB-S (Digital Video

Broadcasting—Satellite). Each stream comprises 7500 inter-

laced frames with different properties (5 minutes of video in
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Fig. 3: Histograms of deviations for car documentary.

each stream), and displays 25 frames per second. The 1st
stream is a car documentary, and we assign importance 10; the

2nd stream is business news, the 3rd stream is a volleyball

match, and we assign both importance 2; the 4th stream is

a soccer match, and we assign importance 5; and finally, the

5th stream is a cartoon, and we assign importance 2.

We use the measured decoding times to schedule the frame

decoding and display using a scheduling simulator—an imple-

mentation the scheduling algorithm on a real-time operating

system platform can obtain these values from decoding time

estimators [13]. Finally, we use the output of the simulator to

generate a video output that displays frames according to the

schedule of the display tasks.

In our experiments, we use 6 feasible task sets with different

workloads. Task set A contains the 1st stream; task set B

contains the 1st and 2nd streams; task set C contains the 1st,
2nd and 3rd streams; task set D contains the 1st, 2nd, 3rd
and 4th streams; task set E contains all streams twice; and

finally, task set F contains all streams 3 times. The utilization

of those task sets vary in between 10% and 70%.

In figure 3 we plot the histograms for frame display

deviation of the car documentary under the Grav-EDF and

pure EDF—we omit the results for the other streams due to

similarities in all results and space restrictions in this paper.

The x-axis is the deviation in milliseconds — each bar of

the histogram has a width of 5 milliseconds —, and the y-

axis is the number of interlaced frames. Each graph plots

the histogram for 6 task sets: A, B, C, D, E, and F. We

can see that scheduling the tasks with EDF results in higher

dispersion of the deviations for both low and high task set

utilizations because some frames are decoded too early. Grav-

EDF is able to account for the target point of frames under

low workload by deferring the display task, yet providing the

necessary flexibility under high workload in order to avoid

frame drops (the deviations gradually increase).

Observing the resulting video output, we can see that larger

deviations of frame display in EDF result in jerked scenes,

while using Grav-EDF results in a smooth video playout.

VI. CONCLUSION

In this paper, we proposed a gravitational task model based

scheduling algorithm for target sensitive periodic tasks. This

algorithm, called Grav-EDF-swap, has complexity O(n2);
previous scheduling algorithms for the gravitational task model

(e.g. [11], [10]) have complexity O(n!). The basic idea is to

use an interval of time called equilibrium window to limit the

amount of jobs considered in the equilibrium computation,

and an heuristic to reorder the execution sequence within this

window. Simulation results revealed that the low complexity of

our scheduling algorithm does not come neither at the expense

of a lower acceptance ratio, nor at the expense of a decreased

utility accrual. We also presented an multimedia application

example to illustrate that target sensitive applications enhanced

with our scheduler provide better service quality.

REFERENCES

[1] S. K. Baruah, R. R. Howell, and L. Rosier, “Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor,” Real-Time Systems, vol. 2, pp. 301–324, 1990.

[2] D. Isovic, G. Fohler, and L. F. Steffens, “Timing constraints of MPEG-2
decoding for high quality video: misconceptions and realistic assump-
tions,” in Proceedings of ECRTS 03), Porto, Portugal, July 2003.

[3] C. D. Locke, “Best-effort decision-making for real-time scheduling,”
Ph.D. dissertation, Pittsburgh, PA, USA, 1986.

[4] K. Chen and P. Muhlethaler, “A scheduling algorithm for tasks described
by time value function,” Real-Time Syst., vol. 10, no. 3, 1996.

[5] J. Wang and B. Ravindran, “Time-utility function-driven switched
Ethernet: Packet scheduling algorithm, implementation, and feasibility
analysis,” IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 2, 2004.

[6] H. Wu, U. Balli, B. Ravindran, and E. D. Jensen, “Utility accrual
real-time scheduling under variable cost functions,” in Proceedings of

RTCSA’05. Washington, DC, USA: IEEE Computer Society, 2005.
[7] P. Li, H. Wu, S. B. Ravindran, and E. D. Jensen, “A utility accrual

scheduling algorithm for real-time activities with mutual exclusion
resource constraints,” IEEE Trans. Comput., vol. 55, no. 4, 2006.

[8] H. Wu, B. Ravindran, E. D. Jensen, and P. Li, “Energy-efficient, utility
accrual scheduling under resource constraints for mobile embedded
systems,” Trans. on Embedded Computing Sys., vol. 5, no. 3, 2006.

[9] R. Guerra and G. Fohler, “A gravitational task model for target sensitive
real-time applications,” in ECRTS08 - 20th Euromicro Conference on

Real-Time Systems, Prague, Czech Republic, July 2008.
[10] ——, “On-line scheduling algorithm for the gravitational task model,” in

ECRTS09 - 21th Euromicro Conference on Real-Time Systems, Dublin,
Ireland, July 2009.

[11] ——, “A gravitational task model with arbitrary anchor points for target
sensitive real-time applications,” Real-Time Syst., vol. 43, no. 1, 2009.

[12] M. Claypool and J. Tanner, “The effects of jitter on the perceptual quality
of video,” Proc. ACM Multimedia ’99, 1999.

[13] J. Hamers and L. Eeckhout, “Resource prediction for media stream
decoding,” in Proceedings of the conference on Design, automation and

test in Europe, ser. DATE ’07. San Jose, CA, USA: EDA, 2007.


