
Row-Shift Decompositions for Index Generation
Functions

Tsutomu Sasao

Kyushu Institute of Technology
Iizuka 820-8502, Japan

Abstract—This paper shows a realization of incompletely
specified index generation functions in the form f(X1, X2) =
g(h(X1)+X2), where + denotes an integer addition. A decompo-
sition algorithm is shown. Experimental results show that most of
n = 2q−3 variable functions where k = 2q −1 combinations are
specified can be realized by a pair of q-input q-output LUTs. The
computation time is O(k). Experimental results using address
tables, lists of English words, and randomly generated functions
are shown.

Index Terms—Incompletely specified function, random func-
tion, linear transform, functional decomposition, data compres-
sion, IP address, hash function.

I. INTRODUCTION

Given a logic function f of n variables, a straightforward
method to implement f is to use a look-up table (LUT)1.
However, the size of the LUT to implement f is proportional
to 2n. When n is large, a realization of f by a single LUT
is, in many cases, impractical. Functional decomposition [1],
[2] is a technique to realize a function using smaller LUTs by
the circuit shown in Fig. 1.1. It realizes a function in the form:
f(X1,X2) = g(h(X1),X2), where X1 = (xp, xp−1, . . . , x1)
and X2 = (xn, xn−1, . . . , xp+1). Unfortunately, only a small
fraction of the functions have functional decompositions. Also,
no efficient algorithm is know to find the decomposition of
type Fig. 1.1.

In this paper, we present a new type of decomposition,
the row-shift decomposition shown in Fig. 1.2. It realizes
an incompletely specified function in the form: f(X1,X2) =
g(h(X1)+X2), where + denotes an integer addition. This de-
composition efficiently realizes sparse incompletely specified
functions.

Assume that the given n-variable function f is defined
for only k input combinations, and n = 2q − 3, where

H
G

p

n-p

X1

X2

Fig. 1.1. Conventional Functional Decomposition

1978-3-9810801-8-6/DATE12/ c©2012 EDAA

q = �log2(k + 1)�. This paper claims that most functions
can be implemented by the circuit shown in Fig. 1.2, where
the LUTs for G and H have at most q inputs and q outputs.

The rest of the paper is organized as follows: Section
2 defines index generation functions; Section 3 shows a
method to reduce the number of variables for incompletely
specified index generation functions; Section 4 shows the row-
shift decomposition that realizes an index generation function
by a pair of LUTs; Section 5 explains why the row-shift
decomposition works; Section 6 shows experimental results;
and finally Section 7 concludes the paper.

II. INDEX GENERATION FUNCTION

Definition 2.1: Consider a set of k different vectors of n
bits. These vectors are registered vectors. For each registered
vector, assign a unique index from 1 to k. A registered
vector table shows the index for each registered vector. An
incompletely specified index generation function produces
a corresponding index when the input vector matches a
registered vector. Otherwise, the function produces d (don’t
care). In this case, k is the weight of the function. The
incompletely specified index generation function represents a
mapping Bn → {d, 1, 2, . . . , k}, or D → {1, 2, . . . , k}, where
D ⊂ Bn denotes the set of registered vectors.

Example 2.1: Consider the registered vectors shown in Ta-
ble 2.1. These vectors show an index generation function with
weight k = 7.

Index generation functions are useful for address tables in
the internet, terminal access controller of local area networks,
database, memory patch circuits, text compression, password
tables, and code converters [7]. Such circuits must be updated
frequently, thus programmable or reconfigurable realizations
are desirable.

G

H

X2

X1

n-p

p nr

n3 q

++

Fig. 1.2. Row-Shift Decomposition



TABLE 2.1
REGISTERED VECTOR TABLE

Vector Index
x1 x2 x3 x4 x5 x6 f
0 0 0 0 1 0 1
0 1 0 0 1 0 2
0 0 1 0 1 0 3
0 0 1 1 1 0 4
0 0 0 0 0 1 5
1 1 1 0 1 1 6
0 1 0 1 1 1 7

1x

4x

2x

3x 2

3

4

1

Fig. 3.1. Index Generation Function of 4 variables.

III. REDUCTION OF VARIABLES IN INCOMPLETELY

SPECIFIED FUNCTIONS

In an incompletely specified function f , don’t care values
can be chosen as either 0 or 1 to minimize the number of
variables to represent f . This property is useful to realize the
function using smaller LUTs.

Lemma 3.1: Suppose that an incompletely specified func-
tion f is represented by a decomposition chart. If each column
has at most one care element, then f can be represented by
using only the column variables.

(Proof) In each column, let the values of don’t cares
elements be set to the value of the care element in the column,
then the function depends only the column variables. �

Example 3.1: Consider the decomposition chart shown in
Fig. 3.1, where x1 and x2 specify the columns, and x3 and x4

specify the rows, and blank elements denote don’t cares. Note
that in Fig. 3.1, each column has at most one care element.
Thus, this function can be represented by only the column
variables x1 and x2:

f = 1 · x̄1x̄2 ∨ 4 · x̄1x2 ∨ 3 · x1x2 ∨ 2 · x1x̄2.

Algorithms to minimize the number of variables in in-
completely specified functions are known [3], [4], [6]. Table
3.1 shows the average number of variables n to represent
random incompletely specified index generation functions of
n variables with weight k. We have the following:

Conjecture 3.1: [7] When the number of the input variables
is sufficiently large, more than 95% of incompletely specified
index generation functions with weight k (≥ 7), can be
represented with n = 2�log2(k + 1)� − 3 variables.

For most functions, the necessary number of variables n
depends on only k, and is independent of m, the number of
variables in the original functions. For example, most index

TABLE 3.1
THE AVERAGE NUMBER OF VARIABLES TO REPRESENT INDEX

GENERATION FUNCTIONS OF m VARIABLES WITH WEIGHT k.

k m = 16 m = 20 m = 24 n
7 3.052 3.018 3.003 3

15 4.980 4.947 4.878 5
31 6.447 6.115 6.003 7
63 8.257 8.007 8.000 9

127 10.304 10.000 9.963 11
255 12.589 11.996 11.896 13
511 14.890 14.019 13.787 15

1023 15.991 16.293 15.874 17
2047 16.000 18.758 17.965 19
4095 16.000 19.992 20.093 21

n = 2�log2(k + 1)� − 3.

TABLE 3.2
REGISTERED VECTOR TABLE

Vector Index
x1 x2 x3 x4 x5 x6 x7

1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 2
0 0 1 0 0 0 0 3
0 0 0 1 0 0 0 4
0 0 0 0 1 0 0 5
0 0 0 0 0 1 0 6
0 0 0 0 0 0 1 7

generation functions with weight k = 7 can be represented by
three variables. Exceptions that do not satisfy Conjecture 3.1
include:

Example 3.2: The function in Table 2.1 cannot be repre-
sented with three variables. It can be represented with four
variables: x2, x3, x4, x5.

Example 3.3: Consider the registered vectors shown in Ta-
ble 3.2. It shows an index generation function with weight
k = 7. To distinguish these seven vectors, 6 variables are
necessary. Note that in Table 3.2, each column has only
one 1, and six 0’s. Thus, the decision tree for this function
is unbalanced. Hence, the function requires six variables to
distinguish the vectors.

For such functions, a linear transformation [9] is useful
to reduce the number of variables.

Example 3.4: In the registered vectors in Table 3.2, apply
the following linear transformation:

y1 = x1 ⊕ x3 ⊕ x5 ⊕ x7

y2 = x2 ⊕ x3 ⊕ x6 ⊕ x7

y3 = x4 ⊕ x5 ⊕ x6 ⊕ x7

Then, we have the registered vector table shown in Table 3.3.
In this table, only three variables are necessary to distinguish
the vectors. Note that in Table 3.3, each column has three 0’s,
and four 1’s. Thus, the decision tree for this function is more
balanced than that of Table 3.2. Hence, the function requires
fewer variables than that for Table 3.2.

The transformation in Example 3.4 has compound degree
four, since four variables are combined with EXOR operators.
As for the lower bound on the number of variables, we have
the following:



TABLE 3.3
REGISTERED VECTORS TABLE AFTER LINEAR TRANSFORMATION

Vector Index
y3 y2 y1

0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Linear 
Circuit G

m n q

Fig. 3.2. Linear Decomposition.

Theorem 3.1: To represent any incompletely specified in-
dex generation function f with weight k, at least q = �log2 k�
variables are necessary.

(Proof) The number of different vectors specified with q −
1 variables is at most 2q−1 < k. Thus, at least q variables
are necessary to represent an index generation function with
weight k. �

Conjecture 3.1 shows that most functions with weight k can
be represented with n = 2�log2(k+1)�−3 variables as shown
in Fig. 3.2. Although this is a considerable improvement over
the straightforward implementation that uses an m-input q-
output LUT, it still requires a large LUT when k is large. In
the next section, we will show a more efficient realization.

IV. ROW-SHIFT DECOMPOSITION

This section introduces the row-shift decomposition that
represents an incompletely specified index generation function
by a pair of functions with fewer variables.

Example 4.1: Fig. 4.1 is the decomposition chart for the
index generation function shown in Table 2.1. Since columns
for X2 = (x3, x2, x1) = (0, 0, 0), (0, 1, 0) and (1, 0, 0) have
two care elements, the function cannot be represented by
only the column variables X2 = (x3, x2, x1). Next, consider
the decomposition chart shown in Fig. 4.2 that is obtained
from Fig. 4.1 by shifting one bit to the right in the rows
for X1 = (x6, x5, x4) = (0, 1, 1), (1, 0, 0), and (1, 1, 1). In
Fig. 4.2, each column has at most one care element. Thus,
the modified function can be represented by only the column
variables X2 = (x3, x2, x1).

TABLE 4.1
TABLES FOR h AND g

X1 X2

x6 x5 x4 h x3 x2 x1 g
0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 5
0 1 0 0 0 1 0 2
0 1 1 1 0 1 1 7
1 0 0 1 1 0 0 3
1 0 1 0 1 0 1 4
1 1 0 0 1 1 0 −
1 1 1 1 1 1 1 6

7111

6110

101

5100

4011

321010

001

000

1
1
1

1
1
0

1
0
1

1
0
0

0
1
1

0
1
0

0
0
1

0
0
0

7111

6110

101

5100

4011

321010

001

000

1
1
1

1
1
0

1
0
1

1
0
0

0
1
1

0
1
0

0
0
1

0
0
0

x3
x2
x1

x6x5x4

Fig. 4.1. Original Decomposition Chart.

Let X1 be the row variables, and X2 be the column
variables. In Fig. 1.2, assume that the LUT for H stores the
number of bits to shift (displacement) for each row specified
by X1, while the LUT for G stores the non-zero (care) value
of the column after the shift operation: h(X1) + X2. Then,
Fig. 1.2 realizes a given function f in the form f(X1,X2) =
g(h(X1) + X2).

Example 4.2: The function f(X1,X2) in Example 4.1 can
be decomposed into g(h(X1)+X2), where h and g are shown
in Table 4.1, and + denotes an unsigned integer addition of
three bits. h is implemented by a 3-input 1-output LUT, while
g is implemented by a 3-input 3-output LUT. Note that a
straightforward realization of Table 2.1 requires a 6-input 3-
output LUT.

7111

6110

101

5100

4011

321010

001

000

1
1
1

1
1
0

1
0
1

1
0
0

0
1
1

0
1
0

0
0
1

0
0
0

7111

6110

101

5100

4011

321010

001

000

1
1
1

1
1
0

1
0
1

1
0
0

0
1
1

0
1
0

0
0
1

0
0
0

x3
x2
x1

x6x5x4






Fig. 4.2. Decomposition Chart After Row-Shift.



In Example 4.1, we can represent the function without
increasing the columns. However, in general, we must increase
the columns to represent the function. Since each column has
at most one care element after the shift operations, at least k
columns are necessary to represent a function with weight k.

In Fig. 4.1, many ways exist to shift the rows to satisfy
the constraint. For example, the row for X1 = (x6, x5, x4) =
(0, 1, 0) can be right-shifted by one bit instead of shifting other
rows. To find an optimal solution is time-consuming. We use
the first-fit method [10], which is simple and efficient.

Algorithm 4.1: (Find row displacements)

1) Sort the rows in decreasing order by the number of care
elements they contain.

2) Compute the row displacement for each row at a time,
where the row displacement r(i) for row i has the
smallest value such that no care element in row i is
in the same position as any care element in the previous
rows.

When the distribution of care elements among the rows is
uniform, Algorithm 4.1 compresses the table effectively. To
reduce the total size of LUTs, we use the following:

Algorithm 4.2: (Row-shift Decomposition)

1) Reduce the number of the variables by the method [3],
[4], [7]. If necessary, use a linear transformation to
further reduce the number of the variables. Let n be
the number of variables after reduction.

2) Let q1 = �n
2 �. For t = −2 to t = 2 perform Steps 3

through 5.
3) Partition the inputs X into (X1,X2) 2 , where

X1 = (xp, xp−1, . . . , x1) denotes the rows, X2 =
(xn, xn−1, . . . , xp+1) denotes the columns, and p =
q1 + t.

4) Obtain the row displacements by Algorithm 4.1.
5) Obtain the maximum value of the displacements, and

compute the total sizes for LUTs.
6) Find a t that minimizes the total size of LUTs.

In Step 2, when p = �n
2 �, the total memory size nr2p+q2n3

takes its minimum in Fig. 1.2 when the amount of dis-
placements are small. However, for some functions, the total
memory sizes take their minimum when p = �n

2 � − t, where
t = −2,−1, 1, or 2.

V. ANALYSIS OF THE METHOD

In this part, we consider why Algorithm 4.2 obtains good
solutions for most functions. By Conjecture 3.1, we can reduce
the number of variables to satisfy the following relation:

n = 2�log2(k + 1)� − 3.

Property 5.1: Most uniformly distributed incompletely
specified index generation functions of n variables with weight
k can be realized by a pair of q-input q-output LUTs, when
q = �log2(k + 1)� and n = 2q − 3.

2Unlike ordinary functional decompositions, the influence of the partition
(X1, X2) is relatively small. In the row-shift decomposition, we can assume
that care elements are uniformly distributed in the decomposition chart.

(Explanation Supporting the Property) The probability that
a function f takes a care (non-zero) value is α = k

2n . The
probability that a function f takes a don’t care value is β =
1.0−α. Consider the decomposition chart, where the number
of the row variables is n1, the number of the column variables
is n2, and n1 + n2 = n. Let N1 = 2n1 and N2 = 2n2 . The
probability that a row has all don’t care elements is

a0 = βN2 .

The probability that a row has t (≥ 1) care elements is

at =
(

N2

t

)
αtβN2−t.

When α is sufficiently small, β = 1.0−α can be approximated
by e−α [7]. Thus, we have

at 	 N t
2

t!
αte−α(N2−t) =

e−αN2

t!
(N2αeα)t

Assume that k + 1 = 2n1 = N1. Since α 	 2n1

2n = 1
2n2 = 1

N2
,

we have

at 	 e−1

t!
eαt.

Since α 	 1
N2

, and N2 is sufficiently large, αt is sufficiently
small. Thus, eαt is approximated by 1.0. In this case, we have:

a0 	 βN2 	 e−αN2 	 e−1 	 0.3678.

a1 	 e−1

1!
eα 	 e−1 	 0.3768.

a2 	 e−1

2!
e2α 	 e−1

2
	 0.1839.

a3 	 e−1

3!
e3α 	 e−1

6
	 0.0613.

a4 	 e−1

4!
e4α 	 e−1

24
	 0.0153.

a5 	 e−1

5!
e5α 	 e−1

120
	 0.0031.

In other words, 36.8% of the rows have all don’t care elements;
37.7% of the rows have just one care element; 18.4% of the
rows have two care elements; 6.13% of the rows have three
care elements; 1.5% of the rows have four care elements; and
0.31% of the rows have five care elements.

Algorithm 4.1 modifies the decomposition chart so that each
column has at most one care element. In this case, the number
of columns after the row shift operations is at least k. From
the hypothesis, we have n = 2q − 3 and n1 = q. Thus, we
have n2 = q − 3 and N2 = 2n2 = 2q−3 	 k

8 .
In other words, the number of columns of the decomposition

chart is approximately 1
8 of the number of rows. Thus, after

the row-shift operations, the number of columns is increased
to 8 times of the original size. In the circuit realization, the
LUT for h has q inputs and �log2(8 · 2n2)� = 3 + n2 = q
outputs, also the LUT for g has q inputs and q outputs.

Experimental results show that, in many cases, k + 1
columns are sufficient to represent the functions. This is
interpreted as follows: In Algorithm 4.1, the positions of rows
are determined in the decreasing order of the number of care



TABLE 6.1
REALIZATIONS OF IP ADDRESS TABLE (WITHOUT LINEAR

TRANSFORMATIONS. m = 32).

k n n1 n2 nr n3 q Total bits q2n

1670 18 9 9 11 11 11 28160 2.88 × 106

3288 20 10 10 12 12 12 61440 1.26 × 107

4591 21 9 12 13 13 13 113152 2.73 × 107

7903 23 12 11 13 13 13 159744 1.09 × 108

elements. Thus, a row with the most care elements is not
shifted. Other rows may be shifted to the right so that each
column has at most one care element. Note that, the rows with
only one care element can be shifted to right positions to fill
any unused columns. This is the reason why the displacements
of rows are determined in the decreasing order of the care
elements.

In the original decomposition chart, if the leftmost two
columns have all don’t cares, then these columns cannot be
filled by Algorithm 4.2, since only the shift right operations
are permitted. In such a case, Property 5.1 does not hold.
However, the probability of such case is very small:

β2N1 	 e−2αN1 = e−
2N1
N2 = e−16 = 1.125 × 10−7.

From this, we have the property. �

In the next section, we verify this by experiments.

VI. EXPERIMENTAL RESULTS

We implemented Algorithm 4.2, and applied to three differ-
ent classes of index generation functions.

A. IP Address Tables

As for the data, we used distinct IP addresses of computers
that accessed our web site over a period of a month. We
considered four lists of different values of k. Table 6.1 shows
the results. Note that the original number of variables is
m = 32. The first column shows k, the number of registered
vectors. The second column shows n, the number of variables
after reduction of the variable using the method [6]. The third
column shows n1, the number of variables in X1. The fourth
column shows n2, the number of variables in X2. The fifth
column shows nr, the number of output bits for LUT H . The
sixth column shows n3, the number of variables for LUT G.
The seventh column shows q, the number of output bits for
LUT G, which is equal to �log2(k + 1)�. The eighth column
shows nr2n1 + q2n3 , the total memory size to implement
the function in Fig. 6.1. The last column shows q2n, the
memory size to implement the function by the implementation
in Fig. 3.2 . As shown in Table 6.1, in all cases, the total sizes
of LUTs are smaller than the sizes of the LUTs in Fig. 3.2.

B. List of English Words

To compress English text, a list of frequently used words
is useful [5]. We made three lists of English words: List A,
List B, and List C. The maximum number of characters in the
word lists is 13, but we only consider the first 8 characters. For
English words consisting of fewer than 8 letters, we append
blanks to make the length of words 8. We represent each

TABLE 6.2
REALIZATIONS OF ENGLISH WORDS LISTS (WITHOUT LINEAR

TRANSFORMATIONS. m = 40).

k n n1 n2 nr n3 q Total bits q2n

1730 31 16 15 7 15 11 819200 2.36 × 1010

3366 31 16 15 7 15 12 851968 2.57 × 1010

4705 37 19 18 8 19 13 7602176 1.78 × 1012

TABLE 6.3
REALIZATIONS OF ENGLISH WORDS LISTS (WITH LINEAR

TRANSFORMATIONS. m = 40).

k n n1 n2 nr n3 q Total bits q2n

1730 19 10 9 11 11 11 33792 5.77 × 106

3366 21 11 10 12 12 12 73728 2.52 × 107

4705 20 12 12 13 13 13 159744 2.73 × 107

alphabetic character by 5 bits. So, in the lists, all the words
are represented by m = 40 bits. The numbers of words
in the lists are 1730, 3366, and 4705, respectively. Within
each word list, each English word has a unique index, an
integer from 1 to k, where k = 1730 or 3360 or 4705.
Table 6.2 shows the row-shift realization of the lists. The
symbols denote the same things as Table 6.1. These functions
require more variables than the values given by Conjecture
3.1. For example, consider the case of k = 1730. Table
6.2 shows that the function requires n = 31 variables after
the minimization of variables by the method [6]. However,
Conjecture 3.1 shows that, to realize uniformly distributed
functions, 2�log2(k +1)�− 3 = 2× 11− 3 = 19 variables are
sufficient. In the case of English word lists, the distributions
of vectors are not uniform. In this case, Property 5.1 does
not hold. To make the distribution of care elements uniform,
we used linear transformations of compound degree two [9].
Fig. 6.1 shows the circuit. Table 6.3 shows the results when the

Linear 
Circuit

m n

X2

X1

G
H

n2

n1 nr

n3 q
+

Fig. 6.1. Row-shift Decomposition with Linear Transform.

input variables are reduced by a linear transformation. Note
that more variables were reduced by linear transformations
than the simple reduction of variables (Table 6.2). In this case,
Property 5.1 holds.

C. Random Index Generation Functions

To assess the influence of the skew of the distribution in IP
address tables and English word lists, we produced random
index generation functions with the same value of m and
k. Table 6.4 shows the results, where the upper four rows
correspond to IP address tables, while the lower three rows



TABLE 6.4
REALIZATIONS OF RANDOM FUNCTIONS.

k n n1 n2 nr n3 q Total bits q2n

1670 18 9 9 11 11 11 28160 2.88 × 106

3288 20 10 10 12 12 12 61440 1.26 × 107

4591 21 9 12 13 13 13 113152 2.73 × 107

7903 23 12 11 13 13 13 159744 1.09 × 108

1730 19 10 9 11 11 11 33792 5.77 × 106

3366 21 11 10 12 12 12 73728 2.52 × 107

4705 20 9 11 13 13 13 113152 2.73 × 107

1

10

100

1000

127 255 511 1023 2047 4095
Weight

CP
U 

Tim
e (

ms
)

Fig. 6.2. Computation Time for Row-shift Decomposition.

correspond to English word lists. Note that the first four rows
are exactly the same as Table 6.1. This shows that the IP
address table is random enough when the input variables are
minimized without using a linear transform.

Also, for the fifth and the sixth rows, they are exactly the
same as the top two rows of Table 6.3. However, as for the
last row, the random function requires a smaller LUTs. This
shows that the distribution of the last English word list is
not uniform enough even if the linear transformation with
compound degree two is used.

D. Computation Time

The computation time is much shorter than that for conven-
tional decomposition algorithms. Fig. 6.2 shows the average
computation time (mili-seconds) for index generation func-
tions with weight k = 2q − 1 and n = 2q − 3 variables,
where q = 7, 8, 9, 10, 11 and 12. Fig. 6.2 shows that the
CPU time is O(k). We produced 1000 index generation
functions for each k. To obtain CPU time, we realized 6000
functions. Out of 6000 functions, only two required larger
sizes than the sizes given by Property 5.1, and other functions
satisfied Property 5.1. As for the two exceptional functions, the
distribution of care elements are skewed. However, by using
linear transformations, we can easily smooth out such skewed
distributions [8]. In the experiment, we used a PC with INTEL
Core 2 Duo CPU, 2.53 GHz and 3.40 GB RAM, on Windows
XP Professional Operating System.

VII. CONCLUDING REMARKS

In this paper, we presented the row-shift decompositions
of incompletely specified index generation functions. We also

presented a heuristic algorithm to find a row-shift decompo-
sitions that reduces the total size of LUTs. When the weight
of the function is much smaller than 2n, the functions can be
often represented with LUTs with fewer inputs than n.

In the previous method [7], to represent an incompletely
specified index generation function with weight k, we need
an LUT with n = 2q − 3 inputs and q outputs, where q =
�log2(k + 1)� as shown in Fig. 3.2.

In this paper, we presented a row-shift decomposition and
verified that, in many cases, the same function can be rep-
resented by a pair of LUTs with q-input and q-output. Since
the previous method (Fig. 3.2) requires q22q−3 bits, while the
presented method (Fig. 6.1) requires (2q)2q bits, the reduction
ratio is 2q−4 	 k

16 . Thus, the presented method is effective
when k ≥ 16. Although we need an adder, the area for the
adder is much smaller than the area for the LUTs reduced by
the decomposition, especially when the circuit is implemented
by an FPGA. Since the function can be personalized only
by the LUTs, a quick update is possible. In this case, the
layout and interconnections are fixed. Also, when the circuit
is implemented by an FPGA, the delay of the adder can be
hidden by the use of pipeline architecture.

The presented method is useful for index generation func-
tions whose weights are small. Unfortunately, MCNC bench-
mark functions do not include such functions. Index generation
functions are related to short-life data such as address tables,
password lists, which require frequently updates. Such func-
tions are often implemented by software. However, hardware/
firmware implementations will make them much faster.

ACKNOWLEDGMENTS

This research is partly supported by the MEXT Regional
Innovation Cluster Program (Global Type, 2nd Stage), and
by a Grant in Aid for Scientific Research of the JSPS. The
author thanks Prof. Jon T. Butler for discussion and Mr.
M. Matsuura for experiments. Comments of reviewers were
useful to improve the quality of the paper.

REFERENCES

[1] R. L. Ashenhurst, “The decomposition of switching functions,” Interna-
tional Symposium on the Theory of Switching,pp. 74-116, April 1957.

[2] H. A. Curtis, A New Approach to the Design of Switching Circuits, D.
Van Nostrand Co., Princeton, NJ, 1962.

[3] C. Halatsis and N. Gaitanis, “Irredundant normal forms and minimal de-
pendence sets of a Boolean function,” IEEE Transactions on Computers,
Vol. C-27, No. 11, pp. 1064-1068, November, 1978.

[4] Y. Kambayashi, “Logic design of programmable logic arrays,” IEEE
Trans. on Computers, Vol. C-28, No. 9, pp. 609-617, September 1979.

[5] D. Salomon, G. Motta, and D. Bryant, Handbook of Data Compression
(5th edition), Springer, 2009.

[6] T. Sasao, “On the number of variables to represent sparse logic func-
tions,” ICCAD-2008, San Jose, CA, USA, Nov.10-13, 2008, pp. 45-51.

[7] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.
[8] T. Sasao, “Index generation functions: Recent developments,”(invited

paper) International Symposium on Multiple-Valued Logic (ISMVL-
2011), Tuusula, Finland, May 23-25, 2011.

[9] T. Sasao, “Linear decomposition of index generation functions,” 17th
Asia and South Pacific Design Automation Conference (ASPDAC-2012),
Jan. 30- Feb. 2, 2012, Sydney, Australia (to appear).

[10] R. E. Tarjan, and A. C-C. Yao, “Storing a sparse table,”, Communications
of the ACM, Vol.22, No.11, Nov. 1979, pp.606-611.


