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Abstract—Aggregate scheduling in routers merges several flows
into one aggregate flow. We propose an approach for computing the
end-to-end delay bound of individual flows in a FIFO multiplexer
under aggregate scheduling. A synthetic case study exhibits that the
end-to-end delay bound is up to 33.6% tighter than the case without
considering the traffic peak behavior.

I. INTRODUCTION

Real-time applications such as multimedia and gaming boxes

etc., require stringent performance guarantees, usually enforced

by a tight upper bound on the maximum end-to-end delay [1].

For the worst-case performance analysis, we derive the upper

delay bound of a flow in a FIFO multiplexing and aggregate

scheduling network. The behavior of a flow is determined by

four parameters including the maximum transfer size (L), peak

rate (p), burstiness (σ), and average sustainable rate (ρ). To

calculate the tight delay bound per flow, the main problem is

to obtain the end-to-end Equivalent Service Curve (ESC) which

the tandem of routers provides to the flow. However, the required

propositions for calculating performance metrics of Variable Bit-

Rate (VBR) traffic characterized with (L, p, σ, ρ), transmitted

in the FIFO order and scheduled as aggregate do not exist.

Based on network calculus [2][3], we first present and prove the

required propositions and then calculate the delay bound under

the mentioned system model.

There are some works for deriving per-flow worst-case delay

bound under different system models [4]-[6]. However, they

investigate computing delay bounds only for average behavior

of flows while we analyze both average and peak behavior.

In [7], we presented a theorem for computing output traffic

characterization. The aim of this paper is to represent and prove

propositions for deriving end-to-end ESC and tighter upper bound

on the end-to-end delay.

II. NETWORK CALCULUS BACKGROUND

In network calculus, traffic flows are modeled by arrival curves

and network elements by service curves. Network calculus uses

Traffic SPECification to model the average and peak characteris-

tics of a flow. With TSPEC, fj is characterized by an arrival

curve αj(t) = min(Lj + pjt, σj + ρjt) in which Lj is the

maximum transfer size, pj the peak rate (pj ≥ ρj), σj the

burstiness (σj ≥ Lj), and ρj the average (sustainable) rate. We

denote it as fj ∝ (Lj , pj , σj , ρj).
Network calculus also derives delay bound for lossless systems

with service guarantees as the following theorem proves.

Theorem 1. (Delay Bound [3]). Assume a flow, constrained by

arrival curve α, traverses a system that offers a service curve of

β, the virtual delay d(t) for all t satisfies: d(t) ≤ h (α, β).

The theorem says that the delay is bounded by the maximum

horizontal deviation between the arrival and service curves.

Now, we consider a node which guarantees a minimum service

curve to an aggregate flow and also handles packets in order of

arrival at the node.

Theorem 2. (FIFO Minimum Service Curves [3]). Consider a

lossless node serving two flows, 1 and 2, in FIFO order. Assume

that packet arrivals are instantaneous. Assume that the node

guarantees a minimum service curve β to the aggregate of the

two flows. Assume that flow 2 has α2 as an arrival curve. Define

the family of functions βeq(t, α2, τ) ≡ βeq
1 (t, τ) = βeq

1 (t, τ) =
[β(t)− α2(t− τ)]

+
{t>τ}. For any τ ≥ 0 such that βeq

1 (t, τ) is

wide-sense increasing, then flow 1 is guaranteed the service curve

βeq
1 (t, τ).

III. SYSTEM MODEL

We assume that flows are classified into a pre-specified number

of aggregates. In addition, we assume that traffic of each aggre-

gate is buffered and transmitted in the FIFO order, denoted as

FIFO multiplexing. Different aggregates are buffered separately.

The network is lossless, and packets traverse the network using a

deterministic routing. We call the flow for which we shall derive

its delay bound tagged flow, other flows that share resources with

it interfering flows.

While building network calculus analysis models, we follow

the notation conventions in the min-plus algebra [3]. ⊗ rep-

resents the min-plus convolution of two functions f, g ∈ F,

the set of wide-sense increasing functions defined on [0, t),
(f ⊗ g)(t) = inf0≤s≤t {f(t− s) + g(s)}; ∧ represents the

minimum operation, f ∧ g = min(f, g). Burst delay function

δT (t) = +∞, if t > T ; δT (t) = 0, otherwise. Affine function

γb,r(t) = b + rt, if t > 0; γb,r(t) = 0, otherwise. Therefore,

min-plus convolution of burst delay and affine function is given

as δT ⊗ γb,r(t) = b+ r(t− T ).

IV. ANALYSIS

In this section, we propose and prove the propositions needed

for analyzing performance of VBR flows in a FIFO multiplexing

network. We consider a class of service curves, namely pseu-

doaffine curves [5], which is a multiple affine curve shifted to

the right and given by β = δT ⊗ [⊗1≤x≤nγσx,ρx
] = δT ⊗

[∧1≤x≤nγσx,ρx
], where the non-negative term T is denoted as

offset, and the affine curves between square brackets as leaky-

bucket stages. In fact, a pseudoaffine curve represents the service

received by single flows in tandems of FIFO multiplexing rate-

latency nodes. It is clear that a rate-latency service curve is in

fact pseudoaffine, since it can be expressed as β = δT ⊗ γ0,R.978-3-9810801-8-6/DATE12/ c©2012 EDAA
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Fig. 1. Computation of delay bound for one VBR flow served by a pseudo
affine curve

We now propose a proposition for computing delay bound as

follows.

Proposition 1. (Delay Bound) Let β be a pseudo affine curve,

with offset T and n leaky-bucket stage γσx,ρx
, 1 ≤ x ≤ n, this

means we have β = δT⊗[⊗1≤x≤nγσx,ρx
] = δT⊗[∧1≤x≤nγσx,ρx

]
and let α = min(L + pt, σ + ρt) = γL,p ∧ γσ,ρ. If ρ∗β ≥ ρ
(ρ∗β = min1≤x≤nρx), then the maximum delay for the flow is

bounded by

h(α, β) = T +

[

∨1≤x≤n

L− σx + θ (p− ρx)
+

ρx

]+

(1)

where θj = (σj − Lj)/(pj − ρj).

Proof. As stated before in Theorem 1, the delay is bounded by the

maximum horizontal deviation between the arrival and service

curves. Thus, due to Fig. 1, if p ≤ min1≤x≤n(ρx), we have:

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L = σ1 + ρ1 (t1 − T ) ⇒ t1 = T +
L− σ1

ρ1

L = σ2 + ρ1 (t2 − T ) ⇒ t2 = T +
L− σ2

ρ2
...

...
...

L = σn + ρn (tn − T ) ⇒ tn = T +
L− σn

ρn

(2)

⇒ h(α, β) = max1≤x≤ntx = T +

[

∨1≤x≤n

L− σx

ρx

]+

(3)

If p ≥ max1≤x≤n(ρx), due to Fig. 1, we have:
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L+ pθ = σ1 + ρ1 (t1 + θ − T )

⇒ t1 = T +
L+ pθ − σ1

ρ1
− θ

L+ pθ = σ2 + ρ2 (t2 + θ − T )

⇒ t2 = T +
L+ pθ − σ2

ρ2
− θ

...
...

...

L+ pθ = σn + ρn (tn + θ − T )

⇒ tn = T +
L+ pθ − σn

ρn
− θ

⇒ h(α, β) = max1≤x≤ntx = T +

[

∨1≤x≤n

L+ pθ − σx

ρx
− θ

]+

= T +

[

∨1≤x≤n

L− σx + θ (p− ρx)

ρx

]+

(4)

From Eq. 2 and 4, we can say:

h(α, β) = T +

[

∨1≤x≤n

L− σx + θ (p− ρx)
+

ρx

]+

(5)

In Propositions 2 and 3, we obtain ESC with FIFO multiplex-

ing under different assumptions.

Proposition 2. (Equivalent Service Curve) Let β be a pseudo

affine curve as β = δT⊗[⊗1≤x≤nγσx,ρx
] = δT⊗[∧1≤x≤nγσx,ρx

]
and let α = min(L + pt, σ + ρt) = γL,p ∧ γσ,ρ. If ρ∗β ≥ ρ
(ρ∗β = min1≤x≤nρx) and p ≥ ρ◦β (ρ◦β = max1≤x≤nρx), then

the equivalent service curve is obtained by subtracting arrival

curve α, {βeq(α, τ), τ = h(α, β)} ≡ βeq(α), with

β
eq(α) = δ

T+∨1≤i≤n

[

L−σi+θ(p−ρi)
+

ρi

]+
+θ

⊗ [⊗1≤x≤n [

γ
ρx

{

∨1≤i≤n

[

L−σi+θ(p−ρi)
+

ρi

]+
−

σ−σx−(ρx−ρ)θ
ρx

}

,ρx−ρ









(6)

Proof. Let us apply Theorem 2 to service curve β as follows.

βeq(α, τ) = [δT ⊗ [⊗1≤x≤nγσx,ρx
]

−min (L+ p (t− τ) , σ + ρ (t− τ))]
(7)

Eq. (7) is wide-sense increasing for any τ ≥ 0. Since we

assumed τ = h(α, β), due to Proposition 1, we have:

τ = T +

[

∨1≤x≤n

L− σx + θ (p− ρx)
+

ρx

]+

(8)

Without losing generality, we follow proof for n = 1. There-

fore, by Eq. (8) we have:

τ − T =

[

L− σx + θ (p− ρx)
+

ρx

]+

(9)

We then apply Theorem 2 to service curve β́ (β́ is β when

n = 1) as follows.

β́eq(α, τ) = δT ⊗ γσx,ρx
−min (L+ p (t− τ) , σ + ρ (t− τ))

= σx + ρx (t− T )−min (L+ p (t− τ) , σ + ρ (t− τ)) (10)

We now consider two situations including 0 ≤ t− τ ≤ θ and

t− τ > θ.

If 0 ≤ t − τ ≤ θ ⇒ min (L+ p (t− τ) , σ + ρ (t− τ)) =
L+ p (t− τ). Let us assume t́ = t− τ ⇒ t− T = t́+ (τ − T ).

From Eq. 9, we can say t− T = t́+
[

L−σx+θ(p−ρx)
+

ρx

]+

.

β́eq(α, τ) = σx + ρx



t́+

[

L− σx + θ (p− ρx)
+

ρx

]+




−
(

L+ pt́
)

= σx + ρxt́+
[

L− σx + θ (p− ρx)
+
]+

− L− pt́

= − (p− ρx) t́+ θ (p− ρx)
+

Since p ≥ ρ◦β and t́ ≤ θ, we have:

β́eq(α, τ) = − (p− ρx) t́+ θ (p− ρx)
+

≤ − (p− ρx) θ + θ (p− ρx) ≤ 0
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Fig. 2. Computation of ESC for flow N + 1 in a rate-latency node

Therefore, β́eq(α, τ) = 0 where 0 ≤ t − τ ≤ θ. By definition

of the service curve, we can say that if 0 ≤ t ≤ θ + τ then

β́eq(α, τ) = 0, and this means that the offset of β́eq(α, τ) is

equal to τ + θ.

If t − τ > θ ⇒ min (L+ p (t− τ) , σ + ρ (t− τ)) =
σ + ρ (t− τ). Therefore, β́eq(α, τ) = σx + ρx (t− T ) −
(σ + ρ (t− τ)). If ρxτ is added to and subtracted from β́eq(α, τ),
we have

β́eq(α, τ) = σx + ρx (t− T )− (σ + ρ (t− τ)) + ρxτ − ρxτ

= σx − σ + ρx (τ − T ) + (ρx − ρ) (t− τ)

= δτ ⊗ γσx−σ+ρx(τ−T ),ρx−ρ (11)

Since we concluded that the offset of β́eq(α, τ) is τ + θ, we

add (ρx − ρ) θ to Eq. 11 and then subtract it. We obtain:

β́eq(α, τ) = σx − σ + ρx (τ − T ) + (ρx − ρ) (t− τ)

+ (ρx − ρ) θ − (ρx − ρ) θ

= σx − σ − ρθ + ρx (τ + θ − T ) + (ρx − ρ) (t− τ − θ)

= δτ+θ ⊗ γσx−σ−ρθ+ρx(τ+θ−T ),ρx−ρ (12)

Thus, the offset of βeq(α, τ) is equal to τ + θ. Furthermore,

each leaky bucket-stage in βeq(α, τ) can be computed as γσ́j ,ρ́j
,

with σ́j = σx − σ − ρθ + ρx (τ + θ − T ) and ρ́j = ρj − ρ.

Therefore, we have βeq = δτ+θ ⊗ [⊗1≤x≤nγσ́x,ρ́x
] and by

substituting (8) into βeq , we prove the proposition.

We can specifically capitalize on Proposition 2 to obtain a para-

metric expression. We assume that the number of flows passing

through a rate-latency node is N + 1. Therefore, for computing

ESC for the tagged flow, we should subtract the arrival curves

of other N flows. It can be calculated by iteratively applying

Proposition 2 for N times. Without any loss of generality, we

presume that the tagged flow is flow N + 1. We now present

following proposition:

Proposition 3. (Equivalent Service Curve for Rate-Latency

Service Curve With N + 1 Flows) Consider one node with

a rate-latency service curve βR,T = δT ⊗ γ0,R. Let αi =
min(Li + pit, σi + ρit) = γLi,pi

∧ γσi,ρi
be arrival curve of

flow i and pi ≥ R−
∑i−1

j=1 ρj , where 1 ≤ i ≤ N +1 and N +1
is the number of flows passing through that node as shown in

Fig. 2. The equivalent service curve for flow N +1 in the node,

obtained by subtracting N arrival curves, is:

β
eq
N+1

= δ
T+

∑

N
i=1





[

Li+θi(pi−R+
∑i−1

j=1
ρj)

+

R−
∑i−1

j=1
ρj

]+

+θi





⊗ γ0,R−
∑

N
j=1 ρj

(13)

Proof. We use the simplest form of mathematical inductive proof

method. It proves that a statement involving a number N holds

for all values of N . The proof consists of two steps:

Application
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Fig. 3. End-to-end delay bound analysis flow

Base Step: In this step, we show that the statement holds when

N = 1. In order to verify this, we compute the ESC obtained by

subtracting one arrival curve (N = 1), offered by Proposition 3:

β
eq
2 = δ

T+

[

L1+θ1(p1−R)+

R

]+
+θ1

⊗ γ0,R−ρ1 (14)

If we apply Proposition 2 for a rate-latency service curve βR,T

where n = 1, σx = 0 and ρx = R, Eq. 14 is easily obtained.

Therefore, the statement holds when N = 1.

Inductive Step: In this step, we show if the statement holds for

some N , then the statement also holds when N+1 is substituted

for N . Assume that βeq
N+1 is an ESC for flow N + 1, obtained

by subtracting N arrival curves as represented in Eq. 13. We

shall compute ESC βeq
N+2 for flow N +2. Therefore, in this case

we should subtract N + 1 arrival curves. After subtracting N
arrival curves, the ESC for aggregated flow {N +1, N +2} will

be equal to βeq
N+1. Therefore, for computing βeq

N+2, it is enough

to subtract flow N + 1 from βeq
N+1 by applying Proposition 2.

From βeq
N+1, we can say n, ρx, σx and Tx in Proposition

2 are as n = 1, ρx = R −
∑N

j=1 ρj , σx = 0, and Tx = T +

∑N
i=1

[

Li+θi(pi−R+
∑i−1

j=1 ρj)
+

R−
∑i−1

j=1 ρj

]+

+
∑N

j=1 θj . Also, α in Proposi-

tion 2 is equal to αN+1 = min(LN+1+pN+1t, σN+1+ρN+1t).
After applying Proposition 2 and computing some straightfor-

ward algebraic manipulation, βeq
N+2 is given by:

β
eq
N+2

= δ
T+

∑N+1
i=1





[

Li+θi(pi−R+
∑i−1

j=1
ρj)

+

R−
∑i−1

j=1
ρj

]+

+θt





⊗ γ
0,R−

∑N+1
j=1 ρj

(15)

which proves the inductive step.

Fig. 3 shows the overall analysis flow for computing end-to-

end delay bound of a tagged flow under the mentioned system

model. We illustrate the steps with an example in section V.

V. NUMERICAL EXAMPLE

To show how the proposed propositions are used, we applied

them to a simple example depicted in Fig. 4. The figure depicts

a network with 4 flows and 3 routers which serve flows in the

FIFO order. f3 is the tagged flow and f1, f2 and f4 are inter-

fering flows. Flows follow TSPEC, f1 ∝ (1, 1, 2, 0.128), f2 ∝
(1, 1, 2, 0.032), f3 ∝ (1, 1, 4, 0.256), and f4 ∝ (1, 1, 2, 0.008).
Each router guarantees the service curve of βR,T (t) = δT ⊗
γ0,R = 1(t − 1)+, where the serving rate R = 1 flit/cycle and

the processing latency T = 1 cycle.



A. Computation of the end-to-end equivalent service curve

Step 1: We first calculate the ESC for the tagged flow in each

node. Then, we can model a flow passing through a series of

routers as a series of concatenated pseudoaffine servers. Before

that, θj is computed for each flow fj as θ1 = (σ1 − L1)/(p1 −
ρ1) = (2 − 1)/(1 − 0.128) = 1.146, θ2 = 1.033, θ3 = 4.032,

and θ4 = 1.008.

We use sub-index ”(j, ri)” for notations to indicate that they

are related to flow j in router i. For example, βeq

(j,ri)
denotes the

ESC of flow j in router i.
From Proposition 3, we obtain the ESC for f3 in node 1

by subtracting arrival curves of f1 and f2. The serving rate

and latency for aggregate flow f(1,2,3) in node 1 is equal to

R1 = 1 and T1 = 1, respectively. Therefore, we have T eq

(3,r1)
=

T1+

(

[

L1+θ1(p1−R1)
+

R1

]+

+ θ1

)

+
[

L2+θ2(p2−R1+ρ1)
+

R1−ρ1

]+

+θ2 =

5.477, ρeq(3,r1) = R1 − ρ1 − ρ2 = 0.84, and σeq

(3,r1)
= 0.

⇒ βeq

(3,r1)
= δ5.477 ⊗ γ0,0.84 (16)

This Proposition also allows computing the ESC for f3 in node

2 by subtracting arrival curve of flow f4, as well. T eq

(3,r2)
= T2+

(

[

L4+θ4(p4−R2)
+

R2

]+

+ θ4

)

= 3.008, ρeq(3,r2) = R2−ρ4 = 0.992,

and σeq

(3,r2)
= 0.

⇒ βeq

(3,r2)
= δ3.008 ⊗ γ0,0.992 (17)

Since there is no interfering flow in node 3, the ESC of flow

3 in this node is equal to

βeq

(3,r3)
= σ1 ⊗ γ0,1 (18)

Step 2: We use the theorem of concatenation of nodes [3]

for obtaining the equivalent end-to-end service curve. Given is a

flow traversing two nodes sequentially connected and each node

is offering a service curve βi, i = 1, 2 to the flow. Then the

concatenation of the two nodes offers a service curve of β1⊗β2

to the flow. Thus, βeq
3 is given by

βeq
3 = βeq

(3,r1)
⊗ βeq

(3,r2)
⊗ βeq

(3,r3)
(19)

= δ5.477+3.008+1 ⊗ [γ0,0.84 ∧ γ0,0.992 ∧ γ0,1] = δ9.485 ⊗ γ0,0.84

B. Computation of the end-to-end delay bound

Step 3: According to Proposition 1 and Eq. 19, the maximum

delay for flow 3 is bounded by

h(α3, β
eq
3 ) = 9.485 ∨

[

(

1− 0 + 4.032(1− 0.84)+

0.84

)+

,

(

1− 0 + 4.032(1− 0.992)+

0.992

)+

,

(

1− 0 + 4.032(1− 1)+

1

)+
]

= 9.485 +max(1.958, 1.04, 1) = 11.443 (20)

Here if we only use (σ, ρ) instead of TSPEC, each flow

j would be constrained by arrival curve αj = σj + ρjt =
γσj ,ρj

. Therefore, flows in the example are represented as f1 ∝
(2, 0.128), f2 ∝ (2, 0.032), f3 ∝ (4, 0.256), and f4 ∝ (2, 0.008).
We then follow the stages of computing individual delay bound

for a tagged flow as stated before. For this purpose, we can easily

revise our proposed propositions for (σ, ρ) flows by substituting

σ and ρ into L and p, respectively, in all formulas. We can also

apply the method presented in [5]. With both approaches, the

same value for h(α3, β
eq
3 ) is achieved and equals to 17.241. Thus,

1
β

3
β

2
β

1
f

3
f

2
f

4
f

Fig. 4. An example

we have about 33.6% improvement on the tightness of the delay

bound.

To analyze delay sensitivity, Table I depicts the end-to-end

delay bound for tagged flow f3 in a network with CBR (Constant

Bit-Rate) flows (DelayCBR) and also VBR flows (DelayV BR)

versus the different values of service rate R, along with values

for the end-to-end equivalent service rate Req
3 . From this table,

it is clear that the end-to-end equivalent service rate, Req
3 , is

decreasing by reducing R, while the end-to-end delay bounds

are increasing as well. Also, it is worth mentioning that the

improvement percentage (ImP) decreases because of reduction

of Req
3 .

TABLE I
END-TO-END DELAY COMPARISON FOR f3 UNDER DIFFERENT SERVICE RATES

R1 = 1 R2 = 0.7 R3 = 0.5

R
eq
3

0.84 0.54 0.34

DelayCBR 17.241 22.804 31.327

DelayV BR 11.443 17.773 27.541

Improvement Percentage 33.6% 22% 12%

VI. CONCLUSIONS

We have presented and proved the required propositions for

computing delay bound of VBR flows in a FIFO multiplexing

network. The propositions can be applied for an architecture

based on aggregate scheduling. To exemplify the potential of

our technique, derivation of formulas for computing equivalent

service curve and the delay bound is detailed. In the future,

we will apply our formal approach for performance analysis of

concatenated routers with multiple virtual channels per inport.
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