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Abstract—Verification of embedded multicore applications is
crucial as these applications are deployed in many safety critical
systems. Verification task is complicated by concurrency inherent
in such applications. We use mutation testing to obtain a quanti-
tative verification coverage metric for mullticore applications de-
veloped using the new Multicore Communication API (MCAPI)
standard. MCAPI is a lightweight API that targets heterogeneous
multicore embedded systems. We developed a mutation coverage
tool and performed several experiments on MCAPI applications.
Our experiments show that mutation coverage is useful in
measuring and improving the quality of the test suites and
ultimately the quality of the multicore application.

I. INTRODUCTION

Multicore applications are becoming common place. Several
new standards are being developed to enable the deployment of
multicore applications on multicore hardware. In this paper, we
develop verification coverage techniques for one of these stan-
dards, namely Multicore Communication API (MCAPI) [1],
[2] by the Multicore Association. There are currently 33
industrial members of this association.

MCAPI aims to supply communication and synchronization
between closely distributed embedded systems using message
passing communication. Shared memory used by multicore
systems can lead to nondeterminism. Message passing reduces
the potential for nondeterminism by explicit messages for
communication. MCAPI is a message passing API like the
well-known MPI [3] but its target system and functionali-
ties differ from MPI. MCAPI provides low latency and low
overhead for heterogeneous embedded platforms (in terms
of types and number of cores, different operating systems,
and physical transports). MCAPI provides sufficient number
of functionalities while hiding or minimizing communication
overhead to get better performance. There are two open source
implementations of the MCAPI standard; first by the Multicore
Association [1], and the second by Mentor Graphics [4].

Coverage metrics help engineers determine when the verifi-
cation task can be completed. Our coverage framework makes
use of mutation testing [5], [6]. Mutation testing is a software
testing technique that allows to measure the quality of a
test suite by evaluating whether the test suite can detect the
mutations (syntactic changes, faults) inserted in the program.
We developed a mutation library for MCAPI in this paper.
These mutations focus on communication constructs in the

standard, thereby allowing us to test concurrency related
bugs as well as improving the coverage performance by not
focusing on mutations at lower levels of abstraction. Mutation
testing based coverage metrics have earlier been developed
for applications written in different languages such as Java, C,
SystemC, and Simulink [7], [8], [9].

II. BACKGROUND ON MCAPI

Basic elements of the MCAPI topology are nodes, which
can be a process, a thread, a hardware accelerator, etc. Com-
munication occurs between endpoints, which are termination
points and created on nodes on each side of the communi-
cation. MCAPI has three fundamental communication types:
connectionless datagrams for messages; connection-oriented
packet streams for packet and scalar channels. Scalar channels
are aimed at systems that have hardware support for sending
small amounts of data (for example, a hardware FIFO). For
lack of space, we describe connectionless messages in the
rest of the paper, however our coverage tool implements all
communication types.

MCAPI messages can be sent or received in either
blocking or non-blocking fashion. Blocking send function
(mcapi msg send) in our MCAPI library will block if
there is insufficient memory space available at the system
buffer. When sufficient memory space becomes available,
the function will complete. The non-blocking send function
(mcapi msg send i), returns immediately even if there is
no memory space available. MCAPI stores messages in a
queue at the receiver endpoint and the size of the queue
can be configured according to the users demands. Blocking
receive function (mcapi msg recv) returns once a message
is available in endpoint’s message queue, whereas a non-
blocking receive function (mcapi msg recv i) returns imme-
diately even if there is no message available. Message receive
functions do not specify the sender endpoint and can match
any of the senders depending on the execution schedule.

For non-blocking function requests (send or receive), the
user program receives a handle for each request and can then
use the non-blocking management functions to test if the
request has completed with mcapi test function, or wait for
it either singularly with mcapi wait function or wait for any
one of requests in an array of requests with mcapi wait any
function. The user program can also cancel non-blocking978-3-9810801-8-6/DATE12/ c©2012 EDAA



# d e f i n e DOMAIN 1 # d e f i n e NODE1 1 # d e f i n e NODE2 2
# d e f i n e PORT NUM 100 # d e f i n e NUM THREADS 2

void∗ r u n t h r e a d 1 ( void ∗ t ) {
m c a p i i n i t i a l i z e (DOMAIN, NODE1,& parms ,& v e r s i o n ,& s t a t u s ) ;
ep1= m c a p i e n d p o i n t c r e a t e (PORT NUM,& s t a t u s ) ;
ep2= m c a p i e n d p o i n t g e t (DOMAIN, NODE2,PORT NUM,
MCA INFINITE,& s t a t u s ) ;
mcapi msg send i ( ep1 , ep2 , ‘ ‘MCAPI ’ ’ , s i z e , p r i o r i t y ,
&r e q u e s t ,& s t a t u s ) ;
m c a p i f i n a l i z e (& s t a t u s ) ;

}
void∗ r u n t h r e a d 2 ( void ∗ t ) {

m c a p i i n i t i a l i z e (DOMAIN, NODE2,& parms ,& v e r s i o n ,& s t a t u s ) ;
ep2 = m c a p i e n d p o i n t c r e a t e (PORT NUM,& s t a t u s ) ;
mcap i msg recv i ( ep2 , b u f f e r , BUFF SIZE,& r e q u e s t ,& s t a t u s ) ;
mcap i wa i t (& r e q u e s t ,& r e c v s i z e , MCA INFINITE,& s t a t u s ) ;
m c a p i f i n a l i z e (& s t a t u s ) ;

}
i n t main ( ) {

/∗ run a l l t h r e a d s ∗ /
p t h r e a d c r e a t e (& t h r e a d s [ 0 ] ,NULL, r u n t h r e a d 1 ,NULL ) ;
p t h r e a d c r e a t e (& t h r e a d s [ 1 ] ,NULL, r u n t h r e a d 2 ,NULL ) ;
/∗ w a i t f o r a l l t h r e a d s ∗ /
f o r ( t = 0 ; t < NUM THREADS; t ++) {

p t h r e a d j o i n ( t h r e a d s [ t ] ,NULL ) ; }
}

Fig. 1. Multicore program using MCAPI

function calls using mcapi cancel function.
We show an example multicore program that uses MCAPI

in Fig. 1. The program has two concurrent threads (Thread1
and Thread2) communicating through connectionless non-
blocking message exchange. Note that the current implemen-
tations of MCAPI supports message passing using shared
memory. Each thread initializes the MCAPI environment
and then creates an endpoint to communicate with the
other thread using mcapi endpoint create. Thread1 gets
Thread2’s endpoint by using mcapi endpoint get function.
Thread1 then sends a message to Thread2 and finalizes
the MCAPI environment before exiting. Thread2 receives
the message from Thread1 using non-blocking message
receive function. In this concurrent program, the order in
which threads are scheduled is nondeterministic. If Thread1
executes mcapi msg send i before Thread2 executes
mcapi msg recv i then Thread2 receives the message from
Thread1. However, if Thread2 executes mcapi msg recv i
before Thread1 executes mcapi msg send i, Thread2 re-
turns from mcapi msg recv i without receiving a message
since there is no message available in its receive queue.
Thread2 then waits until the message is received by using
mcapi wait function.

III. MUTATION TESTING BASED COVERAGE FOR MCAPI

In order to increase confidence in verification results, we
need a test suite that covers all possible behaviors of a given
multicore program. There are several coverage metrics includ-
ing line, branch, toggle, and FSM coverage among others. We
use mutation testing based coverage. This is an observability-
based coverage that allows to measure the impact of faults
on the outputs of the design. Mutation testing is a software
testing method that involves inserting faults (mutations) into
user programs (obtaining mutants) and then re-running a test

suite against the mutants. A mutant is killed (detected) by a test
case that causes it to produce different output from the original
multicore program. The ratio of the number of mutants killed
to the number of all mutants is called mutation coverage.

We now demonstrate mutation coverage metric on a mutant
obtained from the program in Fig. 1. First, we generate
a mutant program by removing mcapi wait function from
Thread2’s function body. Our test suite has one test (test1)
which checks the value of the buffer variable variable in
Thread2. We run both the original and the mutant programs.
If Thread1 executes and exits and then Thread2 executes
and exits, both programs produce the same value “MCAPI”
for the buffer. This result shows that test1 can not detect
this mutant, therefore we add a new test (test2) which checks
the validity of the request variable. Note that request variable
stays true until the wait operation is completed, that is when
the receive operation is completed. In this case, the original
program produces false and the mutant program produces true
using test2, since the wait operation has been deleted. Hence,
we could improve the verification coverage by adding a new
test to the test suite.

We now describe our mutation library. Note that our library
includes 88 mutation operators for 40 MCAPI functions, some
of which we explain here. Common bugs for concurrent
message passing programs include nondeterminism, deadlock,
race condition, starvation, and resource exhaustion. In addition
to these bugs, it is also common to forget functions, pass
incorrect parameters to functions or use incorrect functions
in both concurrent or sequential programs. We developed the
following set of mutation operators for MCAPI functions that
will trigger these common bugs.
• Remove Communication Function (RCF ): This operator

removes calls to communication functions. For example,
if we remove mcapi wait from the multicore program
displayed in Fig. 2, it leads to a message race condition
on ep3 between ep1 and ep2.

• Modify Function Timeout (MFT ): This operator changes
the timeout value of the function and can be applied
to mcapi wait and mcapi wait any functions since
these are the only functions with timeout parameters.
For example, we can modify mcapi wait(time)
to mcapi wait(time ∗ 2), mcapi wait(time/2),
or mcapi wait(MCAPI INFINITE). These
modifications may result in nondeterminism,
deadlock, or race condition. For instance,
when we modify mcapi wait(10, request) with
mcapi wait(MCAPI INFINITE, request) in
mutation1 of Fig. 3, it results in a deadlock since
ep2 waits for the message from ep1, whereas ep1 waits for
the message from ep2.

• Exchange Function Call with Another (EFC): This op-
erator exchanges a communication function with another
appropriate function. For example, we can exchange a
blocking function with a non-blocking function such as
mcapi msg send and mcapi msg send i. This operator
may lead to nondeterminism, deadlock, or starvation. If



void∗ r u n t h r e a d 1 ( void ∗ t ) { /∗ Thread1 has ep1 ∗ /
mcapi msg send ( ep1 , ep3 , ‘ ‘ msg13 ’ ’ , s i z e , p r i o ,& s t a t u s ) ;
mcapi msg send i ( ep1 , ep2 , ‘ ‘ msg12 ’ ’ , s i z e , p r i o ,
&r e q u e s t ,& s t a t u s ) ;
}
void∗ r u n t h r e a d 2 ( void ∗ t ) { /∗ Thread2 has ep2 ∗ /

mcap i msg recv i ( ep2 , b u f f e r , BUFF SIZE,& r e q u e s t ,& s t a t u s ) ;
/ / m u t a t i o n
mcap i wa i t (& r e q u e s t ,& r e c v s i z e , MCAPI INFINITE,& s t a t u s ) ;
mcapi msg send ( ep2 , ep3 , ‘ ‘ msg23 ’ ’ , s i z e , p r i o ,& s t a t u s ) ;

}
void∗ r u n t h r e a d 3 ( void ∗ t ) { /∗ Thread3 has ep3 ∗ /

mcapi msg recv ( ep3 , b u f f e r , BUFF SIZE,& r e c v s i z e ,& s t a t u s ) ;
mcapi msg recv ( ep3 , b u f f e r , BUFF SIZE,& r e c v s i z e ,& s t a t u s ) ;

}

Fig. 2. Inserting a mutation results in race condition

void∗ r u n t h r e a d 1 ( void ∗ t ) { /∗ Thread1 has ep1 ∗ /
mcapi msg recv ( ep1 , b u f f e r , BUFF SIZE,& r e c v s i z e ,& s t a t u s ) ;
mcapi msg send ( ep1 , ep2 , ‘ ‘ msg1 ’ ’ , s i z e , p r i o ,& s t a t u s ) ;

}
void∗ r u n t h r e a d 2 ( void ∗ t ) { /∗ Thread2 has ep2 ∗ /

/ / m u t a t i o n 2
mcap i msg recv i ( ep2 , b u f f e r , BUFF SIZE,& r e q u e s t ,& s t a t u s ) ;
mcap i wa i t (& r e q u e s t ,& r e c v s i z e ,10 ,& s t a t u s ) ; / / m u t a t i o n 1
mcapi msg send ( ep2 , ep1 , ‘ ‘ msg2 ’ ’ , s i z e , p r i o ,& s t a t u s ) ;

}

Fig. 3. Inserting a mutation results in deadlock

Fig. 4. Overview of Mutation Coverage Tool Architecture

we exchange mcapi msg recv i with mcapi msg recv
in Fig. 3 mutation2, we cause a deadlock since ep1 waits
for ep2 and ep2 waits for ep1.

IV. EXPERIMENTAL RESULTS

We have developed an automated tool that inserts all pos-
sible mutations to a given multicore program and then checks
for each of the mutant programs whether it is killed by any
of the tests in the test suite.

Our mutation coverage tool is shown in Fig. 4. Our tool
records the locations (function name, source file path, and
line number) of MCAPI functions by statically analyzing the
source code and then automatically replaces original function
calls with wrapper function calls in order to handle mutation
operations in wrappers. In each wrapper function, we check the
mutation parameters (source file name, line number, mutation
type) that are passed to the function and if they match with

void mcapi mut msg recv i ( char∗ f i l e , m c a p i u i n t 3 2 t l i n e ,
m c a p i e n d p o i n t t recv ep , void∗ buf f , s i z e t
b s i z e , m c a p i r e q u e s t t∗ req , s t a t u s t ∗ s t a t u s ) {
s i z e t r e c v s i z e = 0 ;
i f ( l i n e == m u t l i n e && s t r cm p ( f i l e , m u t f i l e ) == 0) {

sw i t ch ( mut type ) {
case 1 : /∗ remove ∗ /
∗ s t a t u s = MCAPI ERR MUTATION ;
break ;

case 2 : /∗ exchange wi th b l o c k i n g ∗ /
mcapi msg recv ( recv ep , bu f f , b s i z e ,& r e c v s i z e , s t a t u s ) ;
break ;

d e f a u l t :
mcap i msg recv i ( recv ep , bu f f , b s i z e , req , s t a t u s ) ;
break ;

}
} e l s e

mcapi msg recv i ( recv ep , bu f f , b s i z e , req , s t a t u s ) ;
}

Fig. 5. mcapi mut msg recv i function from our mutation library

the current function then we activate the mutant, otherwise this
function directly calls the original library function. We use the
tool CIL [10] in the generator module. Figure 5 shows part
of the mcapi mut msg recv i function from our MCAPI
mutation library.

We tested our tool on multicore programs that cover mes-
sage, packet channel, scalar channel operations of MCAPI as
well as blocking and non-blocking operation types. The first
five multicore programs in Table I are from the Multicore
Association and the remaining ones are developed by us be-
cause no publicly available MCAPI benchmarks are currently
available. In the table, we denote the number of endpoints in
column #ep, generated mutants in column #Mutants, the num-
ber of killed mutants in #KilledMut, the mutation coverage in
Cov, and the total time that is consumed for mutant generation
and execution of all mutants in Runtime (seconds) column. All
the experiments were performed on a PC running Linux with a
CPU of 800MHz and 4GB of memory. For each program, we
ran the experiment 100 times and averaged the output results.

For each program, we manually developed three test cases
and performed three sets of experiments in order to obtain
mutation coverage as well as to analyze the impact of adding
new tests on coverage. The first experiment set uses a single
test case for each program that checks the exit code of the
given multicore program. The second experiment set adds a
new test for each program on top of the test in experiment
set 1. For example, for pv2 program, which is the program in
Fig. 1, the new test checks whether the message buffer of ep2
contains the message that is expected from ep1. Similarly, the
third experiment set adds a test for each program on top of the
tests in experiment set 2. Again, for pv2, the new test checks
whether the request is valid or not on exit.

Different mutation coverage percentages and runtimes are
expected due to the fact that these results are heavily influ-
enced by the program. In practice, a target coverage percentage
can be provided by the user. Experimental results show that
mutation coverage increases with the number of new test cases,
that is, the mutation coverage is over %35 with one test, over
%50 with two tests, and over %70 with three tests. Whereas,



TABLE I
EXPERIMENTAL RESULTS WITH DIFFERENT NUMBER OF TESTS

Single test Two tests Three tests
Multicore program #line #ep #Mutants #KilledMut Cov Runtime #KilledMut Cov Runtime #KilledMut Cov Runtime

msg2 186 2 17 11 65 0.562 13 76 0.592 14 82 0.601
msg11 374 2 26 12 46 0.308 13 50 0.348 19 73 0.358
pkt5 402 2 34 13 38 0.294 17 50 0.355 24 70 0.360
scl1 451 8 91 57 63 0.905 60 66 0.957 66 73 0.973

multiMessage 419 12 20 10 50 1.112 12 60 1.215 15 75 1.253
pv1 200 16 11 6 55 0.297 7 64 0.341 8 73 0.357
pv2 156 2 25 15 60 0.612 17 68 0.640 18 72 0.651
drc1 183 32 17 14 82 1.115 15 88 1.217 15 88 1.223
drc2 189 3 23 12 48 0.070 15 65 0.074 16 70 0.077
drc3 200 32 11 7 64 0.411 8 73 0.433 9 82 0.441
rc1 233 3 27 16 59 0.685 17 63 0.715 20 74 0.734

the running time of our tool stays almost the same when new
test cases are added and it takes less than 1.3 seconds even
for three tests. For instance, our tool generated 91 mutants for
scl1 and 57 of them are killed by one test in less than one
second.

We now analyze how adding new tests increases the muta-
tion coverage in the case of program pv2. The second test for
pv2 kills two mutants, hence increasing the number of killed
mutants from 15 to 17. Specifically, this test kills the mutant
obtained after removing mcapi wait in ep2, because when
ep2 receives before ep1 sends the message, the message buffer
will not contain the sent message since there will not be any
waiting for the message. The second test also kills the mutant
obtained by modifying the function timeout in mcapi wait in
ep2 from MCAPI INFINITE to say 10. This is similar to
the previous case except that ep2 is going to wait but for a very
short time, hence not receiving the message sent by ep1. The
third test kills one mutant, increasing the number of killed
mutants from 17 to 18. This test kills the mutant obtained
after exchanging mcapi wait with mcapi test, because the
request can become invalid only after the message is received,
but when the non-blocking receive happens before the send,
the request is still valid.

We note that the running time increases if an actual deadlock
occurs when a mutant is executed. In order to detect deadlocks
in a mutant, we used a timeout approach, which declares a
deadlock if a specified time period has elapsed. The program
drc1 has one of the maximum running times overall and we
know that many of the generated mutants for this program
results in actual deadlocks.

We obtained low coverage for programs where the injected
mutation code is not triggered in the observed execution
schedule, which is the case for pkt5. Also, the mutants can
potentially lead to different execution schedules than the origi-
nal programs, which is useful in detecting schedule dependent
errors. For instance, pv2 has a mutant that uses a blocking
message receive call instead of non-blocking, leading to a
potential schedule change. The send operation in the mutant
always completes before the receive operation since the receive
operation blocks Thread2 until a matching send is called.
Hence, depending on the test case and the schedule, the mutant

may or may not be killed.
V. CONCLUSIONS AND FUTURE WORKS

We obtained a novel verification coverage solution for
embedded multicore applications that use the newly emerging
MCAPI standard. We presented new mutation operators for
communication constructs in MCAPI and related them to
actual concurrency bug patterns. We developed an automated
mutation testing based coverage tool which can be seamlessly
integrated with current multicore applications. Our experimen-
tal results demonstrate the effectiveness of mutation testing
based coverage and confirm the necessity of developing test
suites for checking concurrent features of MCAPI applications.
Ultimately, the quality of the test suite and the multicore
application can be improved due to our coverage approach.
Our framework can also be used to optimize the test suite
by removing redundant test cases that kill the same set of
mutants. It would also be interesting to generate test cases in
an automated manner when the coverage is low.
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