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Abstract—It has been one of the most fundamental challenges
in architecture design to achieve high performance with low
power while maintaining flexibility. Parallel architectures such as
coarse-grained reconfigurable architecture, where multiple PEs
are tightly coupled with each other, can be a viable solution
to the problem. However, the PEs are typically controlled by
a centralized control unit, which makes it hard to parallelize
programs requiring different control of each PE. To overcome
this limitation, it is essential to convert control flows into data
flows by adopting the predicated execution technique, but it
may incur additional power consumption. This paper reveals
power issues in the predicated execution and proposes a novel
technique to mitigate power overhead of predicated execution.
Contrary to the conventional approach, the proposed mechanism
can decide whether to suppress instruction execution or not
without decoding the instructions and does not require additional
instruction bits, thereby resulting in energy savings. Experimental
results show that energy consumed by the reconfigurable array
and its configuration memory is reduced by up to 23.9%.

Index Terms—CGRA; reconfigurable architecture; predica-
tion; predicated execution; low power design;

I. INTRODUCTION

Achieving high performance with low power, while main-
taining flexibility, has been considered as one of the most fun-
damental challenges in architecture design. High performance
is the number one goal at all time, and low power becomes
essential to make the system feasible. Especially, as high-end
mobile devices like smartphones become popular, low power
design is more emphasized to prolong battery lifetime.

Coarse-grained reconfigurable architecture (CGRA), which
has a tightly coupled cluster of processing elements (PEs), can
be a viable solution to meet both requirements at the same
time. It has simple architecture design and allows efficient
parallel processing through structuring PEs tightly coupled
with each other and controlled by a centralized unit. Although
these characteristics make CGRA hard to exploit task-level
parallelism (TLP), they lead to better performance-to-power
ratio even compared to GPU when exploiting ILP/DLP. This
is because GPU architecture needs complicated mechanism for
collaboration of active PEs. Especially for embedded systems,
where type of parallelism is simple and power consumption is
important, CGRA can be an effective solution.

However, in spite of the relative effectiveness, CGRA still
consumes considerable power compared to other solutions for
embedded systems like ASIC. Though it has a great merit in
flexibility and time-to-market compared to ASIC, high power
consumption makes it difficult to be integrated into embedded
systems. Thus, power reduction is one of the most important
challenges that CGRA is facing.

There have been several attempts to reduce power in CGRA
[1]–[3]. To the best of our knowledge, however, no one has
tried to reduce power related to predicated execution. It has
been taken for granted to adopt predicated execution technique
into CGRA regardless of how much power is increased since
CGRA has a great limitation in handling control flow and
predication is the only solution known so far. Thus, in this
paper, we reveal power issues in applying the predicated
execution and propose a novel technique to reduce power
consumption. Following are the main contributions of the
paper.

• We reveal the power issues of predicated execution not
only in the domain of CGRA, but in all domains related to
predicated execution. Most previous researches on pred-
icated execution have concentrated only on performance
[4], compiler [5], [6], and/or architecture [7], [8], and no
one has considered power.

• We propose a novel predication mechanism to mitigate
power overhead of predicated execution. Conventional
full predication technique requires additional instruction
bits for condition field and has inefficient predication
mechanism always requiring decoding of instruction,
which results in significant power overhead. Our approach
does not incur such wastes and thus can save power in
the reconfigurable array as well as in the memory that
stores the configuration code.

• We implement both the conventional full predication and
the proposed one into CGRA at the register transfer
level (RTL) and measure the power at the gate-level after
synthesis.

II. BACKGROUND

A. Predicated execution technique
Predicated execution is a technique to convert control flows

to data flows. Conventional predicated execution techniques
can be classified into two types: full predication and partial
predication [4]. The goal of partial predication is to manage
control flows with negligible modifications to the original
design. On the other hand, full predication can achieve more
speedup at the cost of additional hardware. Partial predication
is based on speculation, so unnecessary memory operation and
register pressure can degrade the performance significantly
compared to full predication. Thus it is appropriate to use
partial predication only for short if-clauses. Full predication
can overcome these problems by suppression mechanism,
which is the essence of full predication. To support full
predication, every instruction has a condition as an additional
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operand, which defines the predicate of the instruction. That
is, the instruction is executed if the predicate is true (i.e., the
condition is met); otherwise, the instruction is suppressed.
Full predication is free from the overhead of speculation
and heavy register pressure, resulting in better performance
compared to partial predication. Therefore, it may be inevitable
to choose full predication for high performance. The downside
of it is that the number of bits for the instruction encoding
should be increased to hold the condition within the instruction
and the instruction set architecture (ISA) should be modified
significantly to implement the suppression mechanism.

B. Role of predicated execution on CGRA
CGRA has a critical limitation in exploiting parallelism in

the presence of control flow due to passive characteristic of
PEs. Since each PE cannot select its own instruction flow, but
the centralized unit controls all the PEs, only one control flow
can be handled at a time. The same problem exists in SIMD
machines due to the same reason, and it is actually a more
vital problem to SIMD machines since instructions are always
broadcast to all PEs. SIMD machines cannot exploit any DLP
if there is a control flow. Hence, predication is usually adopted
to CGRAs and SIMD machines to tackle the bottleneck due
to control flow [5], [8], [9]. It allows each PE to have its own
execution even if the common instructions are supplied so that
it can maximize the parallelism regardless of the existence of
control flow.

III. PROPOSED PREDICATED EXECUTION TECHNIQUE

A. Motivation
Conventional full predication wastes power in two aspects.

One is that the increased number of bits for instruction
encoding incurs more power consumption in configuration
memory even when the processor does not execute control
flow. The other is that a PE fetches and executes instructions
on unnecessary paths, which are nullified by the predication
mechanism. The PE should decode even the instructions on
an unnecessary path since the condition can be checked only
after decoding. To avoid such wastes, we propose a novel
mechanism based on state instead of condition. In the rest of
the paper, we call conventional full predication as condition-
based full predication (CFP) and our proposed one as state-
based full predication (SFP) according to the criterion for
determining predication.

B. Mechanism
The proposed SFP technique is based on two states: awake

and sleep. As mentioned above, the states play the role of
predicates. That is, a PE executes instructions normally in the
awake state and suppresses the execution in the sleep state. By
controlling the state of each PE using a special instruction, we
can execute either if-part or else-part selectively.

To change the state of a PE from the awake state to the
sleep state, we use a sleep instruction, which has a structure
similar to a branch instruction. It holds a condition and the
offset as operands. The offset is the difference between the
current address and the target address. The sleep instruction is
executed when the PE is awake and the condition is met. It is
different from a branch instruction in that a sleep instruction
makes the PE sleep during the period corresponding to the
address difference (sleep period) instead of branching to the
target address. This mechanism can be implemented easily by

Fig. 1. (a) An example of loop code with nested if-else structure,
(b) Assembly-level code of the loop body for a scalar processor, and
(c) Assembly-level code of the loop body using the proposed technique.

using a counter. When going into the sleep state, the counter
initializes its count value with the sleep period specified in
the instruction and then counts down every cycle until the
value becomes zero. Right after the value becomes zero, the
PE wakes up automatically.

Fig. 1 and Fig. 2 take an example to show how this mecha-
nism works. Fig. 1(a) is a simple example of a loop with nested
if-structure written in the C language. Fig. 1(b) shows the
assembly code obtained by compiling the C code using branch
operations. The cmp instruction compares two operands and
modifies the flag values to be used for the following predicated
instruction execution. The b instruction is a branch instruction.
The eq and neq represent “equal” and “not equal” condition
code, and the uc represents “unconditional” branch. For
example, the third instruction ‘b neq pc+11’ means that if
the “not equal” flag (evaluated in the second instruction ‘cmp
R0 #1’) is set, then the processor jumps to the target address
of current pc+11 (store c x[i]). If the condition is not
satisfied, the very next instruction (load R1 cond1[i]) is
executed.

However, since branch operation is not acceptable for
CGRA, we convert it to Fig. 1(c) by applying our technique.
Each branch instruction is replaced by a sleep instruction,
which specifies the sleep period in the number of cycles to
be in the sleep mode. Actually, the sleep period is calculated
statically by the compiler1 as (target offset − 2). This is
because the actual sleep period is (target offset − 1) and the
sleep state lasts until the counter value reaches zero, not one.
In the case of ‘b neq pc+11’, PE should sleep for 10 cycles
since target offset is 11 so 10-1 is inserted to sleep instruction
as an operand.

Fig. 2 shows the detailed operations of two PEs executing
the same code under different conditions when the proposed
technique is applied. Suppose that the value of cond0 is 1
and cond1 is 0 for the mth PE. Under these conditions, the
sleep instruction at cycle 2 is suppressed. However, the sleep
instruction at cycle 5 is executed, and the PE changes its state
to the sleep state and initializes the counter value to 3 at the
next cycle. The PE remains in the sleep state and the counter is
decremented every cycle until cycle 9. At cycle 9, the counter

1The proposed technique requires only two simple operations added to
conventional compilers. One is the replacement of branch instructions by sleep
instructions and the other is the calculation of sleep period from offset to
the target address. They are simple and cause negligible modification to the
compilers, which makes the SFP technique very compiler-friendly.



Fig. 2. The execution sequence of different processing elements when adopting the proposed technique.

value becomes 0, and so the PE wakes itself up at the next
cycle to resume normal execution. Another example is shown
on the next column of Fig. 2 for the nth PE running the same
code with condition values of cond0 = 0 and cond1 = 1,
which can be followed easily.

C. Capability for low power design

The SFP technique has several good characteristics for low
power design. As shown in the examples, the SFP executes
control flows as if all instructions were predicated. Different
from CFP, however, SFP can achieve such effect without
adding any additional field to the instruction word, thereby
leading to energy savings in the configuration memory.

Another low power feature comes from the predication
mechanism. A PE knows a priori whether the next instruction
will be executed or not before decoding the instruction,
since the predicate does not depend on the condition in the
instruction but depends on the state provided by the counter.
Thus, when the PE is in the sleep state, it does not need to
do anything but just count down until it wakes up. It means
that we can block any changes of values in all registers and all
combinational logics except some small modules related to the
counter; we can block modifying the content of the instruction
register as well as decoding the instruction. In particular, if
the circuit for supporting this feature is implemented through
clock gating, then we can reduce dynamic power dramatically.
It is impossible in CFP since the PE can recognize the
predicate only after decoding the instruction and checking the
condition.

D. Hybrid approach

The proposed SFP technique has some performance over-
head due to the insertion of sleep instruction to control if-
structure, which in turn will affect energy consumption. If the
if-clause is long, the overhead can be compensated by large
power savings on the unnecessary path. However, it may not be
the case when the if-clause is short. To mitigate this overhead,
we propose to hybridize SFP with partial predication (PP). As
explained in Section II-A, PP provides good performance for
short if-clause, and thus the hybrid approach handling short if-
clauses using PP and long ones using SFP can provide a robust

Fig. 3. Overall FloRA architecture.

way to reduce power without incurring large performance
degradation.

IV. HARDWARE IMPLEMENTATION

A. Baseline architecture

We have implemented our proposed techniques on a coarse-
grained reconfigurable array architecture called FloRA [10],
[11]. The overall architecture is shown in Fig. 3. It has an 8x8
PE array with configuration memory and data memory. Each
PE is comprised of an integer ALU, a shifter, and a local
register file, and can be dynamically reconfigured every cycle
if needed. The CGRA has been implemented on a chip and
its functionality and performance have been verified [10].

FloRA is an attractive architecture for exploiting both ILP
and DLP. The array processing was originally intended to
exploit ILP, but the loop pipelining technique [11] allows
the CGRA to exploit DLP also. The technique reduces con-
figuration memory size and power dramatically in a way
similar to SIMD and enables efficient resource sharing at
the same time. Although FloRA has little support for control
flows, it has abundant resources for ILP and DLP. This makes



TABLE I
SYNTHESIS RESULTS OF RECONFIGURABLE ARRAY

the architecture very appropriate for implementing predicated
execution.

B. Implementation details

To compare the proposed SFP approach with CFP on
power reduction, we have implemented both approaches using
Verilog at the RTL. For CFP, the instruction word length
has been increased from 20 bits to 23 bits for holding three
bits of condition and the suppression mechanism has been
implemented in such way that the decoder outputs disable
writing into the registers and latches. For SFP, the instruction
word length remains to be 20 bits, but an 8-bit sleep counter
and an 1-bit register indicating current state of a PE (awake or
sleep)2 are added. Since each PE already has a 3-bit counter to
support multi-cycle operations like multiplication, we have just
increased the bit width of the counter to use it as the sleep
counter during the sleep mode. For low power design, the
state value is used for the clock gating signal to all registers
except the counter register that stores the sleep period. For
hybrid approach, we implement conditional move instruction
to support partial predication [4].

We have adopted two basic low power techniques for the
base architecture. First, we have used clock gating all over the
architecture. Secondly, to reduce the switching in the FUs, we
have added latches to their inputs such that the input values
do not change when the FUs are not used.

From the RTL descriptions, gate-level circuits for three
approaches (CFP, SFP, and SFP+PP) have been synthesized
using Synopsys Design Compiler. We have used TSMC 45
nm technology library and set the target clock frequency to
500MHz. We have verified its functional correctness through
gate-level simulation using Mentor Graphics ModelSim.

Table I shows the area overhead. Compared to CFP, the
proposed SFP and SFP+PP require only about 1% more
hardware. The area overhead of SFP comes mainly from the
extension of the counters from three bits to eight bits, but
it seems to be compensated by the reduction of instruction
fetch unit (from 23 bits to 20 bits), resulting in ignorable area
overhead.

V. EXPERIMENTAL RESULT

A. Experimental setup

To evaluate the effectiveness of the proposed SFP, we have
measured the power consumption of the reconfigurable array
and configuration memory for two techniques, CFP and SFP.
CFP is considered as a baseline and we will show how much
the proposed SFP reduces power consumption.

We have measured the power consumption in the reconfig-
urable array at the gate-level using Synopsys Design Com-
piler and Mentor Graphics ModelSim. For the configurable
memory, we have used CACTI 6.5 [12] for SRAM power

2The 1-bit state register is needed because the non-zero value of the counter
does not always indicate the sleep state. The counter is also used to support
multi-cycle operations.

Fig. 4. Comparison of power consumption in one PE. The solid and striped
parts mean dynamic and static power, relatively.

estimation since SRAM cell library was not available. Both
target 500MHz at 45nm technology.

For comparison, we have experimented with six
examples; dct_clip, chromakey, finding_max,
secded_decoding, deblocking, and
interpolation. Dct_clip, one of compute-intensive
parts in JPEC decoder, performs discrete cosine transform
and clipping of values into some ranges. Chromakey is a
technique for compositing two images and finding_max is
just finding maximum value from a list. Secded_decoding,
where SECDED means single-error-correction-and-double-
error-detection, is error-correcting method used for
communication. Its decoding process corrects errors if
they occur, and thus has relatively long if-clause compared to
the other three examples above. There are various ways for
SECDED method, but we use Hamming(8,4). Deblocking
and interpolation are kernels from H.264 video
decoder. Deblocking is a process to reduce blocking
effect on pixels. The pixels are handled differently according
to the strength of blocking effect, which makes up heavy
control flows. Interpolation is a process to interpolate
intermediate values between pixels. There are 16 ways of
interpolation and control flow is needed to select one of them.

B. Reconfigurable array
1) The effects of predication mechanism: The main power

reduction in the reconfigurable array comes from the differ-
ences in predication mechanism. To show the effect of sleep
(SFP) instead of nullification (CFP), we have measured the
power consumed by one PE for both cases. The results are
shown in Fig. 4. We have analyzed power consumption for
major components of a PE; ‘etc’ means the rest parts of a
PE including state registers and wires between components.
The figure shows that there is no big difference in the
static power of different approaches regardless of the parts
examined. Static power of the counter may be increased,
but the actual amount seems ignorable. On the other hand,
dynamic power consumption of the decoder, register file, and
the ‘etc’ part in SFP+PP is greatly reduced by 92.9%, 65.8%,
and 69.2%, respectively, since SFP does not need instruction
decoding during the sleep state so does not incur switching
activities in combinational logic gates and wires. Dynamic
power consumption of counters is increased due to counting
sleep cycles, but the reduction from other parts is much greater,
so the total power consumption is reduced by 44.1%.

2) Examples with short if-clause: The tendency of result
varies according to the length of if-clause (or else-clause)



Fig. 5. Energy savings in PE array.

Fig. 6. Performance improvements.

since power consumption depends on whether unnecessary
paths are executed or not. First three examples, dct_clip,
chromakey, and finding_max, among the above six
examples have short if-clauses, so we cannot expect large
power reduction. As shown in Fig. 5, energy consumption for
some examples is increased due to longer execution time (see
Fig. 6). To overcome this drawback, we propose the hybrid
approach (SFP+PP) in Section III-D, and we can see from
green bars of Fig. 6 that it works. In all three cases, the hybrid
approach improves performance compared to the original SFP.
As a result, energy consumption of SFP+PP is improved over
CFP for chromakey and finding_max. However, energy
consumption of dct_clip is still slightly worse. It is because
handling control flow by PP has power overhead compared to
SFP.

3) Examples with long if-clause: The other three
examples, secded_decoding, deblocking, and
interpolation, have long if-clauses, so they are expected
to have significant power reduction. Since its amount is
dominant and thus the results of SFP and SFP+PP are almost
the same, we explain only comparison between CFP and
SFP+PP.

Fig. 5 shows that SFP+PP saves about 14.5% to 26.5%
of energy compared to that of CFP. In the cases of
secded_decoding and deblocking, the reduction par-
tially comes from the better performance shown in Fig. 6. It is
because SFP deals with nested if-structures without flattening,
as shown in Section III-B, but CFP cannot handle it directly
[8]. CFP should flatten them into non-nested structures, which
causes performance degradation because of the register pres-

sure for keeping condition values and/or the recalculation of
the condition values. On the other hand, the performance
of interpolation is degraded by SFP+PP because the
example does not have a nested-if structure but has a simple
switch structure. However, it can save 16.5% of energy due to
long unnecessary paths.

C. Configuration Memory
CFP incurs power overhead in configuration memory due to

the extension of instruction bit width. Our CGRA architecture
has two different types of configuration memory: temporal
cache and spatial cache [1]. We assume that the CGRA has
256 entries for temporal cache and 16 entries for spatial
cache in both CFP and SFP designs. Thus, total capacity of
configuration memory is 8.625kB for CFP and 7.5kB for SFP.

The results for static, dynamic, and total energy savings are
shown in Fig. 7. Dynamic energy is determined by multiplying
the size of data per read by the number of read operations. The
former is determined by the bit width of instructions and the
latter is related to the execution time. Basically SFP has a
merit in reading instructions due to its narrower instruction
bit width, so it consumes less energy in most cases. However,
finding_max consumes more energy because the number
of fetched instructions is greatly increased as shown in Fig. 6.
Since SFP+PP overcomes performance overhead in short if-
clause, it enhances the results of SFP in the examples having
short if-clause, always guaranteeing dynamic energy reduction
(4.7% to 23.2%) in all cases.

Static energy seems to have similar tendency. It is affected
by area and the execution time. Due to instruction bit width,
SFP outperforms CFP in all cases, and SFP+PP improves more
on short if-else examples.

The sum of the two is depicted in Fig. 7(c). The amount of
total energy reduction ranges from 8.2% to 20.9%. The energy
reduction for interpolation seems relatively small, but it
has large energy saving in the reconfigurable array part.

D. Total energy consumption
Total energy consumption in the reconfigurable array and

configuration memory is compared in Fig. 8. We can see that
the amount of energy saving is all positive for the hybrid
approach. As a result, the energy consumption is reduced by
3.3% to 23.9% and its geometric mean value is 12.6%.

VI. RELATED WORK

There have been several researches on predication tech-
niques that belong to the category of SFP [7], [8], [13]. [7]
has revealed that SFP can virtually implement full predicated
execution only at the cost of partial predication. The work in
[8] has emphasized that SFP can handle nested-if structures
naturally, whereas the conventional full predication cannot.
SFP has performance overhead due to the insertion of instruc-
tions to change the state according to the control flow, which is
not needed in full predication. To mitigate the overhead, [13]
has suggested an efficient mechanism for controlling the state
using a sleep counter. However, [7], [8], [13] do not consider
any power issue in their implementations.

Moreover, to the best of our knowledge, there have been
no previous approaches proposed to reduce power consump-
tion related with predicated execution. Most approaches have
concentrated only on performance issues involving compiler
[4]–[6], the effect on branch prediction [14], etc. [7] and [8]



(a) Dynamic energy

(b) Static energy

(c) Total energy

Fig. 7. Energy savings in configuration memory.

deal with the architecture and the implementation, but there is
no attempt to reduce power consumption.

Related to CGRA, there are several attempts to reduce
power consumption [1]–[3]. [1] and [2] suggest the way of
reducing configuration power and [3] researches on intercon-
nection related to power. However, none of them considers the
effect of predication in CGRA.

VII. CONCLUSION

We have presented a new type of predication, which we call
state-based full predication. It performs like full prediction,
but has a more efficient predication mechanism in terms of
power consumption compared to conventional full predication.

Fig. 8. Total energy savings in reconfigurable array and configuration
memory.

When executing unnecessary paths in control flows, process-
ing elements consume 44.1% less power by not decoding
the instructions through clock gating. Moreover, by applying
the hybrid approach with partial predication, the proposed
approach can overcome the most critical drawback of the state-
based full predication for the case of short if-clauses, and
so improves energy consumption in reconfigurable array and
configuration memory. As a result, our proposed mechanism
achieves up to 23.9% energy reduction in the reconfigurable
array and configuration memory.
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