
Congestion-Aware Scheduling for NoC-based
Reconfigurable Systems

Hung-Lin Chao†, Yean-Ru Chen‡, Sheng-Ya Tung†, Pao-Ann Hsiung†∗, and Sao-Jie Chen‡
†Department of Computer Science and Information Engineering

National Chung Cheng University, Taiwan, R.O.C
‡Graduate Institute of Electronics Engineering

National Taiwan University, Taipei, Taiwan, R.O.C.
∗pahsiung@cs.ccu.edu.tw

Abstract—Network-on-Chip (NoC) is becoming a promising
communication architecture in place of dedicated interconnec-
tions and shared buses for embedded systems. Nevertheless,
it has also created new design issue such as communication
congestion and power consumption. A major factor leading
to communication congestion is mapping of application tasks
to NoC. Latency, throughput, and overall execution time are
all affected by task mapping. As a solution, an efficient run-
time Congestion-Aware Scheduling (CWS) is proposed for NoC-
based reconfigurable systems, which predicts traffic pattern based
on the link utilization. The proposed algorithm alleviates the
overall congestion, instead of only improving the current packet
blocking situation. Our experiment results have demonstrated
that compared to other existing congestion-aware algorithm, the
proposed CWS algorithm can reduce the average communication
latency by 66%, increase the average throughput by 32%,
reduce the energy consumption by 23%, and decrease the overall
execution by 32%.

I. INTRODUCTION

Nowadays, with the rapid increase in computational de-
mands such as scalable video rendering and baseband commu-
nication protocols, the traditional on-chip interconnect archi-
tecture has become inadequate with issues such as poor scala-
bility and low bandwidth utilization. Moreover, the number of
Intellectual Property (IP) cores integrated into a single chip is
increasing rapidly. The Network-on-Chip (NoC) was proposed
as a promising communication architecture for addressing
the challenges of complex system designs because it can
provide a better bandwidth utilization through parallel com-
munication and easily integrate different cores by structured
network wiring, modularity and standard interfaces than tradi-
tional communication architecture [1]. In recent years, modern
FPGA provides the Dynamic Partial Reconfiguration (DPR)
capability, which can partially reconfigure IP cores (such
as general-purpose processor) at run-time without interfering
other running IP cores. It means we can reconfigure an IP core
to a specific location based on the application requirements [2].

For high throughput, communication is achieved through
parallel transmissions in a NoC. To support diverse applica-
tions and guarantee Quality-of-Service (QoS), the most com-
monly used transmission scheme is wormhole flow control [3].
However, the wormhole flow control may suffer from the

978-3-9810801-8-6/DATE12/ c⃝ 2012 EDAA

Fig. 1. Scheduling (a) without considering congestion and (b) with consid-
ering congestion

Head-of-Line (HoL) blocking problem which makes the flits
of a packet to span multiple routers and leads to heavy
traffic contention, also called congestion. It is difficult to
predict which packet will be transmitted first, or blocked when
congestion occurs. Dynamic task execution further aggravates
the situation such that communication delay, overall system
execution time, and total energy consumption all increase
significantly.

A simple comparison between congestion-aware scheduling
and scheduling without considering congestion is illustrated
in Fig. 1. Assume the NoC includes four tiles that can
be individually configured as a specific IP core. Two data
transfers (DT) have started in the NoC. The transfer DT1

starts from the source IP core U to the destination IP core W ,
while transfer DT2 starts from the source IP core W to the
destination IP core U . Suppose the packets belonging to DT1

has already reached the tile X and the packets belonging to
DT2 has already reached the tile V . Now, a new data transfer
DT3 is requested from the source IP core U to the destination
IP core V . For transfer DT3, since the link between IP core
U and IP core V is still unused, V is thus selected for the
destination at the bottom-left of the NoC. However, packets
in next step, DT1 starts transmitting packets to the IP core
W and DT3 also needs to transmit packets to the IP core U .
Therefore, as shown in Fig. 1(a), the data ready time of the IP
core U and IP core V may be deferred and difficult to predict
due to the congestion. However, using the congestion-aware

scheduling as shown in Fig. 1(b), the tile B with the idle IP
core X can be reconfigured to the IP core V . As a result,
DT3 chooses the right-top position of NoC to reconfigure IP
core V . Finally, the contention between DT2 and DT3 can be
eliminated.

One important design issue for an efficient NoC is applica-
tion mapping optimization, which is the mapping and schedul-
ing of both computation and communication over the NoC,
while optimizing certain metrics such as communication delay
or throughput [4]. In this work, we present an efficient run-
time congestion-aware scheduling algorithm (CWS) that focus
on communication delay minimization by avoiding communi-
cation congestion. The proposed CWS algorithm that maps
an incoming application task graph onto an underlying NoC
and schedules both the computation and the communication
demand of the tasks according to the link utilization and the
resource utilization.

The article is organized as follows. Section II introduces the
related work. The NoC-based reconfigurable system architec-
ture is described in Section III. Section IV is the problem
formulation and proposed algorithm. The experiments are
shown in Section V. Finally, Section VI summarizes our
contributions and outlines some directions for future work.

II. RELATED WORK

Communication-aware scheduling contains two main parts:
the first part is mapping tasks to computation nodes, and the
second is scheduling communication on the links [4]. For a
parallel communication platform such as NoC, communication
delay is an important factor to be considered. Several static
methods [5]–[9] have been proposed for an optimal placement
of tasks onto a NoC. Hu et al. [5] presented a branch and
bound algorithm to map IP cores onto a tile-based NoC
architecture such that the goal to minimize the total commu-
nication energy consumption under some given performance
constraints is guaranteed through bandwidth reservation.
Work extended from [5] considered packet routing flexibility
and communication time constraints during the scheduling
process [6]. Raina et al. [9] proposed a simulated annealing
algorithm to map the application onto a NoC architecture by
keeping track of the network traffic. Chou et al. [8] proposed
an integer linear programming method to minimize the inter-
tile network contention. However, the order of incoming
applications varies during system execution, thus the resource
requirements of tasks may exceed that available. Further,
since link utilization is not known at design time, congestion
may occur due to the HoL blocking problem. As a result,
it is necessary to schedule dynamically the link utilization
with resource management. Carvalho et al. [10] proposed
some run-time strategies for mapping applications to a NoC,
where the communication congestion in a NoC is taken into
consideration based on the current link utilization. However,
the traffic patterns may change dynamically throughout the
system execution due to tasks continually changing in a NoC.
It is necessary to predict the future traffic pattern of used
links to avoid communication congestion.

Fig. 2. NoC-based Reconfigurable System Architecture

III. NOC ARCHITECTURE

A NoC-based reconfigurable system realized on a DPR
platform is illustrated in Fig. 2, where a NoC is used to
interconnect different tiles. Each tile contains a Partially Re-
configurable Region (PRR) connected to a router via a Network
Interface (NI). By using the dynamic partial reconfiguration
technique, it becomes possible to load a required IP core on-
the-fly to a tile, with flexibility just like a general-purpose
processor. The connections between tiles is called links.
The NoC architecture can be described by following graph
structure.

Definition 1: NoC Architecture Graph
A NoC architecture graph (T , L) is a directed graph, where

T is a set of tiles and L ⊆ T × T . Each vertex tu ∈ T
represents a tile u in the architecture, and each edge lu,v ∈ L
represents a link from vertex tu to vertex tv.

The notation tiu represents the status, i.e., used or unused, of
tile tu in time slot i. A time slot is a pre-specified time period
for execution. Communication between tiles involves sending
data over a sequence of links from the tile with source IP
core to the tile with destination IP core. The transfer delay
through a link is denoted as td. A sequence of links through
the architecture graph is called a route and is defined formally
as follows.

Definition 2: Route
Given a NoC architecture graph (T , L), a route r : t1

l1,2→
t2

l2,3→ · · · ln−1,n→ tn is a path in (T , L) specified by a given
routing scheme, where t1 ̸= tn, t1 is the tile with source IP
core (called source tile) and tn is the tile with destination IP
core (called destination tile). The length of a route r is denoted
as |r|, which is equal to the number of links in the path.

The notation liu represents the status, i.e., used or unused,
of the link lu in time slot i. A flit is transferred over a link in a
single time slot. In this work, the X-Y routing scheme is used
to direct packets across a 2D mesh NoC. In such 2D mesh,
the routing scheme will first route packets along the X-axis;
once it reaches the column wherein lies the destination tile,
then the packets routes along the Y-axis. Obviously, the X-Y
routing is a deadlock-free minimal path routing scheme [11].
To manage the resources in a NoC, we assume that the tiles
have the capability to control at what time to start the execution
of a given task and at what time to start a traffic. Such
capability is usually already provided by the OS [12]. To

minimize the reconfiguration overhead, reconfiguration time
hiding and resource reuse [13], can be used in conjunct with
our congestion-aware scheduling.

IV. CONGESTION-AWARE SCHEDULING

Simply stated, given an application and a NoC architecture
graph, the congestion-aware scheduling is to decide which
tile each IP core should be configured in and what time
the configured tile should start to execute. We assume that
the incoming applications are generated off-line and each
application contains one or more traffic, which will be defined
late in this section. The computation of an application is rep-
resented by an Application Task Graph (ATG), which depicts
the control and data dependencies between the interacting
computations or tasks in the application. Before introducing
the proposed congestion-aware scheduling algorithm, we first
define some terminology as follows.

Definition 3: Application Task Graph
An ATG (V , E) is a directed graph, where V is a set of IP

cores and E ⊆ V × V . Each vertex ipu ∈ V represents an IP
core u to be used in the application, and each edge eu,v ∈ E
represents a data transfer from vertex ipu to vertex ipv . The
data transfer between two IP cores is called a traffic, and
each traffic t is a 4-tuple (ipu, ipv, test, δ) with the following
properties:

• The vertices ipu and ipv represent the source and desti-
nation IP cores, respectively.

• The earliest start time test is when the communication
can start the earliest, relative to the arrival time tat.

• The maximum time duration for the communication is δ.

Given the above definitions, the source tile tu sends the
first flit in time slot ttestu and the destination tile tv receives
the last flit ideally in time slot ttest+δ+(|r|−1)∗td

v . Hence, the
time needed to transfer data between the source tile and the
destination tile via route r is within the time interval ttestu to
t
test+δ+(|r|−1)∗td
v . This time window is used to predict the

traffic pattern on the link lu,v . A traffic specifies only the
source and destination IP cores, not the location of the source
and destination tiles nor the path from the source tile to the
destination tile. In the following, we use a scheduling function
to associate such information with a traffic via the scheduling
entity.

Definition 4: Scheduling Entity
A scheduling entity is a 3-tuple (tu, tv, r), where tu, tv ∈ T

represent the source and destination tiles, respectively, and r
is a route from tu to tv .

The relation between a set of traffics and a set of scheduling
entities is given by a scheduling function defined as follows.

Definition 5: Scheduling Function
A scheduling function is defined as S : E → SE, where

E and SE stand for a set of traffics and a set of scheduling
entities, respectively. S is said to be feasible for a traffic t =
(ipu, ipv, test, δ) ∈ E if and only if there exists a route S(t) =
(tu, tv, r) such that

• tu and tv can be reconfigured to execute the IP cores
ipu and ipv in the time intervals ttestu to ttest+δ

u and
t
test+(|r|−1)∗td
v to t

test+δ+(|r|−1)∗td
v , respectively.

• tu ̸= tv and tu, tv ∈ T .

The first constraint is used to ensure the executions of the
IP cores in the source and destination tiles can be performed,
while satisfying the timing constraint. The second constraint
is to ensure that the source and the destination IP cores are
not configured into the same tile. An infeasible scheduling
function shows that not all scheduling entities can obey the
constraints. Given a scheduling entity e = (tu, tv, r) we can
define the route utilization incurred by e as follows.

µ(e) = (
∑
li∈r

(
ω(li)

δ
)), (1)

where the function ω(li) represents the link utilization of l(i).
It represents the number of time slots, within the time interval
l
test+(|i|∗td)
i to l

test+δ+(|i|∗td)
i , in which l(i) is used. A low

route utilization indicates that more time slots in the route
can be used to reduce the communication congestion, thus
minimizing the communication delay. To find a scheduling
entity with the minimal route utilization, the following cost
function is used.

scheduling entity = min
e∈SE

{ µ(e) } (2)

The proposed congestion-aware scheduling is given in Al-
gorithm 1, which takes an application Aexe and its arrival time
tat as inputs, and gives a scheduling entity e as output. Once an
application Aexe arrives, the earliest start time of each traffic
is calculated based on the application arrival time tat. The
scheduling order of the traffics is determined using breadth-
first search (BFS) traversal and then sorted by their start times.
For the required source IP core, the CWS algorithm first selects
a tile that can be either reconfigured or contains the same IP
as the required IP core from the tile set tileidle. However, the
number of tasks that start to execute may exceed the number
of available tiles. For example, when all tiles are busy, that is,
they are not included in the tile set tileidle, to find a feasible
time interval for an IP core to execute, the proposed algorithm
defers the traffic until more than two tiles finish their jobs and
can be reconfigured, where these tiles are called available tiles.
The proposed algorithm randomly selects one of the available
tiles and configures it as the source IP core. However, the
longer the distance between the source and destination tiles,
the heavier the communication congestion. Hence, to configure
an available tile as the destination IP core, an ordered set
tiledst whose tiles are ordered according to the increasing
Manhattan Distance (MD) from the corresponding source IP
core is used. The destination tile is chosen based on the cost
function as shown in Equation (2), which gives a scheduling
entity with the minimal route utilization. The above process
is repeated until all traffics are scheduled.

Fig. 3 gives an example illustrating the process of schedul-
ing an application onto a given NoC. As shown in Fig. 3, the

Algorithm 1: Congestion-aware scheduling algorithm

input : An application: Aexe and its arrival time: tat;
output: A scheduling entity: e

tileidle : A set of tiles that can be reconfigured or
contains the required IP core;
tiledst : A ordered set of tiles that can be reconfigured or
contain the required IP core based on the Manhattan
Distance (MD) from the source tile;

if a new application arrives then
for each traffic ∈ Aexe do

Calculate the start time according to tat
Sort the traffics of the application according to
the dependency and test
if could not find a tile ∈ tileidle then

Defer the start time until at least two tiles is
available with the MD as 1

for each tile ∈ tiledst do
Select a tile whose route utilization is
minimal according to the cost function

return e

application includes two traffics DT1 and DT2 in a 2×2 2D
mesh topology NoC. We assume that the application arrives
in the time slot 1, and thus adjust the start time of each traffic
by adding a 1 to it. As shown in Fig. 3(a), the scheduling
order of traffics is based on BFS traversal and is sorted by
the start times. Thus, it start to schedule the traffic DT1, the
tile A is selected for the source IP core first. However, for
the destination IP core, because there is not any available tile
whose MD equals to one in the tile set tileidle, the tile D
whose MD equals to two is thus selected to configure as the
destination IP core. In next step, all tiles are busy so there
is not enough tiles for traffic DT2 to be accommodated. As
shown in Fig. 3(b), the CWS algorithm defers the start time
of the traffic DT2, until they finish their jobs and can be
reconfigured. As shown in Fig. 3(c), after the start time of
the traffic DT2 is deferred by 1, when tiles B and C are
available, the routing paths from A to B and from A to C
can be selected. For the routing path from A to B, the routing
utilization is 1

5 , because the traffic DT2 needs 5 time slots
ideally to transmit the packets, and 1 time slot to transmit the
packets via the link between A and B. As shown in Fig. 3(d),
the routing path between A and C is selected because the route
utilization is zero, that is less than that of the routing path A
to B.

V. EXPERIMENTS

We implemented the congestion-aware scheduling algorithm
and then integrated it into Noxim [14], a flit-accurate simula-
tor developed in SystemC. To evaluate the effectiveness of

Fig. 3. Application scheduling with a given NoC

the proposed algorithm, a random benchmark generated by
TGFF [15] was used in the experiments. The NoC size varied
from 4×4 to 8×8. Each task was transmiting 1 to 500 packets,
with a size varying from 1 to 13 flits. To compare with the
proposed CWS, three existing algorithms proposed in [10]
were also implemented, including First Fit (FF), Nearest
Neighbor (NN), and Path Load (PL). The strategies of the
contemporary algorithm for selecting the source or destination
tiles are briefly described as follows, where NN and PL are
congestion-aware algorithms.

• First Fit: The FF algorithm starts at tile 0, which is
located at the top-left of the NoC and traverses the NoC
column by column, top to bottom. For either the source
or the destination tile, FF selects the first idle tile, without
taking other metrics into consideration. FF may generate
the worst results when compared to the other algorithms.

• Nearest Neighbor: To avoid congestion, the NN algorithm
only considers the shortest distance between a source tile
and a destination tile. Once the source tile is selected,
NN tries to search for an idle tile able to execute the task
near the source tile. The search space includes all n-hop
neighbors, where n varies between 1 and the NoC size,
and the search will stop when the first idle tile to execute

(a) Overall system execution time (b) Average communication delay (c) Maximal communication delay

(d) Average throughput (e) Energy consumption (f) Communication volume

Fig. 4. Experimental Results

the required task is found.
• Path Load: The search space of PL is similar to NN.

The PL algorithm considers the links that will be used
by the task being mapped. PL computes the cost of each
mapping k according to Equation 3, where c(i, j) is a
link from tile i to tile j, and availabilityc(i,j) is the
availability of each individual link of the route from the
source tile to the destination tile. The selected mapping
is the one that has the minimum cost.

costk =
∑

availabilityc(i,j) (3)

Compared to the PL algorithm, the NN algorithm does
not consider current link utilization. Compared to the CWS
algorithm, the PL algorithm does not consider future link
utilization.

To evaluate the performance of a NoC, the overall system
execution time is defined as the difference of clock cycles
between the first transmitted flit and the last received flit. The
average throughput is defined as the total number of received
flits over the number of IP cores multiplied by the total number
of cycles. The average communication delay is defined as the
total latency of received packets over the number of received
packets.

Fig. 4(a) shows the overall system execution time us-
ing CWS, FF, NN, and PL algorithms. For more precise
evaluation, all the experimental results were acquired after

100 applications were executed and scheduled onto NoCs
with a size varying from 4×4 to 8×8. With small topology
size, the tiles are busier because they would be continuously
configured as different IP core to meet the different application
requirements. When the topology size increases, the overall
system execution time using CWS reduces, where the time
reduction reached up to 32% of the time required by the other
three algorithms. When all tiles are busy, CWS defers the start
time of the traffic until it can be configured and thus it prolongs
the overall system execution time. However, the reduction in
communication delay brought about by CWS is much more
than the additional system execution time, and thus the overall
system execution time is less than that using the other three
algorithms.

Fig. 4(b) and Fig. 4(c) show the average communication
delay and maximal communication delay on NoCs with a size
varying from 4×4 to 8×8. Using the CWS algorithm, the av-
erage delay and maximal communication delay was improved
by more than 66% and 180%, respectively, compared to that
using the PL algorithm. Using the FF, NN, and PL algorithms,
the traffics may contend for the same link at the same time thus
resulting in communication congestion. To avoid the problem
of communication congestion, the proposed CWS algorithm
may adjust the routing path by configuring another tile as
the destination IP core. Compared to the congestion-aware
algorithms such as NN and PL, the CWS algorithms considers

the link utilization not only in the current time but also predicts
it for the future time slots. Hence, as shown in Fig. 4(d),
the average throughput using the CWS algorithm was always
better than that using the FF, NN, and PL algorithms, where
the improvement by CWS was up to 32% of that by the other
three algorithms.

Fig. 5. Execution time overhead

As shown in Fig. 4(e), by using CWS the energy consump-
tion was reduced by up to 23% of that by using the other
congestion-aware algorithms on a NoC with a size varying
from 4×4 to 8×8. However, when the size of NoC increases,
the improvement of energy consumption using the the CWS
was thus lowered. This is because the number of tiles becomes
larger and can accommodate all the applications. Thus each
traffic can have its own pair of tiles, and traffic contentions
will occur more rarely.

The next experiment evaluates the efficiency of CWS by
varying the communication volume in a 4×4 NoC topology.
As shown in Fig. 4(f), when the communication volume grad-
ually increases, the average delay using the CWS algorithms
was always less than that using the other three algorithms,
where the reduced average communication delay was reached
up to 66%. This is because the CWS algorithms can predict the
future link utilization in a NoC and communication congestion
can be avoided.

The execution time overhead in performing the CWS al-
gorithm on a NoC with a size varying from 4×4 to 8×8
is shown in Fig. 5. We can observe that the execution time
increases, when the topology size decreases. This is because
a smaller size of topology includes fewer tiles. When the
available resources are getting fewer and fewer, the time
for finding a feasible scheduling entity becomes longer and
longer. However, this is an acceptable time overhead, since
the reduction of overall system execution time is more than
the additional execution time overhead.

VI. CONCLUSION

In a parallel communication infrastructure such as NoC, to
reduce the execution time, communication congestion should
be avoided. In this work, we have addressed the issue of
scheduling the traffics of applications by reducing the com-
munication delay. By predicting the traffic pattern based on
the link utilization on a reconfigurable NoC infrastructure,

the proposed run-time congestion-aware scheduling algorithm
can reduce the overall congestion, instead of only improving
the current packet blocking situation. Experimental results
showed that the proposed algorithm obtained up to 66% of
average communication delay reduction, while the execution
time was reduced by up to 32%. At the same time, the average
throughput was improved by up to 32%.

Future work will consist of supporting other routing
schemes, prediction mechanisms, and taking energy consump-
tion into consideration for mapping and scheduling application
tasks onto NoCs.

ACKNOWLEDGMENT

The authors would like to thank the National Science
Council, Taiwan, ROC, for financial support of this research
under project numbers NSC 98-2221-E-194-049-MY3.

REFERENCES

[1] B. Towles and W. J. Dally, Principles and Practices of Interconnection
Network, Morgan Kaufmann, 2004

[2] L. Moller, I. Grehs, E. Carvalho, R. Soares, N. Calazans, and F. Moraes,
A NoC-based Infrastructure to Enable Dynamic Self Reconfigurable Sys-
tems, Proceedings of the 3rd International Workshop on Reconfigurable
Communication-centric Systems-on-Chip, pp. 23-30, June 2007.

[3] W. J. Dally and C. L. Seitz, The torus routing chip, Journal of Parallel
and Distributed Computing, vol. 1, no. 4, pp. 187-196, June 1986.

[4] U. Y. Ogras, J. Hu, and R. Marculescu, Key Research Problems in
NoC Design: A Holistic Perspective, Proceedings of the International
Conference on Hardware-Software Codesign and System Synthesis, pp.
69-74, September 2005.

[5] J. Hu and R. Marculescu, Energy-aware mapping for tile-based NoC
architectures under performance constraints, Proceedings of the Asia and
South Pacific Design Automation Conference, pp. 233-239, January 2003.

[6] J. Hu and R. Marculescu, Exploiting the routing flexibility for energy/per-
formance aware mapping of regular NoC architectures, Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition, pp.
688 - 693, March 2003.

[7] C. Marcon, A. Borin, L. Carro, and F. Wagner, Time and Energy Efficient
Mapping of Embedded Applications onto NoCs, Proceedings of the Asia
and South Pacific Design Automation Conference, pp. 33-38, January
2005.

[8] C. Chou and R. Marculescu, Contention-aware application mapping
for Network-on-Chip communication architectures, Proceedings of the
26th International Conference on Computer Design, pp.164-169, October
2009.

[9] A. Raina and V. Muthukumar, Traffic Aware Scheduling Algorithm for
Network-on-Chip, Proceedings of the Sixth International Conference on
Information Technology: New Generations, pp.877-882, April 2009.

[10] E. Carvalho and F. Moraes, Congestion-aware Task Mapping in Het-
erogeneous MPSoCs, Proceedings of the International Symposium on
System-on-Chip, pp. 34-40, November 2008.

[11] C. J. Glass and L. M. Ni, The Turn Model for Adaptive Routing,
Proceedings of the 19th Annual International Symposium on Computer
Architecture, pp. 278-287, May 1992.

[12] V. Nollet, T. Marescaux, D. Verkest, J. Mignolet, and S. Vernalde,
Operating-system controlled network on chip, Proceedings of the 41st
Annual Design Automation Conference, pp. 256-259, June 2004.

[13] M. D. Santambrogio, M. Redaelli, and M. Maggioni, Task graph
scheduling for reconfigurable architectures driven by reconfigurations
hiding and resources reuse, Proceedings of the 19th ACM Great Lakes
Symposium on VLSI, pp. 21-26, May 2009.

[14] F. Fazzino, M. Palesi, and D. Patti, , Noxim: Network-on-Chip Simulator,
http://noxim.sourceforge.net, 2010.

[15] R. P. Dick, D. L. Rhodes, and W. Wolf, TGFF: task graphs for free,
Proceedings of the 6th International Workshop on Hardware/Software
Codesign, pp. 97-101, March 1998.

