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Abstract—Most network-on-chip (NoC) architectures are based on a
mesh-based interconnection structure. In this paper, we present a new
NoC architecture, which relies on source synchronous data transfer over
a ring. The source synchronous ring data is clocked by a resonant clock,
which operates significantly faster than individual processors that are
served by the ring. This allows us to significantly improve the cross section
bandwidth and the latency of the NoC. We have validated the design
using a 22nm predictive process. Compared to the state-of-the-art mesh
based NoC, our scheme achieves a 4.5× better bandwidth, 7.4× better
contention free latency with 11% lower area and 35% lower power.

I. INTRODUCTION

Multi-core processors require an efficient and scalable NoC infras-

tructure to handle the inter-processor on-chip communication needs.

There has been significant research in NoC topologies [1], [2], [3],

global wire management [4], and power optimization [5]. In terms of

topology, a 2D mesh interconnection network has received greatest

attention by NoC designers due to its simpler implementation, high

bandwidth and overall scalability. However the large diameter of the

mesh has a negative effect on communication latency. Other popular

topologies include Ring [6], Fat Tree, 2D Flattened Butterfly [7],

Octagon [8] and Torus [9].

As the size of a chip multi-processor (CMP) grows, it becomes

increasingly difficult to distribute a synchronous clock over the entire

chip. This has led to the use of asynchronous communication between

regions on the die, where each region is clocked in a synchronous

manner. This is referred to as a Globally Asynchronous Locally

Synchronous (GALS) [10] communication approach.

Recently, resonant clocking techniques [11], [12], [13], [14] have

been demonstrated, resulting in ultra high-speed, low power, stable on-

chip clock generators. In this paper, we utilize such a clock to develop

a high-speed, source-synchronous NoC architecture, as outlined next.

In this paper, the CMP performs communication using a GALS

paradigm. Each Processing Element (PE) operates in a synchronous

manner, and is assumed to operate at 2 GHz. The NoC is comprised

of a series of (horizontally and vertically arranged) flattened rings. A

Junction Station (JS) is placed wherever these rings intersect, allowing

data to switch between the horizontal ring and the vertical ring at the

junction. Each ring operates significantly faster (about 9× faster, from

our HSPICE [15] simulations) than the PEs. The data on the ring is

transmitted in a source synchronous manner with reference to a fast

resonant clock. Each PE is connected to a ring by means of a Add-

Drop Station (ADS), which allows it to remove/inject data from/into

the ring. Each ADS contains two asynchronous FIFOs. One FIFO is

written from the ring NoC, and read by the PE. The other FIFO is

written by the PE and read by the ring NoC driver logic.

The block diagram of a single (flattened) ring of our ring based

NoC is shown in Figure 1. Note that since this figure depicts a single

ring, JS’ are not shown. The ring carries three fields of information

– d bit data, k bit address, and 1 valid bit. If there are P PEs in the

CMP, then k = log2P. A high speed resonant clock signal Rclk runs

parallel to the ring signals mentioned above, as shown in Figure 1.

The data, address and valid signals are source synchronous with the

Rclk signal.

The key contributions of this paper are:

• To the best of the authors’ knowledge, this paper is the first to

demonstrate a fast ring based source-synchronous NoC architecture

(Rclk)

async FIFO

High Speed Resonant Clock

PE

d+ k+1

data+addr+ valid

Add−Drop Station

(ADS)

Fig. 1. Single Ring based NoC Architecture

using a resonant clock. We utilize a plurality of horizontal and

vertical rings of this kind.

• In order to validate the idea, we have conducted circuit simulation

using 22nm PTM process. The ADS’s, JS’s and FIFOs were

simulated in HSPICE, to validate correct operation and routing

performance at 18 GHz.

• Our HSPICE results show that the ring based NoC, when com-

pared with the state-of-the-art mesh based NoC, delivers a 4.5×
better bandwidth, 7.4× better contention free latency with 11%

lower area and 35% lower power.

• Since each source-synchronous ring is mesochronous with other

rings, and asynchronous with the PEs, precise synchronization of

the rings with PLLs is not required, making the technique very

practical to implement.

The rest of the paper is organized as follows. Section II describes

previous approaches in this area. Section III presents our approach,

while Section IV describes the results of experiments which we per-

formed to validate our approach. In Section V, we draw conclusions

and discuss avenues for future work.

II. PREVIOUS WORK

Any NoC architecture should have a combination of the following

desirable features: 1) scalability and modularity 2) low interconnect

latency 3) minimal power 4) high link data-rates. There have been

several NoC topologies that have been developed to satisfy these

requirements.

The simplest and most ubiquitous NoC topology is the 2D mesh.

Dally and Towles [16] first proposed a 2D mesh as a NoC architecture.

The topology consists of a 2D mesh of wires, with switches at

the intersections of horizontal and vertical wires. Every switch has

five ports, one connected to the local resource (PE) and the others

connected to the closest neighboring switches. The torus architecture

was proposed in [9], with switches at the edges connected to the

switches at the opposite edge through wrap-around channels. The

long end-around connections can yield excessive delays which can
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be avoided by folding the torus [17]. The inherent disadvantage of

the mesh or torus topologies is their large communication radius,

resulting in large amounts of interconnect and large numbers of

arbiters at the N-S-E-W crossings. These in turn leads to a large power

consumption. Karim et. al. [8] proposed the Octagon architecture.

The Octagon network consists of a basic octagon unit having eight

nodes and 12 bidirectional links. It has a simpler implementation

compared to the 2D mesh, with a higher throughput. Unlike the

crossbar, the Octagon’s implementation complexity increases linearly

with the number of nodes. A 2D Flattened Butterfly was proposed

in [7]. The 2D flattened butterfly is derived by flattening the routers

in each row of a conventional butterfly topology and hence provides

the connectivity of a mesh with additional links. The fat tree [18]

connects routers in a tree manner, with sources and destinations at

the leaves. The major advantage of the fat tree is the large amount

of bandwidth available, with the downside of the requirement for

large-radix routers toward the top of the tree. In [19], the authors

propose an asynchronous 2D mesh NoC infrastructure. Compared to

a synchronous mesh, their realization increases the area utilization

by more than 3×, with a 30-50% gain in speed and a 5× reduction

in power and a 6.9× energy improvement. The Ring [6] topology

implements concentric connected rings (similar to ring road in city),

which helps to reduce the risk of congestion in the central parts of

the network. The approach is motivated by the smooth flow of traffic

in ring roads. Their approach is fundamentally different than ours in

its topology, as well as in the fact that their simulations are conducted

purely at the architectural level.

In [20], the authors have implemented a power-efficient

mesochronous NoC with no area and latency overhead. Although our

NoC design is also mesochronous, we operate at a significantly higher

speed. Additionally [20] use a traditional mesh topology in contrast

with our source-synchronous ring.

In all the above implementations, design decisions are made based

on the fact that the interconnection network runs at the same or lower

frequency as the PEs. In contrast, our focus is a NoC architecture

which runs significantly faster (9× in our simulation) than the PEs.

This allows more architectural flexibility compared to existing NoC

solutions. For example, the significantly higher bisection bandwidth

allows the designer to implement our NoC architecture with narrower

links (yielding a lower area and power for the same bisection

bandwidth). The significantly lower latencies allow our approach to

scale more elegantly for larger CMPs. In this paper, our focus is not on

architectural aspects of the ring-based NoC. As a result we have not

simulated any real workloads in this paper, but evaluate performance

in terms of total available contention free bandwidth. Instead, we

devote our attention to the circuit aspects, showing the validity of the

approach by means of thorough circuit simulations.

In 2010, Sanchez et. al. compared various network topologies of

interconnection networks in terms of latency, throughput, and energy

dissipation [21]. The authors report that for a 64-core CMP, the total

area utilization is lowest in case of the mesh topology. The flattened

butterfly was shown to consume the largest area (by a factor of ∼ 3×).

In terms of power consumption, the flattened butterfly (the topology

with the largest occupied area) consumes only slightly more power

than the mesh due to the higher leakage of the extra links. On the

other hand, the fat tree consumes the most power because of the large

number of high-radix router hops and link stages that a flit traverses,

on average. Based on these observations, it was concluded that the

2D mesh is best NoC topology overall. As a consequence, the results

of our paper are compared with the 2D mesh results shown in [21].

Other mesh based NoC studies are reported in [22], [23].

In this paper we present a fast, low-latency source-synchronous

ring-based NoC architecture. Inter-processor communication is

achieved with minimal latency with the use of extremely fast, overlap-

ping source-synchronous data rings, which traverse the CMP in both

the horizontal and vertical directions. Since our approach is GALS,

the interconnection network operates on a different clock domain than

the PEs. The router complexity as well as the link lengths determines

the frequency of operation of the network. We have simulated the

routers and links in HSPICE [15], with link parasitics extracted from

Raphael [24]. A 4×4 section of the NoC is simulated, to validate

routing functionality, as well as to provide accurate delay, area and

power numbers.

Resonant oscillators are a promising technique to generate a high-

frequency on-chip clock signal with low power. Recently, a traveling

wave resonant oscillator circuit (referred to by the authors as a rotary

clock) was described and implemented [13], [14]. The scheme utilizes

a sufficiently long wiring ring, with cross-coupled inverter pairs spread

uniformly along the ring, and a mobius connection at one location of

the ring. The capacitive and inductive parasitics of the ring result

in a high frequency oscillatory network. The key drawback of the

rotary clock is that the phase of the generated clock varies along the

ring making traditional synchronous clock based design extremely

difficult. In response to this, a standing wave resonant oscillator

(SWO) circuit was proposed [11]. In this approach, a long wiring

ring is used, and oscillations are sustained in this resonant ring by

just using a single inverter pair. A mobius connection at the end of

the ring ensures uniform phase at all the points along the ring, averting

the main drawback of the rotary clock approach. In [25] a resonant

SWO based PLL was implemented, with an inductance control based

coarse frequency adjustment mechanism. Fine frequency adjustment

is achieved by controlling the body bias of the PMOS transistor of the

inverter pair. In [12] the authors present a tiled SWO based resonant

grid for high frequency clock distribution. In the NoC scheme of this

paper, we use the ideas proposed in the scheme of [12] to distribute the

high frequency clock along with each ring of the source-synchronous

ring-based NoC, while keeping the ring clocks synchronized.

III. APPROACH

A. Overview

A single ring of our ring-based NoC is shown in Figure 1. Each ring

is flattened, and consists of k bits of address, d bits of data and 1 valid

bit. These wires are driven source-synchronously, along with a high

speed resonant standing-wave clock [11], [12], [13], [14], [12]. The

clock operates at 18 GHz, and the transmission rate of the address,

data and valid bits is also 18 GHz. The PEs of the CMP connect to the

ring at discrete locations through an Add-Drop Station (ADS) which

contains two FIFOs as shown in Figure 1. PEs are assumed to operate

at 2 GHz. Note that the ring-based NoC operates at a significantly

faster clock speed than the cores (or PEs). Because of the extreme

high speed of the ring, the latency and transfer characteristics of our

ring-based NoC are extremely good.

Figure 2 illustrates a section of the CMP, with 2 horizontal rings

and 3 vertical rings. The vertical and horizontal rings are shaded with

diagonal patterns, to distinguish them. Regions where the vertical and

horizontal rings overlap are shaded using a pattern which consists of

the overlay of the horizontal and vertical patterns. Each ADS (marked

with a × symbol) services a single PE. Also, a Junction Station

(JS) (marked with a ◦ symbol) is located at each location where the

horizontal and vertical rings intersect. Since there are a total of 20

ADS’s in Figure 2, therefore 20 PEs are serviced in the NoC fragment

shown in this figure. Each PE is shown with a dotted outline.

Our source-synchronous rings are unidirectional. Without loss of

generality, we assume that each ring, transmits data in a counter-

clockwise manner. The distance between two adjacent ADS’s or JS’s

in the ring is fixed.

In the remaining subsections, we discuss our processor modeling

assumptions, followed by a discussion of the key components of our

design (resonant clock, asynchronous FIFO design, and ADS and JS

design, ).

All plots, tables and figures in this paper are generated for a 22nm

PTM [26] fabrication process. In our experiments, we first validated

that the resonant SWO operates at 18 GHz.

A ring based NoC is not fault tolerant. This can be fixed by using

bidirectional rings.
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Fig. 2. Ring based NoC architecture

Core Area (mm2) Core TDP (mW)

Niagra2 1.418 0.483

Atom 1.607 0.220

TABLE I

AREA AND POWER PROJECTIONS FOR THE CORES BASED ON THE SUN

NIAGARA2 AND INTEL ATOM DESIGNS [21]

B. Processor Modeling Assumptions

The most important determinant of the speed of our source-

synchronous ring-based NoC is the link length. A long link will

force the ring-based NoC to operate slower. This section discusses our

methodology to determine the length of each link. Based on Figure 2,

we notice that each side of the PE corresponds to two links. This is

because JS’s and ADS’s alternate along each horizontal section of any

ring. Therefore, assuming a square PE, the length of each link is half

the side of the PE.

In [21], the authors studied architectural implications of intercon-

nect design for CMPs with up to 128 cores. The authors approximate

the core area and power by scaling down two existing core designs:

the Sun Niagara 2 [27] and the Intel Atom [28] for a 32nm process.

Since our process is a 22nm process, we further scale their numbers.

Table I shows the area and power for a 22nm implementation of the

Niagara 2 and the Atom processors. Power numbers in this table are

scaled from those of [21] by multiplying their numbers by the ratio

of the square of the saturation Ids at 22nm and 32nm respectively,

from 22nm and 32nm PTM [26] processes.

Just like [21], we take our PE area to be the average of the two

areas shown in Figure 2. Assuming a square die, this means that each

link is 615 µm long.

C. Resonant Clocking

The information transmitted in each ring is driven source-

synchronously with a ring-based standing wave resonant oscillator

(SWO). We implemented a variant of the SWO circuit as proposed

in [11] . The authors utilize a long wiring ring and sustain oscillations

in the resonant ring by just using a single inverter pair, as shown in

Figure 3 a). By making a mobius connection at the end of the ring, it

is ensured that the clock signal at any point on the ring has the same

phase. By using differential amplifiers (Figure 3 b)), full rail clock

signals are extracted at the locations desired. The total length of the

ring is a half-wavelength (λ/2), where λ is the length over which a

360◦ change in phase is accomplished.

In our work, we have utilized the SWO concept of [11], and

modified it so that the clock ring spans across several PEs. In our

case, we have placed inverters at λ/2 locations in a ring whose total

length is p ·λ/2 (where p is odd). This yields the same oscillations

as for a λ/2 ring. In this way, we can implement rings of arbitrary

length (in odd multiples of λ/2) while still sustaining the same high

frequency of oscillation.

For the example in Figure 2, for the horizontal rings, p is 25 (since

the ring length is 3 chip perimeters and p must be odd), and λ/2 is 615

µm (the link length). For the vertical rings, p is 17. Note that inverter

pair locations are made to coincide with the ADS and JS locations,

thereby providing the resonant clock at these locations. Note that since

Single Inverter pairMobius Crossing

Full

clock

Clock

ckt

amplitude

Clock

ckt

Full

amplitude

clock

Virtual "zero" crossing (phase change)

recovery

recovery
−
+

+
−

(a) Standing-wave Resonant Clock

P P

N

N

N

Clock output

Differential Differential
Input2Input1

(b) Clock Recovery Circuit

Fig. 3. Standing Wave Resonant Clocking Concept [11]

p is odd, and each ring requires p−1 clock connections to ADS/JS

sites, and the signal from the last inverter pair is not utilized.

Note that it in order to ensure that the resonant structure bootstraps

in a standing wave configuration, the signals at each inverter pair are

initialized using a global bootstrap signal [12].

A final advantage of using several source-synchronous data rings is

that since they have asynchronous FIFOs to transfer data into, out of,

and across rings (through ADS’s and JS’s), the high-frequency clocks

of the rings need not be synchronous. This makes the design of the

ring clocks significantly simpler.

We do not include the ring clock power in the power numbers re-

ported in our experiments. The reason for this is that the approach we

compare our ring-based source-synchronous NoC with (the 2D mesh

of [21]) does not include clocking power in their estimates. Further,

resonant clocks are known to consume extremely low power [11],

[12], [13], [14], since they are LC oscillators, consuming power only

due to the losses in the wiring and inverter pair structures.

D. Asynchronous FIFO

FF

Rclk

FF

RclkRclk

FF

P read en

Gray Counter

P read ptr

R write ptr

Dout

Fi f o Full Logic

Pclk

Dout

Full in f i f o

Gray Counter FF FFFF

Rclk Pclk Pclk

Pclk

Empty in f i f o
Fi f o Empty Logic

Din

R write en

Reset

Rclk

Pclk

P read ptr

R write ptr

FIFO

R write en

Din

R write ptr Pclk

P read ptr Rclk

Fig. 4. Asynchronous FIFO (Infifo) Block Diagram

Asynchronous FIFOs are used to safely pass data from one clock

domain to another clock domain. Our ADS implementation utilizes

two asynchronous FIFOs (an Infifo and an Outfifo). We implemented

the design of these FIFOs as suggested in [29]. In the following

discussion, signals prefixed with a R refer to ring signals, while

signals with a P prefix refer to PE signals. We describe the Infifo

in this section. The Outfifo is identical, except that R signals are

replaced with P signals and vice versa.

1) Block Diagram of Infifo: The block diagram of the Infifo is

shown in Figure 4. The asynchronous FIFO read (P Read en) and

write (R Write en) enable signals are clocked by independent read

(Pclk) and write (Rclk) clocks. Din contains the input data to be



written, Dout contains the output data. The Reset signal is used to

initialize the FIFO. Two status flags denote whether the FIFO is

empty (Empty infifo) of full (Full infifo). Additionally, the read pointer

P read ptr and the write pointer R write ptr are outputs of the FIFO.

We next discuss how the Write/Read operations are done, followed

by how the FIFO full/empty conditions are detected.

2) Infifo Write and Read: The write pointer (R write ptr) always

points to the next word to be written and the read pointer (P read ptr)

always points to the current FIFO word to be read. Figure 5 illustrates

the core of the FIFO (the block for the FIFO core is also shown in

Figure 4). Writing is done by converting R write ptr to a one-hot

signal, and ANDing it with R write en. A single FIFO entry (the one

that is selected) is therefore written. All other unselected entries are

re-written into the FIFO.

For a read operation, the P read ptr appropriately selects a FIFO

entry, which is driven out on the Dout output of the FIFO on Pclk

unless the FIFO is empty.

3) Infifo Full and Empty Detection: A FIFO full condition occurs

when the write pointer catches up to the synchronized and sampled

read pointer (Read ptr Wclk).

Before checking the empty condition, the R write ptr is synchro-

nized to the Pclk domain. The resulting value is compared with

the P read ptr. Similarly, before checking the full condition, the

P read ptr is synchronized to the Rclk domain. The resulting value is

compared with the R write ptr. Synchronization is performed using a

2 flip-flop synchronizer [30] as shown in Figure 4. In order to achieve

a higher MTBF, we can use a three or more flip-flop synchronizer.

Another way of implementing the synchronizer is outlined in [31].

For a FIFO depth of n, we need log(n)+ 1 bits for the read and

write pointers. One extra bit is required to distinguish between full

and empty condition. When the write pointer increments past the

maximum FIFO address, it will increment the unused MSB while

setting the rest of the bits back to zero. The same is done with the

read pointer. If the MSBs of the two pointers are different, it means

that the write pointer has wrapped around one more time that the read

pointer. If the MSBs of the two pointers are the same, it means that

both pointers have wrapped the same number of times. This allows

us to implement both the empty and the full condition and requires

only XOR and XNOR gate for the logic.

Assuming there are n FIFO entries, the empty and full conditions

are computed as:

Empty in f i f o = R write ptr Pclk[3 : 0] == P read ptr[3 : 0]
and Full in f i f o = [!R write ptr[3],R write ptr[2 : 0]] ==
P read ptr Rclk[3 : 0]

Gray code counters are used to keep track of the read and write

pointers, as shown in Figure 4. Gray codes only allow one bit to

change for each clock transition, eliminating the problem associated

with trying to synchronize multiple changing signals on the same

clock edge. The XNOR gate for the gray counters were implemented

using pass-gates.

Dynamic flip-flops were used as these had to operate at a very high

frequency. For the FIFOs of PEi, Rclk and Pclk were taken to be 18

GHz and 2 GHz respectively

We have verified 100% correct functional as well as at-speed

operation of the FIFOs.

E. Description of Add-Drop Station

Each PE communicates with one ring in the ring-based NoC. This

communication is achieved using an Add-Drop Station (ADS). An

ADS consists of two FIFOs, and the related logic to insert and remove

items from the FIFO. Figure 6 shows a section of the data ring in

detail. This figure shows three ADS’s and PE’s (indexed i−1, i and

i+1). The ith ADS and PE are expanded in the center of the figure.

Each PE is connected to the bus ring by means of a ADS station.

Each ADS station can perform one of three operations – it can add

data into the ring, or drop (extract) data from the ring, or simply

repeat the data and pass it along. Because of the extreme high rate

of operation of the ring-based NoC, the valid and address signals

are driven one cycle earlier than the corresponding data signals. This

is because it would increase the cycle time if address matching and

data manipulations were done in the same Rclk cycle. For this reason,

signals which belong to the previous clock cycle are referred to with

a ”prev” subscript in the rest of this paper.

The ADS communicates with the PE through an inbound asyn-

chronous FIFO (Infifo), and with the ring through an outbound

(Outfifo) asynchronous FIFO. We next discuss the three operations

of the ADS, using Figure 6 as a guide.

Drop Operation: This operation requires a write operation in the

Infifo. From the right part of Figure 6, we note that the link data is

captured at each cycle of Rclk into a snoop register. If R write en is

true, then, on the rising edge of Rclk, data is entered into the Infifo,

into the location pointed at by R write pointer.

R write en= (validprev) · (addrmatchprev ·Full In f i f oprev)
In other words, data is dropped if the packet is valid (first term

above) and if the address matches, and the input FIFO is not full

(second term). Note that each of the signals used in this computation

are from the last cycle (since valid and addr are transmitted one cycle

before data).

If there is data in the Infifo (i.e. empty infifo is false), then data

is captured into the register fifodata in synchronous with Pclk, for

consumption by the PE, as shown in the bottom right of the figure.

Add Operation: This operation requires a read operation from the

Outfifo. From the left portion of Figure 6, we see that the FIFO output

(which is the data stored in the entry pointed to by R read pointer)

is captured in the fifodata out register whenever the Outfifo is not

empty. If sel2 is low, then this data is driven out over the link.

sel2 = (validprev) · ((addrmatchprev ·Full In f i f oprev))
We only drive out data from the Outfifo when sel2 is 0, or in other

words, if the packet is invalid (first term above) or if the address

matched and the Infifo is full (second term).

Repeat Operation: Based on Figure 6, we note that data is repeated

if sel2 is high (i.e. the packet is valid (first term above) and if the

address does not match or if the Infifo is full (second term).

Note that the bus ring operates at 18 GHz, therefore these operations

must be performed extremely fast. Also, data is transmitted one cycle

later than the control signals. If this were not the case, once the control

signals were deciphered, the delay in communicating the decision to

extract or drop data would add to the delay of the ADS station.

Address information is forwarded iff the packet satisfies (valid) ·

((addrmatch ·Full In f i f o)). In other words, address information is

forwarded if the packet is valid, and does not match the ADS address,

or if the Infifo is full. Otherwise, address information is sent out from

the Outfifo on to the ring.

Valid information is forwarded when the disjunction of (valid) ·

((addrmatch ·Full In f i f o)) and Empty out f i f o is true.

F. Description of Junction Station

A Junction Station (JS) operates in a same manner as an ADS other

than the fact that it does not have any PE attached to it. A JS consists

of 2 asynchronous FIFOs. One FIFO is responsible for collecting data

from the horizontal ring and transferring it to the vertical ring. The

other FIFO is responsible for collecting data from the vertical ring and

transferring it to the horizontal ring. Both clocks in both these FIFOs

operate at 18 GHz (but are mesochronous). Instead of asynchronous

FIFOs, mesochronous FIFOs may be used as well [31].

IV. EXPERIMENTAL RESULTS

We implemented our design in the 22 nm PTM [26] technology,

with VDD= 0.8V . All simulations were conducted in HSPICE [15].

RLC parasitics for all the wires were extracted using Raphael [24].

A. Circuit Validation

For at-speed validation purposes, we simulated a 4×4 tile where

each PE tile was assumed to be 1.229mm×1.229mm. Hence the length

of each link was taken to be 0.615mm. Since the JS were 1.229mm

apart in the vertical ring, we had to a put a repeater between two
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JS’s in the vertical ring. The address field (k) has 4 bits (to address

16 PEs) and the data width (d) was taken to be 9B, 18B and 36B.

There are 2 horizontal and 2 vertical rings each of length 12.29mm.

Our simulation successfully routed a packet which traversed several

ADS’s and JS’s before reaching its destination. We have calculated

the power assuming that 26% of the links are active. The benchmark

used in [21] for power consumption had a link activity of 26%, hence

this choice. The areas reported are standard cell areas. The ring clock

(Rclk) was assumed to be 18 GHz while the PE clock (Pclk) was 2

GHz.

The wire dimensions for the links between two stations are shown

in Figure 7. Wires are implemented in Metal 9. In both the ADS and

the JS, a driver of size 30× of a minimum sized inverter was used to

drive a single bit link with a stage ratio of 3×. The delay of the driver

was 13.86ps, while the delay of the mux was 16.08ps. As the length

of the link being driven is very small, the wire delay was found to be

negligible. The clock-to-Q delay and the setup time adds to sum of the

delay of the driver and the mux to determine the clock frequency. We

found the entire 4×4 NoC operates with 100% functional correctness

at 18 GHz. PVT or On-Chip variation (IR drop, local hot spots etc)

can reduce the operating frequency of our ring-based NoC. Currently

we address this issue by adding a nominal guard-band, which results

in a operating speed of 18 GHz.

We have verified the correct operation of the Outfifo and Infifo for

Rclk of 18 GHz and Pclk of 2 GHz, with varying phase randomly

between the Rclk and the Pclk. In addition, we also verified the correct

operation of the FIFOs in the JS where both the clocks were 18 GHz.

The ring which distributes the 18 GHz clock at the ADS and JS

was assumed to be laid out on Metal 8, with wires of width 15µm,

spacing 1µm and height 0.9µm. For a ring of length 1.229mm between

two stations and an inverter of size Wp = 40µm and Wp/Wn = 2, the

oscillation frequency of 18 GHz was obtained. In order to achieve a

ring of length 12.29mm, we have implemented a 11 ·λ/2 ring. The

power consumed by a single λ/2 ring was 2.67mW .

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

 shield

 shield

Metal 10

Metal 8

0.85u

0.6u

0.6u

Link

0.45u

0.45u0.45u

ShieldShield

Fig. 7. Link Cross Section

B. Projection

1) Power and Area: In order to compare our results with a

16×16 mesh topology in [21], we have scaled the area and power

appropriately to account for the additional ADS’s, JS’s and k values.

The area and power comparison is given in Table II. For a flit width

of 36B, we achieve a 35% gain in total power and a 11% gain in

total area. The reason why our approach yields a better area is that

we utilize unidirectional rings, which reduces the number of ports per

intersection of horizontal and vertical links.

2) Latency and Bandwidth: In [32], the authors have presented

detailed area and energy models for on-chip interconnection networks.

Table III compares the network performance reported in [32], with our

approach, for a 16×16 NoC.

We report the average contention-free latency (T0) incurred by a

flit from source s to destination d which includes: 1) the average

hop count (H) from s to d, 2) router traversal latency (tr) and 3) the

average channel traversal latency (Tc), which is the latency induced

by repeaters in long links.

T0(s,d) = H(s,d)∗ tr + Tc(s,d)
BC corresponds to bisection channel count and BB corresponds to

bisection bandwidth (in bits), as defined in [32]. The flit width is taken

to be 144 bits for both the topologies. BB

TNoC
clk

defines the aggregate

bandwidth (in bits/sec) available. Note that for our scheme, Tc is zero



Flit Width Mesh Power (W) Mesh Area(mm2) Ring Power(W) Ring Area(mm2)

Router Link Total Logic Wire Router Link Total Logic Wire

d=9B 0.70 5.81 6.51 3.400 8.976 1.57 2.11 3.68 2.246 10.07

d=18B 1.41 7.74 9.15 6.616 17.952 1.97 3.55 5.52 4.218 19.02

d=36B 2.46 11.97 14.43 14.936 35.904 2.87 6.43 9.30 8.162 36.92

TABLE II

POWER AND AREA COMPARISON WITH MESH TOPOLOGY IN [21]

Topology H tr(cycles) BC BB(bits)
BB

TNoC
clk

(Gbits/sec) Tc(cycles) T0(cycles)

Mesh(16×16) 12.25 2 32 4608 9.216 10.6 35.10

Fast Ring(16×16) 24.25 1/6 16 2304 41.472 0.68 4.72

Mesh(n×n) 3n+1
4

2 2n 288n 576n n×0.6625 2.1625×n+0.5

Fast Ring(n×n) 6n+1
4

1/6 n 144n 2592n 3n+1
72

21n+4
72

TABLE III

COMPARISON OF NETWORK CONFIGURATIONS WITH MESH IN [32]

by design for horizontal rings and 1 NoC clock cycle for vertical rings.

The JS which acts as a router consumes only 1 cycle if data stays in

the same ring, else it takes 3 cycles if it has to switch rings. Since

the horizontal and vertical rings communicate through asynchronous

FIFOs, we incur a 2 cycle penalty for synchronization. The ADS

always consumes only 1 cycle to repeat or drop the data. Hence the

average router latency (tr) is 1.5 cycles since it will encounter the

ADS (with 1 cycle latency) and a JS (with expected penalty of 2

cycles) equally often.

In [32], the clock frequency for the NoC was assumed to be same

(2 GHz) as the PEs. Our source synchronous ring based NoC runs

9× faster than the PEs. We report the result in Table III in terms

of PE clock cycles. For a 16×16 topology, we improve the average

contention free latency by 7.4×. This is achieved because our NoC

clock is 9× faster than the PE clock. For the same reason, available

aggregate bandwidth is 4.5× compared to a regular mesh. Note that

our rings are unidirectional and hence we have half the number of

links between two PEs compared to a bidirectional mesh as reported

in [32].

V. CONCLUSIONS

Traditionally, network-on-chip (NoC) architectures are based on

a mesh interconnection structures. In this paper, we present a ring

based NoC architecture which is based on a source synchronous

data transfer model over a ring. The source synchronous ring is

clocked by a resonant clock which operates significantly faster than

individual processors that are served by the ring. This allows us to

significantly reduce the area devoted to the NoC logic and wiring. We

have validated the design using a 22nm predictive process. Results

indicate that our approach achieves 4.5× better bandwidth, 7.4×
better contention free latency with lower area and power than a 2D

mesh.
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