
UPaRC—Ultra-Fast Power-aware Reconfiguration
Controller

Robin Bonamy, Hung-Manh Pham, Sébastien Pillement, and Daniel Chillet
University of Rennes 1 – CAIRN IRISA/INRIA,

6 rue de Kerampont
F-22300 Lannion

firstname.lastname@irisa.fr

Abstract—Dynamically reconfigurable architectures,
which can offer high performance, are increasingly used
in different domains. High-speed reconfiguration pro-
cess can be carried out by operating at high frequency
but can also augment the power consumption. Thus the
effort on increasing performance by accelerating the re-
configuration should take into account power consump-
tion constraints. In this paper, we present an ultra-
fast power-aware reconfiguration controller (UPaRC)
to boost the reconfiguration throughput up to 1.433
GB/s. UPaRC can not only enhance the system perfor-
mance, but also auto-adapt to various performance and
consumption conditions. This could enlarge the range of
applications and optimize for each selected application
during run-time. An investigation of reconfiguration
bandwidths at different frequencies and with different
bitstream sizes are experimentally quantified and pre-
sented. The power consumption measurements are also
realized to emphasize energy-efficiency of UPaRC over
state-of-the-art reconfiguration controllers—up to 45
times more efficient.

Index Terms—dynamic partial reconfiguration, rapid
reconfiguration speed, power consumption, ICAP

I. Introduction

Reconfigurable architectures like FPGAs are well known
to be able to design flexible, high-performance systems
with high scalability at low development cost. Partial
reconfiguration, the feature to modify on-the-fly a part
of the circuit without interrupting the rest, enhances yet
the above advantages while offering a more energy-efficient
solution thanks to hardware resources sharing [1]. The
auto-adaptation using partial reconfiguration is usually
handled by a reconfiguration controller which loads the
partial bitstream to the reconfiguration port to modify
the functionality of a part on the FPGA. That requires a
controller to drive the reconfiguration process. This partial
modification does not affect the rest of the circuit but
the area to be modified is inactive during reconfiguration.
A long inactive period of a part inside a system may
be prohibited in certain applications especially in high-
performance or fault-tolerant systems. Thus the reconfigu-
ration controller should provide high reconfiguration speed
to accelerate the hardware adaptation.

978-3-9810801-8-6/DATE12/ c©2012 EDAA

One possible solution is to increase the operation fre-
quency of the reconfiguration controller, but power con-
sumption increases along with the frequency which is
contrary to actual efforts on power reduction. Moreover,
power consumption is a key parameter in embedded sys-
tems and should be considered during the design stage.
Disregarding this parameter can lead to problems in pro-
duction such as over-heating, power supply overload or a
significant autonomy reduction. These events may affect
the whole system stability or reduce the device lifespan
[2].

Furthermore, each application has an optimized condi-
tion of operation in terms of performance, power consump-
tion, etc. depending on applications, the environment,
and user constraints, so the need of an energy-efficient
controller, which is able to handle the reconfiguration
process at very high speed and auto-adapt to various
power consumption constraints, is also becoming essential.

In this paper, an ultra-fast power-aware reconfiguration
controller—UPaRC incorporated with a dynamic clock
generator is presented. On the one hand, the reconfigu-
ration controller can operate at ultimate frequency (up to
362.5 MHz) that provides an extreme high reconfiguration
throughput. On the other hand, the dynamic clock gener-
ator varies the operation frequency of the reconfiguration
controller to adapt to various performance and power
consumption constraints.

The paper is organized as follows: next section intro-
duces related works. Section III details the architecture
of UPaRC, Section IV gives the implementations and
the comparison with some other controllers. Section V
emphasizes the advantages of proposed system with the
measurement of power consumption. The last section con-
cludes and gives some future works.

II. Related Works

Hardware sharing by dynamic reconfiguration not only
increases the flexibility of designs but also reduces power
consumption [3], [4]. The reconfiguration takes place by
sending the bitstream to the reconfiguration port. Figure
1 shows the common architecture of a reconfiguration con-
troller driving Internal Configuration Access Port (ICAP)
[5]. ICAP is the hardwired primitive inside the Xilinx

FPGA device by which the bitstream can be dynamically
loaded into the configuration memory. Reconfiguration
speed deadlock does not come from the ICAP side but in
the bitstream loading from the reconfiguration controller
to ICAP which is usually limited by the access to the
bitstream memory. So if the reconfiguration controller is
capable of loading bitstream at very high-speed, it can
provide high reconfiguration bandwidth.

!"#$%&'()"#*

+,-"'.*

/!01*

1'2-2)3,*

4,5"#$%&'()"#*

!"#6'"77,'*

/#89:;<=*

>&689:;<=*

?&@.*

A'B4C*

!D*

!EF*

?26@6',(-*

+,-"'.*

Fig. 1. Partial Reconfiguration with ICAP

Xilinx provides a reconfiguration controller xps hwicap
[6], which is processor-dependent (driven by a processor—
either MicroBlaze [7] or PowerPC [8]). This reconfigura-
tion controller only provides low reconfiguration through-
put. The most important advantage of xps hwicap is the
high capacity for bitstream storage using external non-
volatile memories like Compact Flash. To overcome the
low reconfiguration speed, several controllers based on
DMA access to the bitstream storage memory are pro-
posed in the literature. The BRAM HWICAP [9] applies
DMA access to BRAM which can obtain the maximum
theoretical throughput (400 MB/s) at 100 MHz. Neverthe-
less, this controller uses the same frequency as the other
components in the system. So the frequency is limited to
120 MHz. Another disadvantage of BRAM HWICAP is
the low storage capacity due to limited BRAM amount.
Also in [9], the authors proposed another controller—
MST ICAP which provides high storage capacity using
DDR2 SDRAM memory. Nevertheless, the lower access
speed of DDR2 SDRAM compared to BRAM leads to
lower reconfiguration speed than BRAM HWICAP.

FaRM [10] includes bitstream compression which allows
to use less BRAM amount than the bitstream size. How-
ever, FaRM can operate up to 200 MHz which induces a
maximum throughput of 800 MB/s. Additionally, FaRM
is fixed to a certain frequency with a variable compression
ratios depending on the regularity of the bitstreams, so the
maximum throughput could vary. Moreover, compression
algorithm—Run-Length Encoder (RLE) applied in FaRM
does not provide an important gain for storage savings.

FlashCAP(i) [11] applies X-MatchPRO [12] which pro-
vides a more efficient compression ratio than RLE (74.2%
against 63%). But the maximum frequency is limited
to 120 MHz which can provide only a reconfiguration
throughput of 385 MB/s.

We propose an ultra-fast power-aware reconfiguration
controller which can achieve 1433 MB/s with operating
frequency of ICAP at 362.5 MHz. This reconfiguration
controller is processor-independent and requires only a

!"#$%&'(')*+(%

#,,-%

./% 012"%

&3"45627% "89):%

%

;'7'<2-%

%

"89%

"89)#%

=-2>+27?3%','@('A57B%

ACD7<E%F'7,GD,(HE%

@5G2-%?57I+C@A57J%

"89)K% "89)L%

L1#;%

&2?5C@-2II5-%

.M(2-7'4%

;2C5-3%

"89)N%

O('-(%

=D7DIH%
!"#$%&

LD(I(-2'C%

Fig. 2. Detailed structure of ultra-fast power-aware reconfiguration
controller

“Start” signal which can be easily driven by any kind of
module. This controller is customized to reach a signifi-
cantly higher speed than the state-of-the-art reconfigura-
tion speed and offers dynamic frequency scaling to satisfy
different power constraints.

III. Ultra-Fast Power-Aware Reconfiguration
Controller—UPaRC

Figure 2 details the internal structure of the pro-
posed UPaRC consisting of an ultra-fast reconfigura-
tion controller—UReC, a dynamic clock generator—
DyCloGen, and a decompressor. The Manager, which
connects to an external memory, drives UPaRC for rapid
reconfiguration process.

A. Manager

In the system, the manager carries out three tasks: bit-
stream preloading, reconfiguration control and frequency
adaptation—driving DyCloGen to vary the frequency to
adapt to various constraints. We use a MicroBlaze to
perform these three tasks, but they can be handled by
three different smaller hardware modules to save energy.

1) Bitstream Preloading: The Manager is in charge of
reading the bitstream file in the external memory, parsing
the preamble of the partial bitstream and then loading
bitstream size followed by the configuration data into the
BRAM. Figure 3 shows the data loaded by the Manager.
The first 32-bit word contains the bitstream size and the
operation mode determining the operation mode of the
reconfiguration controller (with or without compression).
Configuration data used to reconfigure the related module
follow this word.

!"#$#%&'()*"+&) ,-.&)

/0) 0)

,-.&)

12)3"#4-5#)6-(7%&$$"-8)

02)3"#4)6-(7%&$$"-8)9-8:;5%'<-8).'#')

Fig. 3. Organization of BRAM contents

Scheduling may be able to predict the tasks to be
executed on a reconfigurable module [13], thus the configu-
ration data preloading can be done during idle time which

does not affect the system computational performance
and that could significantly improve the reconfiguration
bandwidth.

Partial bitstream data contain a preamble which de-
termines the attributes such as file name, FPGA device
ID, bitstream size, etc. After this preamble, the bitstream
contains data which configures the related module.

2) Reconfiguration Control: The manager controls the
reconfiguration process by sending the “Start” signal to
launch the reconfiguration and receiving the “Finish” sig-
nal when reconfiguration ends. Contrary to xps hwicap in
which the MicroBlaze is busy during the reconfiguration
process, the MicroBlaze only launches UPaRC and is free
during UPaRC performs the reconfiguration. And because
the MicroBlaze consumes large amount of resources, the
energy consumption during reconfiguration using UPaRC
can be much less than using xps hwicap. Moreover, the re-
configuration control can be handled by a small hardware
module which can still save more energy.

3) Frequency Adaptation: The Manager analyzes dif-
ferent constraints (performance, power consumption, etc.)
during runtime and chooses the appropriate frequency to
meet these constraints by driving DyCloGen (see Section
III-D).

B. Ultra-Fast Reconfiguration Controller—UReC

The reconfiguration controller includes BRAM mem-
ory to store bitstreams which are used for reconfigura-
tion. The dual-port BRAM memory is used. One port
is interfaced with the bitstream manager to preload the
bitstream whereas the other port is connected to UReC.
The bitstream preloading (driven by the Bitstream Man-
ager) does not affect the operation of the reconfigurable
module, so the reconfiguration time of a module is the
time to download bitstream data from BRAM to ICAP.
The reconfiguration process includes DMA access to the
second BRAM port and burst data transfer from BRAM
to ICAP. That allows to reach the maximum reconfigu-
ration throughput. This method is also applied by some
other state-of-the-art reconfiguration controller [9]–[11].
However, these controllers re-use DMA module provided
by Xilinx which is very large and does not permit to run
at a higher frequency than 200 MHz. We have totally
redesigned the BRAM interface so that configuration data
can be transferred at each clock cycle in burst mode.
Moreover, UReC performs only BRAM reading allowing
to reduce maximum possible hardware resources. Doing
so the UReC occupies very small area that can allow to
accelerate the data transmission from BRAM to ICAP.
This custom design allows to accelerate ICAP to very high
frequency (up to 362.5 MHz), higher than the maximum
BRAM operating frequency—300 MHz [14]. That is why
UReC frequency is much higher than the fastest state-of-
the-art reconfiguration controller—FaRM (200 MHz) [10].

Figure 4 explains the operation of UReC which controls
the BRAM and ICAP to perform the reconfiguration.

!"#$%&'()"#*+"(,-#%*

./('/* 0-#-12*

!+345*

67*

8",9*.9:9;)"#*<*

.-=9*,9/9'>-#()"#*

Fig. 4. Operation of UReC driving BRAM and ICAP

When UReC receives the “Start” signal, it immediately
enables BRAM access and reads the first 32-bit word to
decide the operation mode (without or with compression)
and determine the size of the bitstream. Without compres-
sion, the configuration data can be loaded directly from
the BRAM to ICAP, whereas in compression mode, the
data should be fetched from BRAM to the decompressor
before being sent to ICAP. The configuration data to
ICAP is loaded using burst transfer without interrupt
which permits to obtain the maximum reconfiguration
bandwidth. A “Finish” signal indicates the end of the
reconfiguration process and the EN signal deactivates the
BRAM and ICAP access to save power consumption.

C. Lossless Bitstream Compression

Because bitstreams contain configuration details, if com-
pression is required, bitstreams must be compressed with-
out loss. There exists a lot of lossless data compression
RLE, LZ77, LZ78, Huffman, X-MatchPRO, Zip, 7-zip, etc.
[15]. We compare in Table I different lossless compression
algorithms, tested with different partial bitstream sizes
and complexities. Because empty zones in the FPGA
device can involve repetitive sequences in the configuration
bitstreams, so in order not to exaggerate the compression
effectiveness, we perform the compression only on partial
bitstreams which have high resource utilization ratio to
minimize number of blank frames in the reconfigurable
partition.

TABLE I
Comparisons of Different Lossless Compression Algorithms

Algorithm
Compression

Ratio [%]

RLE 63
LZ77 71.4
Huffman 72.3
X-MatchPRO 74.2
LZ78 75.6
Zip 81.2
7-zip 81.9

At the moment X-MatchPRO, which is an open-source
algorithm providing competitive compression effectiveness
with Zip and 7-zip, is implemented in our system. The
compression ratio recorded in our system is 74.2% in
average which signifies that generally the compressed bit-
stream is about four times smaller than the original one.

The system operates in two modes depending on the
partial bitstream size of the module to be reconfigured.

• Preloading without compression: If the original bit-
stream size is smaller than the BRAM size, the

Bitstream Manager is in charge of pre-loading the
bitstream into the BRAM contents.

• Preloading with compression: In case that the orig-
inal bitstream size is greater than the BRAM size,
bitstream compression is required. By default the X-
MatchPRO compression algorithm is implemented in
our system. The over-sized bitstream is compressed
offline using PC-running software and then put in
the BRAM memory afterwards. The decompression
part is performed by a hardware decompressor (Fig.
2). This decompressor is dynamically reconfigurable
that allows to change compression/decompression al-
gorithm by partial reconfiguration depending on the
decompression speed, provided bandwidth, etc. Be-
cause each decompressor has its maximum frequency,
after being reconfigured, its frequency (CLK 3 in
Fig. 2) will be dynamically modified by DyClogen.

D. Dynamic Clock Generator—DyCloGen

DyCloGen is a clock generator able to dynamically
modify the frequency of its output clocks to meet the
demand. The clock modification process is carried out
by controlling the multiplication/division (M/D) factors
defined in equation:

Fout = Fin × M
D

Unlike partial reconfiguration where the reconfigured mod-
ule is changed without affecting the others, the clock
generator modifies the clock frequency while it is still
operational. So DyCloGen controls Dynamic Reconfigu-
ration Port (DRP) [5] of the specific digital clock manager
(DCM) block found in Virtex-5 devices [16]. Doing so, the
M and D values can be dynamically programmed without
using partial reconfiguration via ICAP.

DyCloGen provides three different clock signals (CLK 1,
CLK 2, and CLK 3) which are modifiable at run-time.
CLK 1 is the clock source for preloading the BRAM con-
tents, CLK 2 is the reconfiguration clock whereas CLK 3
determines the decompression frequency. Varying these
clocks allows to change the power consumption to adapt
to various conditions. Operating at high frequency can
offer high-performance computations but can increase the
power consumption, thus an appropriate frequency should
be selected to meet both performance and consumption
requirements.

IV. Implementations and Comparison

We have implemented the system of Fig. 2 with
two Xilinx FPGA platforms: ML506 [17] with Virtex-5
XC5VSX50T and ML605 [18] with Virtex-6 XC6VLX240T
using Xilinx Design Suite v13.2. The resources required for
blocks are shown in Table II.

The resources required for proposed modules (DyClo-
Gen and UReC) are relatively small. The decompressor
consumes a large amount of resources because it offers a

TABLE II
FPGA resources needed by basic blocks of UPaRC

Module
Virtex-5
[slices]

Virtex-6
[slices]

DyCloGen 24 18
UReC 26 26
Decompressor 1035 900

Fig. 5. Reconfiguration Bandwidths vs. Frequencies vs. Bitstream
Sizes (measured with UPaRCi in preloading without compression
mode using Virtex-5)

really fast decompression speed, inducing a high decom-
pression bandwidth (more than 1 GB/s).

Table III shows the comparisons of performance (re-
configuration bandwidth, large bitstream handling ca-
pacity and maximum frequency) between different re-
configuration controllers. There are two instances of
our reconfiguration controller corresponding to two
modes: UPaRCi—preloading without compression and
UPaRCii—preloading with compression. With the ML506
platform, UPaRCi can reach 362.5 MHz (with Fin =
100 MHz, M = 29 and D = 8 for DyCloGen config-
uration), offering 1433 MB/s reconfiguration bandwidth.
UPaRC is tested on several Virtex-5 XC5VSX50T FPGAs
and 362.5 MHz is a successful reconfiguration frequency in
our working conditions (default core voltage 1 V, ambient
temperature 20◦C). Tests under the same conditions on a
few Virtex-6 XC6VLX240T show that 362.5 MHz is not
reliable, the maximum frequency seems to be few MHz
lower. Experiments are underway on a larger number of
samples to determine if the limitation is specific to the V6
family.

Thanks to large storing capacity of external non-volatile
memory like the Compact Flash, xps hwicap [6] can
handle large bitstreams without the need of bitstream
compression. However, it provides a very low reconfigu-
ration throughput. With our experiments, the throughput
recorded of this controller is about 180 KB/s. In [9], the
author measures xps hwicap performance using processor
cache memory and it reaches 14.5 MB/s reconfiguration
bandwidth.

Since BRAM HWICAP [9] is implemented using Virtex-
4 FPGA, it is not easy to compare the hardware overhead.

This controller is limited in bitstream sizes and limited
in frequency (approximate theoretical throughput at this
frequency). Without compression, our controller offers
ultimate reconfiguration throughput up to 1.433 GB/s,
which is 1.8 times higher than the fastest controller found
in the literature (FaRM [10]—800 MB/s). MST ICAP [9]
which can handle large bitstreams is limited in frequency
hence offers lower reconfiguration throughput. FlashCAPi

[11], which is comparable to our UPaRCii thanks to the
same compression method, is also limited in frequency.
Figure 5 shows the reconfiguration bandwidth measured
with different sizes of bitstreams and at different frequen-
cies. Because, the time overhead due to the control and
the measurement using MicroBlaze is constant, the larger
bitstream is, the less the control affects the reconfigura-
tion time and the real bandwidth is more approximate
to the theoretical bandwidth. As shown on Fig. 5, at
362.5 MHz and with the bitstream size of 6.5 KB, the
effective bandwidth is 1.14 GB/s which is 78.8% of the
theoretical bandwidth at this frequency (1.45 GB/s). With
a bitstream size of 247 KB, the effective bandwidth is
1.44 GB/s, which is more approximate the theoretical
bandwidth (99%).

TABLE III
Comparisons of Different Reconfiguration Controllers

Reconfiguration
Controller

Bandwidth
[MB/s]

Large
Bitstream

Max Freq.
[MHz]

xps hwicap [6] 14.5 +++ 120
MST ICAP [9] 235 +++ 120
FlashCAPi [11] 358 ++ 120
BRAM HWICAP [9] 371 - 120
FaRM [10] 800 ++ 200
UPaRCii 1008 ++ 255
UPaRCi 1433 - 362.5

The size of BRAM memory for bitstream preloading
is 256 KBytes. With compression, this memory amount
allows for storing the maximum bitstream of 992 KBytes,
which is more than 40% of the full bitstream of the
selected Virtex-5 device (2444 KBytes). That signifies that
bitstream preloading with compression can handle the
largest module which occupies half of the device resources.
In preloading with compression mode, the decompression
block has a throughput of 2 words/cycle (64-bit data
path), which operates at maximum 126 MHz and supplies
a reconfiguration throughput of 1.008 GB/s. To note that
the frequency of the decompression block is different from
the frequency of the reconfiguration block. In preloading
with compression mode, it is not necessary that UPaRC
operates at maximum frequency. The highest frequency at
compression mode is 255 MHz.

However, reconfiguration throughput and bitstream size
limitation are not only the major concerns. Power con-
sumption should be considered, especially in embedded
designs with a power budget, to ensure proper operation
of the system.

V. Power Consumption Consideration

Classically, FPGA power consumption can be separated
into two main contributions: static and dynamic power.
The first one is due to transistor leakage and dependent
on the supply voltage and the size of the device. The
second, which is caused by transistor switching, is highly
dependent on the supply voltage, the signals activities,
the application complexity and the clock frequency. The
power consumption related to the reconfiguration is mostly
composed of dynamic power. We measure the power con-
sumption on Xilinx ML605 platform which has a Virtex-6
FPGA. ML605 includes a shunt resistor to monitor current
through FPGA core, so we can measure Virtex-6 power
consumption which is not possible using ML506. However,
the measured values may change between Virtex-5 and
Virtex-6 due to the difference of the process technologies
(65 and 40 nm). Figure 6 presents the experimental setup
for power measurements. We use the Virtex’s core shunt
with a high-precision amplifier to handle current and
power consumption measurements which are logged with
a digital oscilloscope.

1VVCCINT

Shunt

5mΩ

Virtex-6
Vcore

GND

+

-
×100

ML605

Fig. 6. Current measurement schematics on ML605 Board using a
high-precision amplifier and an oscilloscope.

Net capacitance is a parameter of the dynamic power
consumption, so to reduce dynamic power consumption
reconfiguration controller must have short interconnec-
tions. Thanks to the lightweight of our reconfiguration con-
troller, the power and energy consumptions are very low
compared to state-of-the-art controllers. Since xps hwicap
proposed by Xilinx is the only available reconfiguration
controller to public, we compare the energy consumption
of UPaRC with xps hwicap in the same conditions using
a MicroBlaze running at 100 MHz with a 216.5 KB
bitstream preloaded in 256 KB of 32-bit BRAM data bus.
Without processor optimizations, we achieve a reconfigu-
ration throughput of 1.5 MB/s of configuration data and
the energy efficiency is 30 µJ/KB of bitstream. In the
same conditions, using a Microblaze as manager, UPaRC
(without compression) consumes only 0.66 µJ/KB which
is 45 times more efficient than xps hwicap.

Moreover, UPaRC can operate at a different clock
frequency than the manager. This feature enables us to
respect performance constraints with different power con-
sumption characteristics during runtime. Figure 7 shows
the power consumption during the reconfiguration of an
uncompressed 216.5 KB bitstream file for different clock
frequencies, from 50 MHz to 300 MHz which is the maxi-

mum guaranteed frequency for BRAMs. On these curves,
the power peak before zero timestamp is caused by the
activity of the manager to control UPaRC of which the
duration and the power consumption are the same for
each frequency since the frequency of the manager is not
modified (MicroBlaze at 100 MHz). Then the reconfig-
uration procedure begins, all the configuration data are
copied from BRAM to ICAP. This activity rises the power
consumption immediately after the “Start” signal. Once
the reconfiguration is completed, the power consumption
decreases to the idle power consumption.

3.8

3.9

4

4.1

4.2

4.3

-0.5 0 0.5 1 1.5

P
ow

er
(W

)

Time(ms)

100MHz

200MHz

300MHz

50MHz
Reconfiguration

control

Fig. 7. FPGA core power consumption during dynamic partial
reconfiguration using UPaRC with different frequencies on a Virtex-
6. Only a MicroBlaze as the manager and UPaRC are implemented

The power consumption at 50 MHz is 183 mW, corre-
sponding to a reconfiguration time of 1.1 ms. At 100 MHz,
the power consumption is 259 mW during 550 µs. We
notice that when the frequency is doubled, the reconfig-
uration time is halved, but the power is not doubled.
This is caused by the manager which is implemented
with an active wait for “Finish” signal and thus requires
energy. At 200 MHz, the power consumption is 394 mW
during 270 µs. Finally, reconfiguration at 300 MHz requires
453 mW during 180 µs.

The reconfiguration manager is right now not optimized
for power consumption. The manager waits for the end
of reconfiguration actively. This wastes some energy, that
is why the energy decreases with the frequency, but in
the case of a smaller manager or without actively wait-
ing for reconfiguration to be done, the reconfiguration
energy would be the same for each frequencies. The power
consumption increases proportionally with the increase of
reconfiguration frequency, so the power-aware solution is
to use the lowest possible frequency which meets timing
constraints for the current application. Frequency is dy-
namically adjusted, using DyCloGen, to meet application
performance requirements and lower the power required
when reconfiguring.

VI. Conclusions and Future Work

An ultra-fast power-aware reconfiguration controller—
UPaRC, which enhances the adaptivity to meet various

demands during run-time, opens a higher degree of free-
dom in system design and behavior modification during
run-time. This controller also offers ultimate reconfigura-
tion bandwidth which can also meet the needs of high-
performance applications. Moreover, the reconfiguration
controller supports performance and power consumption
on the fly adjustments. This feature enables UPaRC to
be managed by a power optimization algorithm to reduce
overall FPGA consumption. The energy efficiency of UP-
aRC is validated through the consumption measurement
campaign.

We aim to further enhance the adaptivity by choosing
different bitstream compression techniques at run-time
using dynamic partial reconfiguration. Depending on the
requirements of compression ratios, hardware resources,
different frequency limits in compression modes, a wider
range of application can be supported by UPaRC. We will
focus our future work on the global power optimization of
an application using high speed and energy efficient partial
dynamic reconfiguration.

References

[1] J. Becker, M. Hubner, G. Hettich, R. Constapel, J. Eisenmann,
and J. Luka, “Dynamic and Partial FPGA Exploitation,” Pro-
ceedings of the IEEE, vol. 95, no. 2, pp. 438–452, 2007.

[2] R. Viswanath, V. Wakharkar, A. Watwe, V. Lebonheur et al.,
“Thermal performance challenges from silicon to systems,” Intel
Technology Journal, 2000.

[3] L. Sterpone, L. Carro, D. Matos, S. Wong, and F. Fakhar,
“A New Reconfigurable Clock-Gating Technique for Low Power
SRAM-based FPGAs,” in Design, Automation Test in Europe,
Grenoble, 2011, pp. 1–6.

[4] J. Becker, M. Huebner, and M. Ullmann,“Power Estimation and
Power Measurement of Xilinx Virtex FPGAs: Trade-Offs and
Limitations,” in Integrated Circuits and Systems Design, New
York, 2003.

[5] Xilinx, Inc, “Virtex-5 FPGA Config. User Guide UG191,” 2009.
[6] ——, “LogiCORE IP XPS HWICAP DS586,” 2010.
[7] ——, “MicroBlaze Processor Reference Guide UG081,” 2011.
[8] ——, PowerPC 405 Processor Block Reference Guide, 2004.
[9] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-Time Partial

Reconfiguration Speed Investigation and Architectural Design
Space Exploration,” in Field Programmable Logic and Applica-
tions, Prague, 2009, pp. 498–502.

[10] F. Duhem, F. Muller, and P. Lorenzini, “FaRM: Fast Reconfig-
uration Manager for Reducing Reconfiguration Time Overhead
on FPGA,” Reconfigurable Computing: Architectures, Tools and
Applications, pp. 253–260, 2011.

[11] A. Nabina and J. Nuñez-Yañez, “Dynamic Reconfiguration Op-
timisation with Streaming Data Decompression,” in Interna-
tional Conference on Field Programmable Logic and Applica-
tions, Milano, 2010, pp. 602–607.

[12] J. L. N. ez and S. Jones, “Gbits/s Lossless Data Compression
Hardware,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 11, pp. 499–510, 2003.

[13] I. Belaid, F. Muller, and M. Benjemaa, “New Three-Level
Resource Management Enhancing Quality of Offline Hardware
Task Placement on FPGA,” International Journal of Reconfig-
urable Computing, pp. 65–67, 2010.

[14] Xilinx, Inc, “LogiCORE IP Block Memory Generator v4.3.”
[15] M. Nelson and J. Gailly, The data compression book, M. Books,

Ed., 1996, vol. 619.
[16] Xilinx, Inc, Virtex-5 FPGA User-Guide, January 2009.
[17] ——, “ML505/ML506/ML507 Eval. Platform UG347,” 2008.
[18] ——, “ML605 Hardware User Guide UG534,” 2011.

