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Abstract—Hardware specialization is often the key to efficiency
for programmable embedded systems, but comes at the expense
of flexibility. This paper combines flexibility and efficiency in the
design and synthesis of domain-specific datapaths. We merge all
individual paths from the Data Flow Graphs (DFGs) of the target
applications, leading to a minimal set of required resources;
this set is organized into a column of physical operators and
cloned, thus generating a domain-specific rectangular lattice. A
bus-based FPGA-style interconnection network is then generated
and dimensioned to meet the needs of the applications. Our
results demonstrate that the lattice has good flexibility: DFGs
that were not used as part of the datapath creation phase can
be mapped onto it with high probability. Compared to an ASIC
design of a single DFG, the speed of our domain-specific coarse-
grained reconfigurable datapath is degraded by a factor up to
2×, compared to 3–4× for an FPGA; similarly, our lattice is
up to 10× larger than an ASIC, compared to 20–40× for an
FPGA. We estimate that our array is up to 6× larger than an
ASIC accelerator, which is synthesized using datapath merging
and has limited or null generality.

I. INTRODUCTION

Embedded system efficiency is often advanced through spe-

cialization, i.e., through the design of application or domain-

specific custom computing hardware [10], [13]. Large dedi-

cated datapaths, for example, are common in dedicated signal

processing systems; however, their area overhead is significant,

and they are inflexible. Area can be reduced by merging sev-

eral datapaths whose usage at runtime is mutually exclusive.

The problem of achieving some form of flexibility in

hardware is more difficult to pin down and evaluate. Ide-

ally, one would desire a fabric that is similar to the target

datapath, so as to display only a moderate loss in efficiency

compared to an ASIC implementation, but while maintaining

sufficient flexibility to accommodate late design changes or

new applications in the same domain. Neither requirement is

well-fomulated, and yet many system designers and project

managers in the semiconductor industry would clearly desire

such solutions. Field Programmable Gate Arrays (FPGAs)

are a solution at one end of the spectrum, where near-ideal

flexibility comes at the cost of incredibly poor logic density,

especially for arithmetically-intensive applications. Despite

many efforts, no commercially successful product has, to date,

embedded FPGAs into ASIC design flows. Datapath merging

is at the opposite end of the spectrum, as it achieves high

efficiency but offers no flexibility beyond the ability to map

the DFGs of the applications that were initially merged [3].

This paper introduces flexibility into the datapath merging

process; it presents an algorithm that infers automatically the

desired features of a domain-specific reconfigurable datapath

from a collection of representative DFGs. Other DFGs that

were not used in the datapath generation process are then

mapped onto the resulting datapath, thereby establishing its

flexibility. This problem is loosely defined and poorly articu-

lated in the general case, as there may be little or no similarity

between the DFGs used to generate the datapath and the

additional DFGs that are mapped onto it; however, if the DFGs

all come from the same general application domain (e.g., filters

used in signal processing), then the likelihood of successful

mapping is quite high. Our experiments demonstrate that the

vast majority of our DFGs can be mapped successfully onto

the datapaths that are generated by our algorithm.

II. FLEXIBILITY, OR LACK THEREOF...

Figures 1a and 1b show two DFGs, which approximately

correspond to a Sum of Absolute Differences (SAD), widely

used for motion estimation in video compression, and a radix-

2 butterfly, which is a building block of the Fast Fourier

Transform (FFT). Figure 1c shows the result of merging the

two datapaths, with multiplexers inserted; this datapath can be

configured to execute either DFG [3], [21].

Now, suppose that we want to execute an image convolution

DFG, shown in Figure 1d, which arguably belongs to the

same application domain. Although the merged datapath in

Figure 1c contains all of the necessary resources, its fixed con-

nectivity is insufficient to implement the desired functionality:

the shaded paths cannot be mapped onto the datapath.

This paper strives to insert additional flexibility during the

process by which the first two DFGs are merged. The cost
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Fig. 1. The limitations of classic datapath merging [3], [21]. Two sample data-flow graphs from (a) a two pixels SAD and (b) radix-2 FFT butterfly. The M
nodes represent accesses to some form of memory (register files, stream buffer, etc.) and are not part of the datapaths. A typical result of merging these two
graphs would result in (c). Unfortunately, the data-flow graph (d), a 3 × 3 image convolution, cannot be mapped onto the merged datapath despite the fact
that the resources are almost the same and the connectivity is very similar: the interconnections shaded in (d) are missing in the merged datapath (c).

of doing so is the introduction of additional operators and

interconnect resources, which increase the area and delay of

the resulting datapath; however, doing so also increases the

likelihood that additional DFGs can be mapped onto it.

III. SELECTIVE FLEXIBILITY

We understand flexibility as the ability to capture and im-

plement the computational structures that are characteristic of

a specific application domain. We call the flexibility selective

because these computational structures are characterized, and

thus restricted, by (1) the type of operations, (2) their number,

and (3) their interconnections. In terms of these parameters,

we expect application domains to be relatively homogeneous:

FFTs, DCTs, and similar signal-processing primitives use sim-

ilar operators for essentially similar computations, irrespective

of various important implementation choices. In these cases, a

high degree of generality can be achieved at a reasonable area

overhead and a limited performance cost. Our technique ana-

lyzes different applications input by the designer. It attempts to

distill the essential computational structures, and then attempts

to map new applications on the datapath. Of course, the

generality of the resulting datapath will heavily depend on

how well the original applications cover the spectrum of

computational structures of the target domain.

Figure 2 illustrates the fundamental steps in our solution to

capture the key features of a number of applications, repre-

sented by their DFGs. Firstly, we fix the type and sequence of

operations supported in the datapath by defining a superpath.

The superpath is an ordered sequence of operators, which

includes all the sequences of operations present in the input

applications. Such sequences are assumed to be inherent to the

target domain and, once a superpath is created, we consider

it very likely that all the paths of a new application belonging

to the same domain will be already included.

Secondly, we fix the total number of operators implemented

in our datapath. The superpath is the basic construction

block: a column of our rectangular datapath composed by

N × M operators, where N is the length of the superpath

and M is the number of times that it needs to be replicated

for a successful mapping of the applications at hand. The
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Fig. 2. Proposed flow to synthesize domain-specific datapaths.

interconnect is inspired by FPGAs, but uses bus-based rather

than bit-based connections in order to reduce the amount of

configuration storage. The reconfiguration of the datapath is

achieved by shifting in configuration bits and storing them in

the configuration memory cells, and has not been addressed

in detail in this paper.

By defining such a datapath, we expect to provide the com-

putational structures that enable a high degree of generality

for a particular domain at a reasonably small cost. In the rest

of this section, we describe in detail the different parts of

our technique to automatically generate the datapath from a

collection of DFGs.

A. Path Fusion

The basic building block of our reconfigurable datapath

is created through path fusion. This block defines the type

of operations supported by our datapath and how these are

sequenced from inputs to outputs. We reuse the maximum

area common subsequence (MACSeq) metric of other existing

graph-merging algorithms [3] to select the building blocks

of minimal area; this gives priority in the merging to the

paths that have the MACSeq of operators. The input of

our path-fusion algorithm consists of all the DFGs of the
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Fig. 3. Steps of our path fusion algorithm. The paths highlighted in gray
are selected for merging. The nodes in darker gray form MACseq.

different applications provided by the designer; the process

is as follows:

1) Enumerate all paths of each DFG.

2) Group the paths into multiple sets depending on their

length (number of nodes).

3) Starting from the set having the longest paths, perform

pairwise search for the MACSeq between paths.

4) Replace the two paths that maximize the metric by their

merged version.

5) Repeat 3) and 4) until only one path is left in the set.

6) Move the resulting path to the next set containing the

paths of smaller length and repeat 3) to 5) until only

one path is left: the superpath.

In practice, this algorithm converges fast into the superpath,

as the shorter paths will most likely be already contained in

previously merged longer paths.

In Figure 3 we describe the path fusion process implemented

on the DFGs illustrated in Figures 1a and 1b as an example:

The first DFG has only one distinct path, P1 = {S,A,A}.

The second DFG has 4 different paths, P2 = {M,S,A},

P3 = {M,S, S}, P4 = {M,A,A} and P5 = {M,A, S}.

Here, S represents subtraction, A addition, and M multi-

plication. Our algorithm groups all the paths in the same

set as they all have the same length. To find the MACSeq,

assume that the areas of the different operators are related

as M > S > A. Accordingly, the MACSeq corresponds to

{M,S}, which is contained in P2, P3, and P5. P2 is thus

merged with P3, resulting in P2,3 = {M,S, S,A}, which is

then merged with P5, resulting in P2,3,5 = {M,S,A, S,A}.

The next path selected for merging is P4, which is already

included in P2,3,5 = P2,3,5,4. Finally, the only remaining

path, P1, is selected for merging. Again, the path is already

included, and P2,3,5,4 = P1,2,3,5,4, which is the actual super-

path. Although here we have differentiated between adders

and subtractors for illustrating our path fusion algorithm, in

actuality our tool assigns them to the same operator, an adder-

subtractor, thus increasing the datapath generality. Accord-

ingly, the superpath generated by our tool for the example

is P1,2,3,4,5 = {M,A,A,A}, where the A now stands for

addition-subtraction.

B. Array Generation

Once the superpath is generated, it is replicated M times to

generate the array shaping our datapath. A minimum value of

M is computed so that the datapath includes enough operators

to execute all the operations of every input application. To pro-

vide generality beyond the size of the input set of applications,

our tool can apply an oversizing factor to enlarge the minimum

value of M , which so far is provided by the designer (in our

experiments zero or one column is added).

C. Interconnect Dimensioning

Once the datapath is generated, we need to add routing

resources. We use standard FPGA-like interconnections [2]

and dimension the number of word-size tracks in each channel

between operators. For that, we place and route every DFG,

to measure the minimal number of routing tracks needed. Of

course, good placement is key since the minimum channel

width to guarantee routability depends on it.

To emphasize the regularity of the graphs, we desire a

placement that mimics effective graph drawing algorithms.

These algorithms usually keep graph edges as short as possi-

ble, to minimize the number of edge crossings, and emphasize

symmetries [20]. We use the algorithm embedded in dot [8],

which is an open source tool for laying out hierarchical

drawings of directed graphs. To dot we give as inputs the

DFG nodes and the sequence of nodes in the superpath (the

column of the datapath). The DFG nodes belonging to the

same row are then assigned the rank of the corresponding node

in the superpath. Hence, dot is forced to place operators only

within the rows, without the possibility to move any operator

from one row to another (see Figure 4b). The horizontal node

coordinates are then scaled and rounded to represent columns.

When assigning a node to a row for placement, the tool follows

these criteria: (1) If the node is not a part of a binary tree (see

Figure 5), it is placed in the first row with the correct operators

below the rows assigned to its predecessors. (2) If the node

is a part of a binary tree, which is often the case in DSP

applications, we first minimize the tree height and then try to

place the node as early as possible, thus increasing the overall

row utilization. Any rows that are never used in the array as

a result of the latter procedure can be removed automatically

to conserve area.

To find the minimum channel width necessary to success-

fully route a placed DFG, we use VPR, a classic open-source

FPGA architectural simulator and tool [2] for placement-and-

routing. To adapt VPR for our purposes we first represent

all DFG nodes as 2-input 1-output configurable logic blocks

composed of a single subblock. We assume that each wire in

VPR actually represents a 32-bit bus connection, as all bits in

the bus will follow the same route [18]. Then, for all DFGs,

we run VPR with the appropriate placement, netlist, and

architecture descriptions. VPR reports the minimum channel

width for which a legal routing solution can be found for each

benchmark. We take the maximum of these values to be the

channel width of the resulting datapath, as it is the smallest

value that admits a legal place-and-route solution for all of the

benchmarks used in the generation process. At this point the

array is completely specified.
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Fig. 4. The placement process. The input DFG shown in (a) is laid out (b) with appropriate constraints and parameters to suggest a detailed placement on
the array. After snapping the horizontal placement to the columns, the final placement (c) is achieved (shown after routing by VPR in the figure).
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Fig. 5. Optimization of row utilization for binary trees of identical operators.
(a) Part of a typical DFG with accumulation of multiple partial results. (b)
The chain of operators transformed into a binary tree. (c) Tree nodes assigned
to one of the previous rows, to improve row utilization.

IV. EXPERIMENTAL RESULTS

In this section we assess the generality achieved by our

method, as well as the datapath area and delay with respect

to ASIC and FPGA. Additionally, we provide some insights

into the drawbacks of the current implementation.

We selected 19 different DFGs from applications available

in benchmarks and commercial libraries [7], [14]–[17] cover-

ing various classic signal and image processing computations

(FFT, DCT, IDCT, FIR, IIR, autocorrelation, etc.). They con-

stitute Group 1 in our experiments. Groups 2A and 2B are

TABLE I
GENERALITY METRIC FOR VARIOUS GROUPS OF BENCHMARKS.

Group Generality [%] Group Generality [%]

1 87.50 4A 83.33
2A 75.00 4B 50.00
2B 72.70 4C 75.00
3A 90.00 4D 60.00
3B 87.50

subsets of Group 1, which try to group similar applications.

Similarly, Groups 3x and Groups 4x regroup all of the DFGs

in different and increasingly smaller clusters.

For each of these groups, we measure the generality of

the resulting array as follows: If N is the number of DFGs

in group G, we remove in turn each DFG D ∈ G from G

itself and create the array from the remaining N − 1 DFGs.

Then we try to map D onto the datapath following the same

place&route flow used for generation (Section III-C) with the

exception that the channel width is now known and fixed.

The generality for group G is the ratio of the number of

successfully mapped excluded DFGs in the N experiments

to the total number of DFGs N . The results are presented

in Table I: Generality is in most of the cases at least 75%.
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For groups having small N , generality naturally decreases,

but remains at least 50%: if an unrealistically small learning

set is given, it is understandably difficult for the technique to

generalize the needs of unknown DFGs. Additionally, since

we fix the array width fairly tightly based on the input DFGs,

if the excluded DFG needs even a little more space to fit into

the datapath, mapping may be impossible.

Next, we estimated the datapath area and delay and com-

pared with a 65nm standard cell ASIC. We synthesized,

placed, and routed individually all the logic and arithmetic

operations found in the DFGs using the gate implementations

of a commercial library. We assumed, to our disadvantage, that

the ASIC implementation of a DFG requires no routing area

besides the area required for the operators and that all shifts

are by a constant value and can be implemented via wiring

in the ASIC. Similarly, the delay of the ASIC implementation

was assumed as the pure delay through the critical path of

the components of the DFG, ignoring routing delays. We

used VPR to estimate the routing delay and datapath area.

We used an appropriate technology configuration file along

with the real number of wires required, as VPR does not

natively support bus-based connections. This conservatively

overestimates the routing area because VPR controls each

wire independently, even though our implementation intends

to use a bus-based interconnect. The overall results are shown

in Figure 6. The grey area marked as FPGA represents the

area/delay space where results would be expected if DFGs

were to be mapped on an FPGA [12]—of course, FPGAs

achieve perfect generality if the array is large enough. Our

results show that the majority of all DFGs result in arrays with

an area up to 10× larger than the corresponding ASIC area,

and the delay increase by as much as to 2×. This indicates that

our method succeeds in generating datapaths with a reasonable

level of generality at speeds similar to those of a pure ASIC

implementation and while not paying the full area/delay cost

of FPGAs. However, there are several DFGs that have high

area ratio compared to an ASIC implementation. These DFGs

do not contain high-area operators, such as multipliers. In

Figure 6, which reports the ratio of datapath to ASIC area, the

results are skewed because: (1) the denominator (ASIC area) is

a very small number; and (2) the numerator (datapath area) is

dominated by the interconnect. Consequently, these data points

should be treated as outliers. We also compared the area of our

datapath to the area of an ASIC obtained by datapath merging.

Assuming 100% resource utilization and ignoring multiplexer

overhead, our datapath was conservatively estimated to be 2–

6× larger.

V. STATE OF THE ART

Our datapath generation algorithm is motivated in part by

the path-based datapath merging algorithm, introduced by

Brisk et al. [3] and later refined by Zuluaga and Topham [21].

These algorithms decompose each DFG into paths; paths from

distinct DFGs are then merged using subsequence and sub-

string matching techniques. Our approach is slightly different:

we attempt to generate one single path which is a minimum-

cost supersequence of all the paths in all of the input DFGs; we

then replicate this path and introduce a flexible interconnect

to form our flexible domain-specific datapath.

Yehia et al. [19] presented an approach for graph merging

in a wider system context covering both data-flow and control-

flow graphs. They introduced additional operations, wires, and

multiplexers to increase the similarity of initially dissimilar

DFGs. Cong et al. [6] considered specific pattern recognition

and selection techniques to intelligently select resources to

be shared among graphs and produce datapaths with reduced

interconnection costs. Like other prior datapath merging tech-

niques, these did not introduce any further generality.

Clark et al. [4] introduced a system that automatically

identified and synthesized custom instruction set extensions.

They introduced two generalizations to enable more effective

usage of the hardware units. Firstly, they identified subsumed

subgraphs, which recognized that many operators have an

identity element to pass values through unmodified. Wild-

carding introduced two different operations at the same node

in a graph, which increased flexibility in a limited way.

Preempive wildcarding generalized a graph by more versatile

operations, e.g., by replacing an ADD or SUB operation with

an ADD/SUB unit. We introduce a flexible routing network as

an alternative to subsumed subgraphs; our approach to merg-

ing exploits preemptive wildcarding as well. An important

difference is that we introduce generality into the hardware



datapath itself, while Clark et al. introduced generality into the

DFG. We believe that this gives our approach more general

possibilities for mapping new DFGs onto our datapath.

Ansaloni et al. [1] introduced Expression-Grained Recon-

figurable Arrays (EGRAs) based on combinational processing

elements capable of computing entire arithmetic/logic subex-

pressions using multiple wired ALUs. They built a retargetable

mapping toolchain which they used to explore the design space

of the elementary cell in an EGRA, thus being able to adapt

the architecture to the application domain. Our approach is

less general, as our datapath nodes are dedicated operators,

rather than more general ALUs; this increases efficiency and

moves our solution closer to an ASIC implementation.

One important area that this paper does not attempt to

address is the interface by which the processor supplies data

to the datapath. This issue has been effectively solved by

others [9], [11], and any existing technique could be used,

depending on the usage context of our datapath.

VI. CONCLUSIONS

We have presented a novel way to merge several DFGs to

create a reconfigurable datapath. Our method is fundamentally

different from others in the literature because we try to pay

a reasonable price to significantly increase the chances that

other applications, not considered at design time, can also

be accelerated. Our method heuristically distills the essential

computational structures of a set of representative DFGs pro-

vided by the designers into the datapath, and then provides a

standard interconnection network to ensure flexible mappings.

Our datapath offers greater flexibility than an ASIC; it is less

flexible than an FPGA, but comes at a reduced area overhead,

and, for the DFGs that are successfully mapped, a reduced

speed penalty as well. We believe that our approach explores

a new direction of great importance in a world where heteroge-

neous spatial systems are likely to emerge as a dominant form

of computation, especially for code acceleration in domain-

specific embedded systems.

This work can be improved in many future directions, such

as specializing the bitwidth of the operators, and composing

multiple limited-precision operators to form higher-precision

operators. Another possibility is to introduce flexible arith-

metic components, e.g., multipliers that can be configured to

perform addition/subtraction as well. Lastly, we have observed

utilization ratios of the array which are relatively low, hardly

above 40%; this could be improved by customizing the rectan-

gular shape of the array to the DFGs in the domain, as some

classes of DFGs, especially instruction set extensions, often

have the general shape of inverted cones [5].
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