
Almost Every Wire Is Removable: A Modeling and

Solution for Removing Any Circuit Wire

Xiaoqing Yang, Tak-Kei Lam, Wai-Chung Tang, Yu-Liang Wu

Department of Computer Science and Engineering

The Chinese University of Hong Kong, Shatin, Hong Kong

Email: {xqyang, tklam, wctang, ylw}@cse.cuhk.edu.hk

Abstract—Rewiring is a flexible and useful logic transformation
technique through which a target wire can be removed by adding
its alternative logics without changing the circuit functionality.
In today’s deep sub-micron era, circuit wires have become a
dominating factor in most EDA processes and there are situations
where removing a certain set of (perhaps extremely unwanted)
wires is very useful. However, it has been experimentally sug-
gested that the rewiring rate (percentage of original circuit
wires being removable by rewiring) is only 30 to 40 % for
optimized circuits in the past. In this paper, we propose a
generalized error cancellation modeling and flow to show that
theoretically almost every circuit wire is removable under this
flow. In the Flow graph Error Cancellation based Rewiring
(FECR) scheme we propose here, a rewiring rate of 95% of even
optimized circuits is obtainable under this scheme, affirming the
basic claim of this paper. To our knowledge, this is the first
known rewiring scheme being able to achieve this near complete
rewiring rate. Consequently, this wire-removal process can now
be considered as a powerful atomic and universal operation for
logic transformations, as virtually every circuit node can also be
removed through repetitions of this rewiring process. Besides,
this modeling can also serve as a general framework containing
many other rewiring techniques as its special cases.

I. INTRODUCTION

Following Gordon E. Moore’s prediction, the size of IC

transistors has been continually and drastically scaled down

over the past decades. As a direct result, wire delay has

become a much more dominating delay factor (compared with

cell delay) in the timing closure problems of contemporary IC

designs. Then, a situation is often encountered: how to remove

a highly unwanted wire without changing the functionality of

the circuit, where this wire, amongst many other problematic

situations, may be located at a critical path, congested routing

area, or partition boundary? The designer may want to remove

it “at all other costs”, as it may happen to be the last obstacle

to the job completion. One of the solution options can be

rewiring, a technique developed to deal with the problematic

wires directly.

Rewiring is a circuit restructuring technique to reconnect

wires without changing the circuit functionality. It has been

widely applied in many EDA fields, such as circuit parti-

tion [1], circuit optimization [2] [3] . The major rewiring

techniques include Automatic Test Pattern Generation (ATPG)

based Redundancy Addition and Removal (RAR) [3] [4], Set

of Pairs of Functions to be Distinguished (SPFD) [5], Graph

Based Alternative Wiring (GBAW) [1] and Error Cancellation

based Rewiring (ECR) [6] [7].

In RAR, for a given irredundant target wire wt in a circuit

C, wa is an alternative wire for wt if both wa and wt

are redundant in the circuit C + wa. Since wt has become

redundant, it can be removed and the following equation holds:

C = C + wa = C + wa − wt (1)

In [6], the authors suggested a symbolic based model of

the following error cancellation concept. The removal of an

irredundant wire wt from the circuit C induces an error

wt error. The addition of an originally non-existing wire wa

introduces an error wa error. If the wt error can be cancelled

before it is propagated to any primary outputs by adding

wa error, wa is an alternative wire for wt. In other words,

wt error and wa error, where neither wt nor wa needs to be

redundant, mutually and completely cancel one another before

reaching any primary outputs.

The work in [6] has paved some theoretical foundation for

error cancellation based rewiring, but the procedure is quite

computation intensive and impractical for implementation.

The authors in [7] proposed a low complexity heuristic for

error cancellation based rewiring scheme. They re-examined

the traditional view on dominators, which are derived from

structural circuit traversal. The concept of dominators was

refined to be not simply graph topology based but also error

type dependent.

This method has significantly increased the rewiring capa-

bility, however, is still limited to the “one alternative wire

for one target wire (1-to-1)” rewiring scenario. SPFD is a

quite flexible scheme being able to transcend this constraint

but tends to be too CPU intensive. The capability of all these

known rewiring schemes is limited to a rewiring rate of 30-

40% only for optimized circuits.

In this paper, we will further analyze the theory on error

cancellation and propose a systematic Flow Graph Error Can-

cellation Rewiring (FECR) solution for our rewiring operation.

FECR is a general 1-to-k (k alternative wires for 1 target wire)

rewiring scheme where a flow graph is constructed to model

error propagations such that the error caused by the target wire

removal is to be cancelled at the minimum cut(s) of the graph.

To cancel the error, a rectification network is temporarily

added into the circuit. A node addition and removal (NAR)

[8] based algorithm is then employed to find a source node,978-3-9810801-8-6/DATE12/ c©2012 EDAA

which can be an existing node or a newly added node in the

circuit, to replace the rectification network.

The rest of this paper is organized as follows: In Section II

we briefly review the related concepts and related works. Flow-

based ECR is detailed in Section III. Finally, experimental

results and conclusion are presented in Section IV and V.

II. PRELIMINARIES & RELATED WORKS

A Directed Acyclic Graph (DAG) can be used to represent

a Boolean network. Logic gates are represented by vertices

while wires are denoted by edges. The value that can determine

a logic operator (gate) g’s value is called the controlling value

of g. Similarly, the non-controlling is the complement of the

controlling value and cannot determine the logic output of g
alone.

The dominators of a wire w are a set of gates G such

that all paths from w to any primary outputs (PO) must go

through these gates. To propagate w’s stuck-at fault through

a dominator, all the inputs of that dominator not lying in w’s
fault propagation path to POs, which are called side inputs,

should be assigned with their non-controlling values. Let Γ be

the set of all input vectors that can activate and propagate a

certain stuck-at fault. A node k has a mandatory assignment

(MA) m if the value of k is always m in all vectors in Γ. If
the stuck-at fault is untestable when the value of k is changed

to m, m is a forced mandatory assignment (FMA).

Previous ATPG based rewiring schemes use dominators to

find MAs and efficiently identify alternative wires. They com-

monly apply the concept of redundancy addition and removal:

if a node is a dominator of the chosen target wire or has an

FMA, it can be considered as a candidate alternative wire’s

destination. The source of an alternative wire would be another

node with an MA. If the candidate alternative wire is originally

redundant, and causes the target wire to become redundant,

it is a valid alternative wire for the target wire. Note that

all candidate alternative wires having destination nodes with

FMAs must be verified to ensure that they are redundant. In

some cases, however, the information at a traditional structural

dominator is not sufficient to determine the alternative wires

of certain target wires. The authors of [7] extended the concept

and defined testing dominators as follows:

Definition 1: Given a network, a node set S is a blocking

cut set of a wire w if every path from wire w to primary

outputs must go through one and only one node in S.

Definition 2: Given a network, a node nd is a testing

dominator of the wire w’s stuck-at fault if the fault must be

propagated through nd to primary outputs.

A testing dominator nd is a special node in the blocking cut

set D of w such that the stuck-at fault at w must be propagated

through nd and cannot be propagated through any other nodes

inD. Beware that a testing dominator of a certain wire is fault-

type dependent while a traditional dominator is not. And for

a wire, its testing dominator set is a super set of its dominator

set.

In Fig. 1, {g7, g8} is a blocking cut set for wire b → g1.
The stuck-at-0 fault for b → g1 can be propagated through

7

8

4

3

2

1

6

5

1

2

3

Fig. 1: General wire addition and removal

d
n d

n

Fig. 2: Using rectification network for rewiring [4]

g7 or g8. To activate the stuck-at-0 fault for b → g1, b has to

be set to 1. b = 1 implies g6 = 0. Under this condition, the

fault propagation path through g8 is blocked. Since the fault

can only be propagated through g7, g7 is a testing dominator

in the stuck-at-0 fault test of b → g1.
Testing dominators, like dominators, can be considered as

potential alternative wire destinations. In ECR, the authors

suggested a way to identify alternative wires having testing

dominators or nodes with FMAs as the destinations. The

related definitions and formulations [4] [7] are to be presented

again for completeness.

Definition 3: Given a set of MAs for a target fault, a

core MA (CMA) is defined as a subset of MAs which can

completely represent all the MAs.

All CMAs represent the vectors that can activate and

propagate the target wire’s stuck-at fault. AND(CMA) is used

to represent such vectors (the product of all CMAs). Since only

under those test vectors in AND(CMA) could the wt error be

activated and propagated to primary outputs. wa error must

also be activated and propagated under the same condition,

AND(CMA).

Given a Boolean network, a target wire wt, and a dominator

gd, suppose the cofactors of gd with respect to the CMAs

are denoted as gdg(CMA)
and gdf(CMA)

in the good and faulty

circuits respectively. The Exact Addition Network (EAN) at gd
is:

EAN = AND(CMA) · gdg(CMA)
(2)

The Exact Removal Network (ERN) at gd is:

ERN = AND(CMA) · gdg(CMA)
(3)

Then, the functionality of the node (gd +ERN) ·EAN after

removing wt is equivalent to that of gd in the original circuit.

The authors in [4] makes use of a rectification network,

which consists of the node gn and the AND gate (AND(CMA))

having CMAs as its inputs (Fig. 2), to correct error caused

7

8

4

3

2

1

6

5

1

2

3

9

10

Fig. 3: Error being rectified at a testing dominator with

rectification network

by wt removal. After identifying the CMAs and then the

rectification network as the destination of the alternative wire,

the source of the alternative wire is found by node substitution

techniques. A similar but improved scheme was proposed in

[7]. Besides dominators, testing dominators and nodes with

FMA can also be candidate alternative wires’ destination

nodes. For instance, we can construct a rectification network

based on the computed CMAs ({a = 0, b = 1} and g7 =

D(1/0), as shown in Fig. 3.

Being more general than the traditional RAR schemes, this

approach can consider irredundant wire/gate additions, and

many more valid candidate alternative wire destinations can

be identified through the use of testing dominators.

III. FLOW GRAPH BASED ECR

Although the approach of ECR [7] is already more general

than traditional RAR schemes, it is still limited to the “one

alternative wire for one target wire” constraint. To lift this con-

straint, partly inspired by the ideas introduced in Global Flow

Optimization (GFO) and Implication Flow Graph (IFG) [9], a

Flow Graph Error Cancellation Rewiring algorithm (FECR)

is proposed to explore a much broader solution space. In

GFO, the problem of wire re-connections is modeled as a flow

graph optimization that can be solved by a maxflow-mincut

algorithm. Implication flow graph is applied to reformulate

the problem of fanout/fanin reconnections.

In FECR, the error propagation paths are firstly identified.

Rectification networks are then added into the circuit to cancel

the errors found in the error propagation graph. Min-cuts of the

error propagation graph are then found for efficient searching

of destination nodes. Below, we will introduce the flow in

more details with illustrative examples.

A. Error Flow Graph Construction

In order to activate and propagate the wt error, the target

wire and all the side inputs of dominators are assigned

with suitable MAs. Other MAs are then obtained by logic

implications. With all MAs collected, we construct the error

flow graph (also called error propagation graph) as follows:

1) The target wire’s sink node is added as the source node

(root) s of the error flow graph. This node is given infinite

(inf) weight.

Fig. 5: Error propagation of wt error

(a) Error flow graph without

Semi-MA

(b) Error flow graph with Semi-MA

Fig. 6: Error flow graphs

2) All nodes having implied values 1/0 or 0/1 are added.

Initially, all such nodes have weight = 1.

3) A sink node t with infinite weight is added to the graph.

4) Edges are inserted between nodes following the error

propagation path of the circuit. A node with at least one

fanout without MA is connected to the sink directly.

For example, suppose that b → g1 is the target wire in

the circuit in Fig. 5. To activate the wt error and propagate

it through g1, the logic values at wire b → g1 and a are set

to 1/0 and 0 respectively. After implications, the following

MAs are obtained: {a = 0, b = 1/0, g1 = 1/0, g3 = 1, g4 =
0, g12 = 0, g5 = 1/0, g7 = 1/0, g8 = 1/0}. The FMAs are

{a = 0, b = 1, g4 = 0} and the CMAs are {a = 0, b = 1}.
Fig. 6a illustrates the error flow graph created according to

the construction steps. Although g12 is in the transitive fanout

cone of wt error and has an MA, it does not exist in the error

flow graph because the value at g12 remains 0 in both the good

circuit and the faulty circuit. This means the error cannot be

propagated through g12, and therefore it should be excluded

from the error flow graph.

In the next subsection, we will explain how to use min-

cuts of sizes 1 and 2 from the constructed error flow graph to

identify candidate destination nodes.

B. Destination Node Identification

Definition 4: Given a network, a node set S is an E-frontier

of a wire n’s stuck-at-1 or stuck-at-0 fault if:

1) Every node in S must have an MA.

2) For each path from node si (si ∈ S) to any primary

output o: si → n1 → n2 → ... → nk → o, any node nj

(j ∈ [1, k]) is not in S.
3) Every erroneous path from wire n to any primary output

must go through at least one node in S.
4) Each node in S is reachable from n.

Definition 5: Given a network C, a stuck-at fault s, and a

node t which is in the transitive fanout cone of s, a node n
has a semi-MA x (x is 0 or 1) with respect to t if:

(a) Addition of the rectification net-
work - first approach

(b) Rewired circuit - first approach (c) Addition of the rectification net-
work - second approach

(d) Rewired circuit - second approach

Fig. 4: Example of Flow Graph Error Cancellation Rewiring (FECR)

1) Γ is the set of test vectors which can activate s and

propagate it to primary outputs via node t.

2) n has the same value x in all test vectors in Γ.

Similar to the semi-FMA, a semi-CMA can be defined ac-

cordingly. For example, in Fig. 5, we can compute both sets

of semi-FMAs and semi-CMAs with respect to g9 and g10
respectively.

The product of semi-CMAs, AND(semi-CMA) with respect

to a node t represents the test vectors that can propagate

the error via t. Each min-cut in the error flow graph is an

E-frontier. Then, an error is not observable if it is stopped

from propagating through an E-frontier without injecting any

new error effects outside the error propagation graph. All E-

frontiers of various sizes are determined by iterations of the

maxflow-mincut algorithm. For example, the E-frontiers in

Fig. 5, are {g1} and {g5} when cut size is 1, and {g7, g8}
when cut size is 2. The error can thus be cancelled at {g1},
{g5} or {g7, g8}. When the number of nodes in an E-frontier

is more than one, multiple errors may need to be injected

into the circuit to cancel the wt error. In our example, the

FMAs are {a = 0, b = 1, g4 = 0}. Let us assume that the

E-frontier is {g7, g8}. If the wt error is to be propagated

via g9, e has to be assigned with 1. Semi-FMAs are found

to be {a = 0, b = 1, g4 = 0, e = 1}. The corresponding

semi-CMAs are then {a = 0, b = 1, e = 1}. On the

other hand, if the wt error is to be propagated via node

g10, the node f has to be 1. Semi-FMAs are found to be

{a = 0, b = 1, g4 = 0, g3 = 1, f = 1}, and the corresponding

semi-CMAs are {a = 0, b = 1, f = 1}. The error flow graph

is shown in Fig. 6b.

Rectification networks, which are constructed as

AND(semi-CMA), can then be added at E-frontiers or

semi-FMAs to cancel the error. Candidate alternative wire

destinations can be:

1) nodes in the E-frontiers

2) nodes that have been assigned semi-FMAs during the

error propagation via E-frontier nodes

If there is only one node in the E-frontier, this destination

is a valid destination node. Otherwise, additional consistency

check must be done to ensure the validity of the rewired

circuit. Theorems related to the destination node identification

are discussed below.

Theorem 3.1: Suppose that a node m has semi-FMAs in

different propagation paths via the nodes in the same E-

frontier, then m is not a unique candidate destination (more

than one candidate destinations are necessary) for cancelling

the error under the following conditions:

1) m has different semi-FMA values for different propaga-

tion paths.

2) The intersection Γ of the test vectors corresponding to

the different propagation paths is non-empty.

Proof: Suppose the semi-FMA for m is 0 when the

corresponding E-frontier node is v. And in another propagation
path, when the corresponding E-frontier node is u, m’s semi-

FMA is 1. In other words, when the wt error is propagating

through node v, the value of m is 0; whereas when the

wt error is propagating through node u, the value of m is

1. Let Γu and Γv denote the test vectors for the propagation

path through node v and u respectively. Then consider any

test vector t ∈ Γ = Γu

⋂
Γv.

When t is applied to test wt error, if rectification is made

at node m only, the error cannot be cancelled no matter what

the value of m is. This is because when the value of m is 0,

the wt error can always be propagated through the node v or

otherwise through the node u.
More than one candidate destinations are required to correct

the wt error even if the E-frontier has only one node. Theorem

3.1 gives the conditions for filtering out impossible single

candidate alternative wire destinations. For instance, if the E-

frontier is {g7, g8} in Fig. 5, each of the g7 and g8 cannot

be the only single candidate alternative wire destination alone

for rectifying the wt error.

Theorem 3.2: Suppose there are two nodes u and v in the

same E-frontier. The corresponding semi-MAs for each of

these E-frontier nodes are found by propagating the wt error

through u and v respectively. Denote the AND(semi-CMA)

of a node n as AND(semi-CMA(n)). If wt error is to be

corrected at both nodes u and v at the same time, the necessity

of consistency check is based on the following conditions:

1) If AND(semi-CMA(u))
⋂

AND(semi-CMA(v)) = Φ,
consistency check can be exempted.

2) If AND(semi-CMA(u))
⋂

AND(semi-CMA(v)) 6= Φ,
consistency check is necessary for AND(semi-CMA(u))⋂

AND(semi-CMA(v)).

Proof: Suppose that the intersection is empty. Since

AND(semi-CMA(u)) represents the necessary condition for

all the test vectors that can distinguish between the good

circuit and rewired circuit when the wt error is propagated

through u, it is impossible for AND(semi-CMA(v)) to affect

the error propagation through u. The two test vectors cannot

be effective simultaneously and therefore a consistency check

is not necessary.

For instance, a consistency check is necessary if the

wt error is rectified at both {g7, g8} in the example shown in

Fig. 5. Our FECR algorithm is summarized in Algorithm 1.

C. Source Node Identification

After identifying candidate destination nodes, the next task

is to figure out how the rectification networks should be

constructed.

1) First approach: For all the candidate destination nodes, a

rectification network can be constructed using the AND(CMA)

obtained from the stuck-at fault test of the wt error. Then,

substitution nodes for the rectification network are identified

as the alternative wires’ sources using the techniques presented

in [10] and [8].

Referring to the example in Fig. 4, if {g7, g8} are the candi-
date destination nodes, the circuit after adding the rectification

network is shown in Fig. 4a. The substitution node for the

rectification network is found to be g3. The target wire b → g1
is removed. Fig. 4b shows the rewired circuit. The circuit can

be further simplified. For example, the gated g8 is obviously

redundant after the addition of the rectification network.

2) Second approach: In FECR, since it is not limited

to have only one candidate destination node for an error

cancellation, the rectification condition in FECR is not as

restrictive as that in the ECR approach. It may be advantageous

to relax the AND(CMA) rectification scheme.

AND(semi-CMA) is a subset of AND(CMA). From the

example in Fig. 5, the CMAs are {a = 0, b = 1} in the ECR

approach. The rectification network built upon the CMAs, and

the corresponding single alternative wire, are valid only if none

of the test vectors in {a = 0, b = 1} can distinguish the good

circuit and the rewired circuit. Unlike ECR, the test vectors in

FECR are divided into three parts: a) {a = 0, b = 1, e = 1}
and b) {a = 0, b = 1, f = 1} and c) the don’t cares:

{a = 0, b = 1, e = f = 0} . The rewired circuit is functionally

equivalent to the original circuit only if none of the test vectors

in part (a) and part (b) can distinguish between these two

circuits.

Rectification networks for each of the candidate destination

nodes can be therefore constructed using the corresponding

AND(semi-CMA) instead. Fig. 4c depicts this approach and

shows the rewired circuit after rectification network substitu-

tions.

Based on the definitions in Definition 4, an E-frontier is a

set of nodes such that the wt error can be cancelled before

being propagation through these nodes. A single node in an E-

frontier is essentially a testing dominator. Therefore, the circuit

transformations found by ECR is a subset of FECR. Since

Algorithm 1: Flow Graph Error Cancellation based

Rewiring (FECR)

input : circuit C , target wire wt

output: rewiring solution RS

begin1

MA = stuckAtFaultTest(wt);2

efg = constructErrorFlowGraph(MA);3

S = findEFrontierSets (efg);4

foreach E-frontier Si in S do5

foreach E-frontier node Sij in Si do6

semiFMA = findForcedSemiMAs(Sij);7

insert Sij , semiFMA into CDij ;8

foreach candidate destination node Cd in CDij do9

if singleDestinationValid (wt, Si, Cd) then10

insert Cd into SDig ;11

insert SDij into SDi ;12

Di = validateConsistentDestinationGroupSet(SDi);13

foreach consistent destination group Dij in Di do14

SRS = identifySourceNode(Dij);15

insert SRS into RS;16

return RS;17

end18

(a) 1-to-1 Error Cancellation (b) Multi-Error Cancellation

Fig. 7: Structural View on Error Cancellation

RAR is a special case of ECR [7], both RAR and ECR are

subsets of FECR.

The structural views on 1-to-1 and 1-to-k rewirings are

shown in Fig. 7. As depicted in Fig. 7a, the error effects of

e1 and e2 mutually cancel each other in region Z . No error

effects can be observed at any primary output. As illustrated

in Fig. 7b, the errors that are caused by target wire removal

can be cancelled by adding multiple errors into the circuit.

Observation 3.3: A target wire in a Boolean network is

removable by the error cancellation scheme proposed in this

paper, as long as it is neither (i) connected to a primary output

directly nor (ii) connected to a logic gate connecting to a

primary output.

Due to space limit, here we simply give an intuitive ex-

planation on what we can conclude from our studies and

experiments: given that the wire is not connected to close to

the primary outputs, we are always able to construct an error

propagation graph. The mincut(s) from the graph can identify

proper location(s) at which the rectification network, which is

built using CMAs, can be added to cancel the error injected

by the removal of the target wire.

Hence, we believe that most of circuit wires are removable,

and their alternative wires can be identified by our proposed

scheme. It should be noted that our observation only provides

TABLE I: Comparison between ECR and FECR

Benchmark # TW
ECR FECR

r.TW r.TW% # AW Time(s) # r.TW r.TW% # AW ∗ Time(s) Single Pair

9sym-hdl 96 25 26.04 58 0.01 78 81.25 55 0.07 989 2962

pcler8 126 36 28.57 106 0.03 102 80.95 150 0.07 2017 0

f51m 190 94 49.47 441 0.04 188 98.95 445 0.96 20589 334995

comp 184 78 42.39 610 0.15 137 74.46 334 1.01 1835 8875

5xp1 178 90 50.56 452 0.04 176 98.88 460 0.79 21141 269695

b9 n2 166 78 46.99 240 0.03 157 94.58 306 0.16 2327 3097

my adder 256 81 31.64 134 0.02 222 86.72 136 0.11 2669 2677

ttt2 274 120 43.80 521 0.05 261 95.26 548 0.27 18064 47508

term1 314 142 45.22 699 0.1 300 95.54 793 1.24 19399 179782

sao2-hdl 324 96 29.63 428 0.16 301 92.90 343 2.41 34558 392812

C432 320 131 40.94 545 0.14 292 91.25 732 0.3 7390 1841

C1908 706 162 22.95 291 0.21 685 97.03 302 0.69 6677 11156

C880 648 193 29.78 458 0.19 610 94.14 551 0.4 7067 2598

C1355 772 172 22.28 228 0.16 760 98.45 260 0.55 4506 8002

rot 942 398 42.25 1046 0.24 882 93.63 1146 0.79 13342 19948

x3 1120 341 30.45 1287 0.36 1089 97.23 1247 0.97 27766 57594

apex6 1188 379 31.90 2099 0.4 1158 97.47 2196 1.67 41408 112536

Total 7804 2616 33.52 7398 94.80 1.00 2.74

Average 36.17 92.27

TW: the number of target wires in the circuit; # r.TW: the number of removable target wires; r.TW%: the percentage of removable target wires

AW (for ECR): the number of total alternative wires found; # AW∗ (for FECR): the number of all the single (1-to-1) alternative wires

Time(s): average CPU time which is measured in seconds for each target wire; Single/Pair: the number of solutions with single/pair destination

the sufficient, but not necessary, condition for a wire to be

removable. The wires connected close to primary outputs may

also be removable, despite the fact that its error propagation

graph cannot be constructed.

IV. EXPERIMENTAL RESULTS

Table I shows the result of the comparison between ECR and

FECR. Our algorithm is implemented in C++ and tested with

ISCAS and MCNC benchmarks which were first optimized

by ABC [11]. Previously, the experiments with non-optimized

circuits in [12] and [4] reported that around 35% and 60%

of wires can have alternative wires found respectively. In our

experiment, the percentage was found to be 34% by using

ECR and impressively 95% by using FECR (the percentage is

calculated using the total to account for the wire average but

not circuit average), compared to 20% in [4]. The number of

1-to-1 alternative wires found by FECR matched that of ECR

and in practice most of the rest target wires can be removed by

1-to-2 rewiring. For most benchmarks, the CPU time cost of

FECR was times to an order of magnitude higher than that of

ECR due to its much broader searching space. In practice, an

upper bound can be imposed on the total number of alternative

logics searched if less CPU time is demanded. It was found

that the ratio of the number of solutions with pair destination

to that with single destination is 2.74.

V. CONCLUSION

In this work, we have theoretically and experimentally

shown that in a circuit, virtually every single wire is removable

and its alternative wires can be found within a reasonable

amount of time. We have proposed a Flow Graph Error Can-

cellation Rewiring (FECR) scheme which can untie the 1-to-1

limitation of most previously developed rewiring engines. The

experimental results show that a (first known) near complete

(95%) rewiring rate can be practically achieved even for

optimized circuits. This significant progress makes rewiring a

much more flexible logic synthesis technique that can provide

today’s various challenging EDA problems one extra last resort

to explore.

REFERENCES

[1] Y. L. Wu, C. C. Cheung, D. I. Cheng, and H. Fan, “Further Improve
Circuit Partitioning Using GBAW Logic Perturbation Techniques,” IEEE
Transactions on VLSI Systems, vol. 11, pp. 451–460, June 2003.

[2] S.-C. Chang, L. Van Ginneken, and M. Marek-Sadowska, “Circuit
Optimization by Rewiring,” Computers, IEEE Transactions on, vol. 48,
pp. 962–970, Sep 1999.

[3] K.-T. Cheng and L. Entrena, “Multi-level Logic Optimization by Re-
dundancy Addition and Removal,” in Design Automation, 1993, with

the European Event in ASIC Design. Proceedings. [4th] European

Conference on, pp. 373 –377, Feb. 1993.
[4] C.-C. Lin and C.-Y. Wang, “Rewiring using IRredundancy Removal and

Addition,” in Design, Automation Test in Europe Conference Exhibition,

2009. DATE ’09., pp. 324 –327, april 2009.
[5] J. Cong, J. Lin, and W. Long, “A New Enhanced SPFD Rewiring

Algorithm,” in Computer Aided Design, 2002. ICCAD 2002. IEEE/ACM

International Conference on, pp. 672 – 678, Nov. 2002.
[6] C. Chang and M. Marek-Sadowska, “Theory of Wire Addition and

Removal in Combinational Boolean Networks,” Microelectronic Engi-

neering, vol. 84, no. 2, pp. 229–243, 2007.
[7] X. Yang, T.-K. Lam, and Y.-L. Wu, “ECR: A Low Complexity General-

ized Error Cancellation Rewiring Scheme,” in DAC ’10: Proceedings

of the 47th Design Automation Conference, (New York, NY, USA),
pp. 511–516, ACM, 2010.

[8] Y.-C. Chen and C.-Y. Wang, “Node Addition and Removal in the
Presence of Don’t Cares,” in Design Automation Conference (DAC),

2010 47th ACM/IEEE, pp. 505 –510, june 2010.
[9] Z. Wu and S. Chang, “Multiple Wire Reconnections based on Im-

plication Flow Graph,” ACM Transactions on Design Automation of

Electronic Systems (TODAES), vol. 11, no. 4, pp. 939–952, 2006.
[10] Y.-C. Chen and C.-Y. Wang, “Fast Detection of Node Mergers using

Logic Implications,” in Computer-Aided Design - Digest of Technical

Papers, 2009. ICCAD 2009. IEEE/ACM International Conference on,
pp. 785 –788, Nov. 2009.

[11] Berkeley Logic Synthesis and Verification Group, “ABC: A System for
Sequential Synthesis and Verification, release 70911.”

[12] C. Chang and M. Marek-Sadowska, “Who are the alternative wires in
your neighborhood?(alternative wires identification without search),” in
Proceedings of the 11th Great Lakes symposium on VLSI, pp. 103–108,
ACM, 2001.

