
Comparison of Self-Timed Ring and Inverter Ring
Oscillators as Entropy Sources in FPGAs

Abdelkarim Cherkaoui, Viktor Fischer, Alain Aubert
Hubert Curien Laboratory

18 rue Prof. Lauras, St.-Etienne, France
Email: (abdelkarim.cherkaoui, fischer, alain.aubert)

@univ-st-etienne.fr

Laurent Fesquet
TIMA Laboratory

46, Avenue Felix Viallet, Grenoble, FRANCE
Email: laurent.fesquet@imag.fr

Abstract—Many True Random Numbers Generators (TRNG)
use jittery clocks generated in ring oscillators as a source of
entropy. This is especially the case in Field Programmable Gate
Arrays (FPGA), where sources of randomness are very limited.
Inverter Ring Oscillators (IRO) are relatively well characterized
as entropy sources. However, it is known that they are very
sensitive to working conditions. This fact makes them vulnerable
to attacks. On the other hand, Self-Timed Rings (STR) are
currently considered as a promising solution to generate robust
clock signals. Although many studies deal with their temporal be-
havior and robustness in Application Specific Integrated Circuits
(ASIC), equivalent study does not exist for FPGAs. Furthermore,
these oscillators were not analyzed and characterized as entropy
sources aimed at TRNG design. In this paper, we analyze STRs
as entropy sources for TRNGs implemented in FPGAs. Next, we
compare STRs and IROs when serving as sources of randomness.
We show that STRs represent very interesting alternative to
IROs: they are more robust to environmental fluctuations and
they exhibit lower extra-device frequency variations.

I. INTRODUCTION

True Random Number Generators (TRNG) are ubiquitous
in security chips, they are one of the basic cryptographic
primitives. TRNGs are used to generate encryption keys as
well as initialization vectors, challenges and signature param-
eters. Therefore, they must fulfill strict statistical requirements
and be secure and unpredictable. The quality of the generated
random sequence depends mainly on two factors: the quality
of the entropy source and the entropy extraction method.
While many TRNGs in ASICs use analog components to
generate randomness, their realization in FPGAs is much more
restricted. Currently, the majority of TRNGs on FPGAs rely on
extracting the jitter from clock signals to generate random bit
sequences. To achieve security requirements, the jittery clock
signal needs to be precisely characterized.

Nowadays, IROs are the most widely used solution as
generators of jittery clocks in both ASICs and FPGAs due
to their low area, good integration in digital and analog
design flow and important phase noise. However, previous
studies showed that IROs are very sensitive to voltage and
process variability. In [1], the authors present experimental
results showing that changing operating conditions such as
power supply voltage or operating temperature may affect

the output quality of a ring oscillator based TRNG when the
signal is subsampled. An attacker may subsequently shift the
operating point via a simple non-invasive manipulation and
easily bias the TRNG output. Another vulnerability is pointed
out by the authors of [2] who analyze the jitter generated in
ring oscillators and propose a simple physical model of jitter
sources showing that the random jitter accumulates slower than
the global and manipulable deterministic jitter.

On the other hand, STRs were studied in many contexts and
seem to be a good alternative to IROs as generators of robust
clock signals. Events in STRs can propagate evenly-spaced
or as bursts. In [3], Winstanley et al. use Charlie diagrams to
predict bursting behaviors in STRs. Hamon et al. carry on this
study in [4]. They propose a high level time accurate model
to predict the oscillation mode of a STR and provide simple
design rules to prevent the burst oscillating mode. Moreover,
they show by simulations that STRs offer better robustness to
process variability than IROs.

Our study of STR was motivated by the fact that most of
previous works were oriented in ASICs and equivalent study
does not exist for FPGAs. Furthermore, while a wide range of
oscillators was characterized and used in TRNGs, still no study
deals with the possible use of STRs as randomness sources.

This paper extends the works presented in [4]. Our exper-
imental results confirm robustness of STRs in FPGAs. The
paper also provides a characterization of STRs as entropy
sources and compares STRs with IROs. It is organized as
follows: Section 2 describes the architecture and behavior of
STRs and IROs. Section 3 defines the temporal model for
STRs adopted in this paper. Section 4 analyses the jitter in
both STRs and IROs. Section 5 regroups and discusses the
experimental results obtained in FPGAs. Section 6 concludes
the paper.

II. RINGS ARCHITECTURE AND BEHAVIOR

This section presents the studied rings architecture and
behavior and describes the analog effects that influence the
propagation delay of a STR stage.

A. IRO Architecture and Behavior
The studied IRO structure is depicted in Fig. 1. The first ring
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Fig. 1. Studied IRO architecture

L ring stages are connected to form a ring. The oscillatory
behavior of the IRO is due to the propagation of one event
all around the ring: each ring stage propagates the rising and
falling edge of the generated clock signal in two successive
half-periods [2].

B. STR Architecture

The STR structure is depicted in Fig. 2. It corresponds to the
control path of a micropipeline as proposed by I. E. Sutherland
in [5], which was closed to form a ring of L stages. Each stage
is composed of a Muller gate and an inverter. For the stage
i, Fi is the forward input, Ri the reverse input, and Ci is the
output.

Fig. 2. Architecture of a self-timed ring

Fig. 3 shows the truth table of a stage. The forward input
value is written to the output if the forward and reverse input
values are different, otherwise previous output is maintained.

Fig. 3. Ring stage structure and truth table

C. STR Behavioral Model

1) Bubbles and Tokens: The tokens and bubbles concept is
derived from a 2-phase communication protocol as described
in [5]:

• Stage i contains a bubble if its output Ci is equal to the
output of the previous stage Ci−1

Ci = Ci−1

• Stage i contains a token if its output Ci is different from
the output of the previous stage Ci−1

Ci 6= Ci−1

Fig. 4. Propagation of tokens and bubbles in STRs (tokens move to the right,
bubbles to the left)

2) Tokens and Bubbles Propagation: Knowing the stage
truth table and the token and bubbles concept described above,
a token propagates from the stage i to the stage i + 1 if and
only if the next stage i+ 1 contains a bubble (see Fig. 4). In
the same time, a bubble propagates from the stage i+1 to the
previous stage i if and only if the previous stage i contains a
token. The condition for a token to propagate from stage i to
stage i+ 1 is expressed as follows:

Ci 6= Ci−1 and Ci = Ci+1

The propagation rule implies STR will have an oscillatory
behavior if the next conditions are valid:

• L ≥ 3, L = NT +NB ,
• NB ≥ 1, where NB is the number of bubbles,
• NT is a positive even number of tokens.

3) Steady Regime: STRs can evolve into two propagation
modes: an evenly-spaced and a burst propagation mode [3]
(see Fig. 5). The evenly-spaced mode occurs when the tokens
evenly spread all-around the ring and propagate with a constant
spacing. The burst mode occurs when the tokens get together
to form a cluster that propagates all around the ring. The
oscillation mode in the steady regime depends on the stage
timing parameters and the ratio NT /NB [4].

Fig. 5. Burst and evenly-spaced propagation modes in STRs

D. The Drafting and Charlie Effects

Recognizing that the propagation delay of a Muller gate
depends on the relative arrival times of the input events,
Ebergen et al. proposed for the first time in [6] the use of
Charlie diagrams to predict the output delay of a Muller gate.
The model proposed in [3] allows to take into account two
analog phenomena that affect the propagation delay of a ring
stage: the Charlie and drafting effects.

1) The Charlie Effect: Previous works on the C-element
(Muller gate) point out the impact of the separation time
between input events on a STR stage propagation delay: the
closer are the inputs arrival times, the longer will be the stage
propagation delay.

2) The Drafting Effect: The drafting effect describes the
impact of the elapsed time from the last output event on a
gate propagation delay: the shorter is this time, the shorter
will be the gate propagation delay. While the drafting effect
can easily be determined and relatively be strong in ASICs,
our experience shows that this effect is much lower in FPGAs.
Therefore we propose to neglect the drafting effect in our
study.



3) Evenly-spaced Mode Locking Mechanism: The Charlie
effect is the key to understand how a STR evolves into the
evenly-spaced propagation mode. When two tokens get closer
in the ring, the separation time of a ring stage is shorter and
the propagation delay is thus longer due to the Charlie effect.
That means that, under the influence of the Charlie effect,
tokens push away from each other, which makes them spread
evenly all around the ring. The authors of [4] proved that it is
possible to guarantee the evenly-spaced propagation mode by
respecting a simple design rule without any knowledge of the
Charlie effect parameters:

NT
NB

=
Dff

Drr
, (1)

where Dff is the forward static delay and Drr the reverse
static delay of a ring stage as depicted in Fig. 3. For random-
ness generation purposes, we consider that the burst oscillation
mode is irrelevant since it could introduce an undesirable bias
to the generator. In our characterization of STRs, we focus
on the evenly-spaced propagation mode, which can be set by
adjusting the ratio NT /NB at the ring initialization.

III. STR TEMPORAL MODEL

We propose in this section to clearly define the initial
hypothesis in order to establish the Charlie model for studied
implementations of STRs in Altera FPGAs. This model pro-
vides a framework for understanding the robustness properties
and the jitter characteristics of the studied rings.

A. Initial Hypothesis

Considering that each STR stage is implemented in one
Look-Up-Table (LUT) and the interconnection delays are
neglected, we can assume that Dff = Drr. Consequently,
according to Equation 1, STRs initialized with as many tokens
as bubbles should evolve into the evenly-spaced propagation
mode. For the rest of our study:

NT = NB (2)

B. Charlie Diagram

The Charlie diagram gives the propagation delay of a ring
stage as a function of the separation time between the input
events, while taking into account the Charlie effect. It is tuned
in our case by 2 parameters:

• Ds – the static propagation delay of a ring stage,
• Dcharlie – the Charlie effect magnitude.
Fig. 6 represents an example of a timing diagram of one

STR stage. An example of a Charlie diagram is plotted in Fig.
7. The shape of the Charlie diagram fits a parabola inscribed
in the straight lines Ds−s and Ds+s. The analytical Charlie
equation is expressed as follows:

charlie(s) = Ds +
√
D2
charlie + s2 (3)

It can be observed that the shorter is the separation time
s the smaller is the derivative dcharlie

ds . That means that
variations around s = 0 (bottom of the curve) are smoothed

Fig. 6. Ring stage timing diagram

thanks to the Charlie effect. If the Charlie effect magnitude
Dcharlie is more important, the interval around s = 0, where
the derivative dcharlie

ds is small, becomes larger and variations
are smoothed to a bigger extent. In conclusion, two factors
influence the robustness properties of STRs: the magnitude
of the Charlie effect, and the separation time for each ring
stage in the steady regime. Ideally, and according to the time
accurate model presented in [4], a STR with NT = NB and
Dff = Drr = Ds would have null separation times in the
steady regime for each ring stage with a maximal Charlie
effect.

Fig. 7. Example of a Charlie diagram

IV. ANALYSIS OF THE JITTER IN STRS AND IROS

We propose in this section a simple jitter model for the
studied STRs and IROs. As explained in [2], two types of
jitter must be considered in TRNGs: local Gaussian jitter (the
source of randomness), and global deterministic jitter (a mean
for attacking the generator). One of the jitter measurements is
the period jitter. The period jitter is defined as the deviation
of the oscillation period T from its ideal value Tid (or mean
value Tmean). The standard deviation σperiod of a population
of measured periods is often used to quantify the period jitter.
For the sake of consistency, we refer to σperiod as the period
jitter.

A. Local Gaussian Jitter

In the studied FPGA implementation of STR and IRO, each
ring stage (which is implemented in one LUT for both IRO and
STR) is considered as a source of the local Gaussian jitter: its
propagation delay follows a normal distribution N (Dg, σ

2
g).

We refer to σg as the jitter of a single gate (LUT cell).
The major difference in period jitters of STRs and IROs

lies in the way the jitter accumulates throughout the structure.
In the IRO, the period is defined by two laps of one event all



around the ring structure. During its run, the event accumulates
the jitter with a square root law with respect to the number
of the crossed stages. Thus, the period jitter σperiod can be
expressed as a function of the number of stages (k) and the
jitter of one gate (σg):

σperiod =
√

2kσg (4)

In a STR, several events propagate in the ring simultaneously:
each token is an event propagating across the ring. The
oscillation period is defined by the elapsed time between
successive tokens. Each token crossing a stage experiences
a variation in its propagation delay due to the local Gaussian
jitter contribution of the stage. For example, if token i reaches
stage k at the time tk1+N (0, σ2

g), and token i+2 reaches stage
k at the time tk2+N (0, σ2

g), the elapsed time between the two
tokens is tk2− tk1 +N (0, 2σ2

g). Contrary to IRO, the effect of
jitter accumulation is only temporary since the Charlie effect
permanently regulates the tokens temporal spacing. Therefore,
we can approximate tk2− tk1 by a constant equal to the mean
oscillation period Tmean. Subsequently, we estimate the period
jitter, which is independent of the number of stages as follows:

σperiod ∼
√

2σg (5)

Finally, we suggest that the period jitter in STRs is mostly
composed of the jitter generated locally in the ring stage
serving as the output of the oscillating signal.

B. Global Deterministic Jitter

Global deterministic jitter refers to the non-random varia-
tions in propagation delays due to external global influences
(e.g. a modulation of the power supply voltage). The authors
of [2] pointed out the fact that global deterministic jitter
accumulates linearly throughout the IRO structure. If Ddeti is
the deterministic contribution in the propagation delay when
the propagating event crosses stage i, then Ddet =

∑2k
i=1Ddeti

is the global deterministic contribution during one IRO period.
Here again, the main difference with the STR is the fact that
in the STR several events propagate simultaneously. When a
deterministic variation is applied to the ring, it affects each
event in the same way. Since the half-period is defined by
the elapsed time between two successive events, we suppose
that the deterministic term is strongly attenuated. On the other
hand, the deterministic delay variations are smoothed as the
Charlie effect regulates the token propagation.

V. EXPERIMENTAL RESULTS

In order to validate our analysis, we used five equivalent
boards designed especially for TRNG applications and fea-
turing Altera Cyclone III devices. To reduce deterministic
jitter introduced by the power supply, these boards also
feature a linear voltage regulator. Frequency and jitter were
measured externally using a wide band digital oscilloscope
LeCroy Wavepro 735 ZI. In order to reduce the impact of the
slow standard input/output circuitry, we used the LVDS (Low
Voltage Differential Signaling) interface of the device and an
active differential probe with a 4 GHz bandwidth.

A. Observations, remarks

We implemented several configurations of IROs and STRs
in the selected FPGAs. Logic cells were placed manually
(if possible in the same Altera LAB) in order to reduce the
interconnection delays. We verified experimentally that STRs
with NT = NB evolve into the evenly-spaced mode for
ring lengths varying from 4 to 96. Furthermore, experiment
shows that for a 32-stage ring, evenly-spaced mode is obtained
for configurations where NT = {10, 12, 14, 16, 18, 20} which
suggests a high charlie effect in the selected devices.

B. Sensitivity to Voltage Variations

We measured ring frequencies for core power supply voltage
varying from 1V to 1.4V . Frequencies are normalized to
compare Robustness to Voltage Variations (RVV) between
oscillators that have different frequencies:

• F being the measured frequency at various voltage levels
and Fnom the measured frequency at 1.2V , the normal-
ized frequency Fn is expressed as follows

Fn = F
Fnom

• Fmax being the measured frequency at 1.4V and Fmin
the measured frequency at 1V , the normalized frequency
excursion ∆F is defined for a 0.4V voltage sweep as
follows

∆F = Fmax−Fmin

Fnom

Fig. 8. Normalized Frequencies for core power supply varying from 1V to
1.4V

Fig. 8 shows the normalized frequencies for different ring
configurations: IROs with 5 and 80 stages, STRs with 4 and
96 stages. According to these measurements, frequencies vary
linearly with voltage, and the 96-stage STR exhibits a lower
voltage sensitivity than other ring configurations.

We note the 4-stage STR achieves the same sensitivity to
voltage variations than the IRO configurations. In reality, due
to routing delays, separation times can occur in the linear
part of the Charlie diagram in Fig. 7 where the Charlie effect
is neglectable. However, Table I shows that RVV is slightly
improved for the STR when we increase the number of stages,
which is not the case for the IRO. Although the adopted
temporal model does not explain this fact, we suggest that a
higher number of stages causes tokens to be more constrained
in the structure: this issue is a research area that needs to be
explored.



TABLE I
NORMALIZED FREQUENCY EXCURSIONS FOR A 0.4 V VOLTAGE SWEEP

AROUND NOMINAL VOLTAGE 1.2 V
Ring Fn (Mhz) ∆F

IRO 5C 376 49 %
IRO 25C 73 48 %
IRO 80C 23 47 %
STR 4C 653 50 %
STR 24C 433 44 %
STR 48C 408 39 %
STR 64C 369 39 %
STR 96C 320 37 %

Finally, while IROs RVV cannot be improved by design, it
is possible to increase STRs RVV at the cost of a larger FPGA
logic resources usage.

C. Sensitivity to Process Variability

Process variability refers to the extra-device variability
of propagation delays, which is due to the technology and
manufacturing process. In this section, we evaluate the extra-
device frequency variability for different ring configurations
by sending the same bit-stream to five available boards. For
each ring, we measured the ring frequencies in each board and
calculated the relative standard deviation σrel as follows:

σrel = σ
Fmean

where σ is the standard deviation of the measured frequency
values and Fmean is the mean of the measured frequency
values. Results are presented in Table II.

TABLE II
RELATIVE STANDARD DEVIATION OF FREQUENCY VALUES FOR

DIFFERENT OSCILLATORS IMPLEMENTED IN 5 DEVICES

Ring Frequency (Mhz) σrel

board 1 board 2 board 3 board 4 board 5
IRO 3C 654.42 646.84 641.56 645.60 642.12 0.79 %
IRO 5C 305.72 306.44 302.54 304.87 302.20 0.62 %
STR 4C 669.05 660.06 658.60 659.90 655.62 0.76 %

STR 96C 328.16 328.54 327.55 328.47 327.46 0.15 %

According to Table II, the frequency dispersion of the 96-
stage STR is narrower than for other rings. Here again, it
appears that increasing the number of stages improves the
robustness of STRs against the process variability. One can
argue that this is also true for IROs, because increasing the
number of stages allows to approach more accuratly the mean
propagation delay of a ring stage. However, while it is possible
to maintain high frequencies in STRs, frequency decreases
linearly with the number of stages in IROs. Therefore, STRs
achieve much better robustness to extra-device frequency
variability at high frequencies than IROs.

D. Jitter Measurements

Jitter measurements in this section are provided using the
wide-band digital oscilloscope LeCroy Wavepro 735 ZI statis-
tical tools.

1) Jitter Histograms: Fig. 9 shows the period jitter his-
tograms for a 96-stage STR and a 5-stage IRO with similar
frequencies (around 300 MHz). Both the IRO and STR exhibit
a Gaussian jitter. This is not a new result for IROs, but it is
relevant for STRs. The Gaussian jitter distribution in STRs

Fig. 9. Period jitter histograms (a) 96-stage STR (b) 5-stage IRO

makes self-timed rings interesting for jittery clock generation
in TRNGs. We verified this fact for rings of up to 96 stages
(with NT = NB).

2) Jitter Measurement Method: Although the oscilloscope
could theoretically measure the period jitter and the cycle-
to-cycle jitter (difference between two successive periods), it
was not suitable for precise measurements of very low jitter
values that were biased due to the error introduced by the the
sampling frequency of the oscilloscope and the input/output
circuitry. Therefore, we measured the accumulated jitter and
computed the initial jitter values using the theoretical jitter
accumulation properties presented in [2]. osc is the output
of the ring oscillator. Signal osc mes is generated inside the
chip by counting 2n rising events of signal osc as depicted in
Fig. 10. The idea is to measure osc mes jitter values and to
compute osc jitter values.

Fig. 10. Jitter measurement method scheme

osc mes period is expressed as follows:

Tmesj =
∑2n
k=1 Ti

The ring oscillator period can be decomposed into a random
and a deterministic contribution. The random term follows a
normal distribution N (Tmean, σ

2
p) where Tmean is its mean

and σ2
p is its variance. Di is the deterministic contribution

during the period i of osc:

Ti = N (Tmean, σ
2
p) +Di

When adding independent random variables, variances are
added:

Tmesj = N (2nTmean, 2nσ
2
p) +Ddetj

where Ddetj =
∑2n
k=1Di is the deterministic contribution

during a period of signal osc mes.
The main hypothesis of the method proposed in this section
is expressed as follows: It is always possible to choose n high
enough to verify the following assumption:

Ddetj+1
−Ddetj � 4nσ2

p

We systematically verify this hypothesis before applying the
method by simply checking the cycle-to-cycle period his-
togram of signal osc mes and verifying that it follows a



normal distribution. Therefore, the difference between two
successive osc mes periods is:

4Tmes ' N (0, 4nσ2
p)

Using the oscilloscope, we measure the cycle-to-cycle jitter
σmescc of signal osc mes. Finally:

σp =
σmescc
2
√
n

(6)

In the case of IRO, and according to equation 4, we can deduce
the standard deviation (σg) related to the jitter generated
locally in a single LUT cell (k being the number of stages):

σg =
σp√
2k

(7)

3) Results: We measured period jitter for both the IRO and
STR as a function of the number of stages. In Fig. 11, we
plotted the period jitter σp for the IRO with respect to the
number of stages. For each measured value, we computed and
plotted σg the standard deviation of a single gate propagation
delay.

Fig. 11. Period jitter of an IRO with respect to the number of stages

The curve shows a square-root accumulation tendency which
verifies Equation 4. Moreover, we could estimate σg:

σg ' 2ps

Fig. 12. Period jitter of a STR with respect to the number of stages

In Fig. 12, we plotted the period jitter σp for the STR
as a function of the number of stages. The measured values
are relatively constant with respect to the number of stages
(between 2ps and 4ps) as expected considering the analysis
in Section IV-A. Moreover, the measured values converge to a
constant value when we increase the number of stages. As for
robustness to voltage variations, this result suggests that tokens
are more constrained and the Charlie effect is more present in
this case. In addition,

√
2σg ' 2.83ps which corresponds to

the constant value of σp for high number of stages (∼ 2.5ps).
Finally, these measurements confirm Equation 5 proposed in
Section IV-A.

VI. CONCLUSION

In this paper, we compared inverter ring oscillators and self-
timed rings when serving as entropy sources:

• we evaluated and compared robustness to voltage and
device manufacturing process variability for both IROs
and STRs,

• we analyzed the jitter in STRs and validated our analysis
experimentally by jitter measurements.

The results showed that the robustness of STRs to voltage
variations can be enhanced by increasing the ring length,
which is not the case for IROs. STRs exhibit also lower
extra-device frequency variations than their counterparts when
operating in high frequency ranges. The period jitter in STRs
does not depend on the ring length, but mostly on the local
jitter generated in one ring stage, which means that each ring
stage can be considered as an independant entropy source.
Even though their gaussian jitter can be lower than in IROs,
STRs exhibit a lower deterministic jitter. We can therefore
suppose that STR-based TRNGs should be more robust to
attacks than IRO-based TRNGs. In addition, STRs robustness
to manufacturing process variability is a feature that can be
successfully used in many TRNG designs and namely in
TRNGs based on the coherent sampling [7], where the de-
signer needs to guarantee that the ring oscillators frequencies
will remain in a required interval for all devices of the same
family. Our future works will focus on exploiting the STR
properties for designing a robust TRNG.
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