
A Flit-level Speedup Scheme For Network-on-Chips
Using Self-Reconfigurable Bi-directional Channels

Zhiliang Qian, Ying Fei Teh and Chi-Ying Tsui
VLSI Research Laboratory, Department of Electronic and Computer Engineering

The Hong Kong University of Science and Technology, Hong Kong, China
Email: {qianzl, yingfei, eetsui}@ust.hk

Abstract—In this work, we propose a flit-level speedup scheme
to enhance the network-on-chip(NoC) performance utilizing
bidirectional channels. In addition to the traditional efforts on
allowing flits of different packets using the idling internal and
external bandwidth of the bi-directional channel, our proposed
flit-level speedup scheme also allows flits within the same packet
to be transmitted simultaneously on the bi-directional channel.
For inter-router transmission, a novel distributed channel con-
figuration protocol is developed to dynamically control the link
directions. For the intra-router transmission, an input buffer
architecture which supports reading and writing two flits from
the same virtual channel at the same time is proposed. The switch
allocator is also designed to support flit-level parallel arbitration.
Simulation results on both synthetic traffic and real benchmarks
show performance improvement in throughput and latency over
the existing architectures using bi-directional channels.

Index Terms—Bidirectional channel, flit-level speedup, NoC

I. INTRODUCTION AND RELATED WORK

With technology scaling down, hundreds of cores can be in-
tegrated on a single chip and future System-on-Chip (SoC) will
be predominantly communication-centric [1], [2]. Network-on-
Chip (NoC) has emerged as a reliable and modular solution to
support the high bandwidth communication requirement [1].

The bandwidth provided by NoC and its utilization have a
significant impact on the overall performance of the system
[3]. The NoC bandwidth can be divided into two types:
the inter-router bandwidth (channel bandwidth) and the intra-
router bandwidth (switch bandwidth). In a typical NoC design,
the channel bandwidth is determined by the unidirectional
links between the routers. For the intra-router bandwidth, it
is dictated by the datapath in the router which comprises of
the input buffers, the N×N crossbar fabric (N is the number
of input ports) and the output registers. In [3], NoC with input
speedup is proposed by providing some excess bandwidth in
the crosspoint (2N ×N crossbar for a 2X input speedup) to
avoid inefficient usage of the internal bandwidth and idling of
the channel resources [3].

Recently, motivated by the observation that the traffic dis-
tribution across NoC is heterogeneous [4] and quite often one
uni-directional link is overflowed with heavy traffic while the
opposite link remains idle, NoC designs employing bidirec-
tional channels have been proposed [2][5][6]. In [2], the link
directions are configured in the architecture level with route
re-allocation to meet the bandwidth and QoS requirement. In
[5][6], NoC architectures with dynamically reconfigurable bi-

Figure 1: The occurrence of scenario III and IV in profiling

directional links were proposed. The direction of each link is
reconfigured at run time depending on the traffics of the two
routers involved using either an external bandwidth arbiter [6]
or a channel direction control (CDC) protocol [5]. For both
approaches, the link direction is reversed if there are more than
two packets requesting to traverse along one direction and no
packet requesting in the opposite direction.

In this work, we further improve the NoC performance
by adding flexibility in using the bi-directional links. Our
proposed design is based on the following observations:

• For a channel between two routers, when sending a packet
from one end to the other, there is a significant portion
of time that no packet is coming from the opposite
direction [5]. Through our profiling on a 8×8 mesh NoC
architecture, the average percentage of time is as high as
67.50% for most traffics even when the injection rate is
80% of the saturation rate.

• Under the condition that there is no packet coming from
the opposite direction on a particular link, we can further
distinguish into four scenarios for the router. They are:
I) the router has no packet to send through the link,
II) the router has one packet with a single flit to be
sent through the link, III) the router has one packet with
multiple flits to be sent through the link, IV) the router
has multiple packets requesting the output link. For the
last two scenarios, we can increase bandwidth and hence
the performance if we can reverse the direction of the
opposite link and send two flits through the two links at
the same time. Figure 1 shows the portion of time that
scenario III and IV occur among all of the above four
scenarios under various injection rates and traffic patterns978-3-9810801-8-6/DATE12/ c©2012 EDAA



Figure 2: A motivational example

for a 8× 8 mesh NoC. As shown in the figure, scenario
III occurs frequently at run time. However the state-of-
the-art bidirectional switching schemes will only work
for scenario IV since the routers only support parallel
transmission of two flits from different packets [5][6].

The observations above show that there is room for per-
formance improvement by utilizing the double capacity bi-
directional channels for scenario III. In this work, we propose
a flit-level speedup scheme for improving the NoC perfor-
mance. For the inter-router transmission, bidirectional links
are employed to provide a double bandwidth at run time. For
the intra-router transmission, we propose a novel input buffer
architecture and a switch allocator design to allow flits within
the same packet to participate in the routing pipelines.

II. MOTIVATIONAL CASE STUDY

We consider a case of three packets A, B, C traversing
from router R1 to router R2 as shown in Figure 2-a. Each
packet is six flits long including the header and the tail flit.
We adopt a fair round-robin arbitration policy and assume
at the beginning, packets A and B successfully acquire the
two virtual channels in router R2. We assume packet stalling
[3] occur in R2 and the blockage times for packets A and
B in ports Out1 and Out2 are 10 and 5 cycles, respectively.
Figure 2-b is the timing diagram if we use a traditional
NoC architecture. In the figure, we can observe two kinds of
bandwidth limitations. The first is the inter-router bandwidth
limitation, where in the traditional NoC, only one unidirec-
tional link is available. Packets A and B have to alternatively
use this single capacity link. The second is the intra-router
bandwidth limitation where in R2, the two virtual channels in

the west input need to compete in the switch allocation phase,
which means that packet A and B/C can not be transmitted at
the same time. The intra-router bandwidth limitation can be
overcome by adopting input speedup in R2 as shown in Figure
2-c. Both virtual channels in R2 can use the crossbar and thus
the latency of packet C is reduced to 20 cycles. If bidirectional
NoC switching scheme is applied as shown in Figure 2-d, both
packets A and B are transmitted at the same time using the
double capacity bi-directional link and the delay of packet C
can be further reduced to 17 cycles. Figure 2-e is our proposed
flit-level speedup scheme which allows flits within the same
packet (A,B,C) to be transmitted simultaneously. In R2, the
latency of packets A and B are reduced due to a shorter
transmission time while the latency of packet C is improved
because its waiting time is greatly reduced since packet B in
front of it leaves earlier. In this example, these two effects
further improve the latency of the three packets by 12.5%,
27.2% and 29.4%, respectively, compared with the existing
bidirectional switching scheme.

III. FLIT-LEVEL SPEEDUP NOC
In this section, we present the details of our proposed flit-

level speedup scheme. The channel direction control protocol
will be described first. Then we discuss the modification of
the input buffer and the switch allocator to support flit-level
parallel transmission and arbitration in the router. For the issue
of deadlock and starvation avoidance as well as other datapath
components design, the readers can refer to [5][6] for details.

A. Inter-router channel direction control
1) Master and slave link : Both links connecting to a router

can be reconfigured as sending or receiving. However for each



Figure 3: Channel direction control module

router we define one link as the master and the other as the
slave. If there are traffics in both direction, the master and
slave links act as the sending and receiving links, respectively.
Under flit-level speedup, when writing two flits from the same
VC into the output channel, the output controller will always
put the first flit on the master link and the second flit on its
slave link. On the receiving side, we always assemble the flit
appeared on the slave link ahead of the flit on the master link
into the virtual channel.

2) Channel direction control protocol: The channel direc-
tion control protocol is used to configure the bidirectional link
at run time based on the traffic condition while at the same
time guarantee there is no writing conflicts i.e. writing into
the link from both ends. There are two different ways to do
the control. [6] employs a central control while [5] uses a
distributed control mechanism. In this work, we also employ
a distributed architecture since it is more modular and easier
to implement. Therefore we mainly compare our architecture
with that used in [5].

In [5], at each router there are two Finite State Machines
(FSMs), one for the master link and the other for the slave
link. The direction of each link depends on the state of the
corresponding FSM. Since the incoming request signal from
the neighboring router takes two cycles to arrive at the current
router, a “wait” state is required when the FSM transits from
a “receiving” state to a “sending” state which will introduce at
least one dead cycle in the channel direction reversal process.

In this work, we propose a novel channel control scheme
based on a four-stages pipeline NoC which does not use FSMs.
The direction of the bi-directional link is determined by the
pressure signal of the local router (pressure signal represents
the number of flits that the router requests to send out at
the channel) and that of the neighboring router. The block
diagram of the overall architecture is shown in Figure 3. A
request extractor is added at the routing computation stage to
generate the pressure signals and an output width controller is
added to work with the switch allocator to process the pressure
signals and determine the channel direction accordingly. At
the routing computation stage, the request extractor records
the number of packets that have won the neighbor’s virtual
channels. The signal is generated at the routing computation
stage but not the VC allocation stage because the pressure
signal needs two cycles to arrive at the neighboring router
(assuming all interconnections between two adjacent routers
are doubly registered [5]) and it is required to be used in the

switching allocation stage. The effect of generating the signal
in the routing computation stage is that the VC allocation
result is updated one clock cycle later when the packet first
enters the VC. However it only affects the performance when
the neighboring router requests to send two flits, while the
newly arrived packet wins the VC allocation but it is not yet
updated in the routing computation stage. In this case, the
local router assumes there is no request for sending and the
link will then be configured as receiving for both channels
while it should be configured as 1 sending and 1 receiving.
The correctness of the router operation is not compromised,
only some of the priority of sending out a flit in the local
router is lost in this special case. From the simulation results,
it is shown that there is no significant difference in the latency
and throughput when the pressure signal is generated at the
routing computation stage comparing with that generated at the
VC allocation stage. The request extractor calculates the local
pressure signals “Req_out” for each output channel, passes
them to the local switch allocators and at the same time
sends them out to the neighboring routers as their “Req_in”
signals. Two cycles later, at the switch allocation stage, this
local pressure signal and the pressure signals received from
the neighboring router are used by the output width controller
to decide the allocation of the bandwidth of the corresponding
channel. Together with the switch allocator, the bi-directional
links are re-configured accordingly.

The operation of the request extractor is described in
Algorithm 1. It tries to acquire a two flits channel when either
there are multiple virtual channel buffers having flits to be sent
(line 9-10 in Algorithm 1) or there is one packet with multiple
flits in a VC channel buffer requesting to be sent out at the
output channel (line 13-15 in Algorithm 1).

In our scheme, since the output width is determined every
cycle in the switch allocation phase, no dead cycle is needed.
However, we need to guarantee the flits, after winning at
the switch allocations, can traverse the crossbar and link
successfully without any stall to guarantee no writing conflict
occurring. Hence, we need to ensure there are enough buffer
slots in the downstream virtual channel to hold the flits. Since
our scheme supports transmitting two flits into the same virtual
channel at one time and the VC buffer full information of the
adjacent router takes 3 cycles to reach the local router, the
minimum buffer slots required is thus equal to 6.

Algorithm 2 describes the operation of the output width
controller. It dynamically configures the data width of the
switch output (0, 1 or 2 flits) and the input switch arbitration
mode. Input switch arbitration mode indicates whether the
two flits participating in the arbitration are coming from the
same VC buffer. For example, if the local pressure signal
indicates that a 2-flit channel for the output is requested while
the neighboring pressure signals indicates that there is no
flow in the opposite direction, the controller will enable both
the master and the slave link channels to participate in the
switch arbitration (line 9-11). Under this condition, if the
2-flit channels are requested by more than one packet, the
input switch arbitration mode for these packets is set to “0”



Algorithm 1 Operation of request extractor
Input : Buffer status BF_Status[N ][V ] and Credits info Credit_in[N ][V ]
Container : Request bank on each output Req[N ]
Output: Local pressure information Req_out[N ]
1 For each input port i ∈ N
2 Req[i].clear() // Initialize the local pressure counter
3 For each VC buffer j ∈ V
4 If BF_Status[i][j].V C_status = Assigned
5 k = BF_Status[i][j].Get_output_port();
6 t = BF_Status[i][j].Get_output_vc()
7 Req[k].Add_request([i, j]) // Adding requests to the output port
// output the pressure signal to the neighbor
8 For each output porto in N
9 If Req[o].Size() >= 2
10 Req_out[o] = 2
11 Else If Req[o].Size() == 1
12 (i, j) = Req[o].Get_request()
13 If BF_Status[i][j].buffer_occupancy > 1
14 If BF_Status[i][j].head_flit.flit_type! = Flit_Tail
15 Req_out[o] = 2
16 Else Req_out[o] = 1
17 Else Req_out[o] = 0
18 Write_out(Req_out[o])

Algorithm 2 Operation of the Out width controller
Input : Local pressure Req_out_d[N ] and neighbor pressure Req_in_d[N ]
Container: Request bank on each output Req[N ] (same in Algorithm I)
Output: Master link allocation control MLA[N ] , slave link allocation control
SLA[N ], Input switch allocation mode SA_in[N ][V ]
1 //Initialize the switch allocation input mode
2 For each in porti in N
3 For each VC channel v in V
4 SA_in[i][v] = 0
5 For each output port o in N
6 MLA[o] = enable
7 SLA[o] = disable
8 Switch Req_out_d[o]:
9 Case “2”:
10 If Req_in_d[dir] = 0 Then
11 SLA[dir] = enable
12 If Req[dir].Size() = 1
13 For request (i, j) in Req[dir]
14 SA_in[i][j] = 1 // set input SA request mode to 1
15 Case “0”:
16 If Req_in_d[dir] = 2 Then
17 MLA[dir] = disable

which means that two separate VCs are requesting a one-flit
channel each. Otherwise, the switch arbitration mode of the
requesting VC is set to “1” (line 14) which allows two flits
within the same packet to participate in the arbitration for both
the master and slaver links. This constitutes the proposed flit-
level speedup.

B. Router datapath design to support flit-level speed-up

1) Input buffer organization: In flit-level speedup scheme,
it is possible that the two incoming flits are for the same VC
buffer. Therefore it is required to support reading/writing two
flits in the same VC buffer at the same time. One way is to
adopt multiple ports memory. However, this causes significant
overhead in terms of area and memory access time [3]. Here
we propose a novel input buffer organization, which is shown
in Figure 4, to satisfy this requirement.

Figure 4-a shows the input port configuration with V virtual
channels. Two 1-to-V demux and V flit assemblers are needed

Figure 4: Proposed buffer organization

Figure 5: Switch allocator logic

for each port. The original virtual channel buffer is splitted
into two sub-buffers, s0 and s1, respectively. Both sub-buffers
share the same buffer state information (the GROPC vector
in Figure 4-a). The incoming flits are written into s0 and s1
alternatively so that two consecutive flits are stored in different
sub-buffers. Figure 4-b shows the modified buffer pointer in
each virtual channel. For s0 and s1, each has a head-tail pointer
pair pointing to the start and end addresses of the flits of the
packets. In addition, two 1-bit registers, denoted as the Front
and Back registers, are added to indicate which sub-buffer
holds the first and the last flit (e.g. flits “a” and “f” in Figure
4-b) of the VC channel.

The details of the flit assembler is described in Figure 4-c.
It is responsible for assembling the flits into the sub-buffer
of the VC in the right order. When two flits are sent in the
reconfigurable links, the first flit is always connected to the



master link of the sender (i.e. the slave link of the receiver).
To ensure the correct assembling of the flits, the slave link is
always connected to the sub-buffer that is not pointed by the
Back register. Figure 4-b shows an example. The Back register
points to s1 since the last flit “f” is stored in s1. The assembler
will connect the slave link to s0 and the master link to s1 in
the next operation. The read operation is similar to the write
operation based on the value of the Front register. Figure 4-d
illustrates the updated pointers after reading a flit “a” from the
buffer and writing flits “g” and “h” into it.

2) Switch allocator design : To support flit-level speedup in
the NoC, the switch allocator should not only support granting
two requests from different VCs, but also allow a single VC
to arbitrate for both the master and slave links. Figure 5-a
shows the building block of our switch allocation module.
For each input port, a V-to-2 arbiter is employed in the input
stage to select 2 out of many requests from the V virtual
channels. The SA input switching arbitration mode vector
(SA[N][V]) determines whether the two winning requests are
from different VCs (normal arbitration mode) or from the same
VC (flit-level speedup mode). At the output side of the switch
allocator, N 2N-to-2 arbiters are utilized to decide the actual
number of requests that is finally granted.

Figure 5-b shows the detail design of the V-to-2 arbiter for
the input allocation. It consists of two V-to-1 arbiters and a
mode decision module (Mode_Dec). Mode_Dec reads in the
SA input mode switching arbitration vectors (SA_in[N][V])
and determines the selection mode for the current input port.
If all the entries of SA vector equal to 0, it means there is no
request that requires two flits to be transmitted from the same
VC and hence the two v-to-1 arbiters will work independently
to select two VCs using different priority pointers. Otherwise,
the Mode_Dec will select one VC winner and generate the
priority pointer exactly pointing to that VC for both arbiters.

Figure 5-c shows the 2N-to-2 arbiter used in the output side.
It consists of two 2N-to-1 arbiters. The link allocation control
signals (MLA[N] and SLA[N]) enable/disable the arbiters ac-
cordingly. A module named Flit_speedup_req_checker shown
in Figure 5-c is used to grant two requests to the same input
port so as to allow parallel transmission of two flits from the
same VC.

IV. SIMULATION RESULTS

A. Simulation setup

We evaluate the proposed flit-level speedup scheme using
a cycle-accurate NoC simulator modified from Noxim [7]. A
8× 8 mesh-based NoC architecture is used. We assume each
input port of the router has 4 virtual channels and the buffer
depth of each VC is 16 flits. The flit size is 64 bits and
each packet is made up of 16 flits. Dimension ordered XY
routing is implemented in the simulation to guarantee deadlock
free routing. We compared the performance of the proposed
scheme with three different architectures, namely the unidirec-
tional NoC, unidirectional NoC with 2X input speedup, and
the bidirectional NoC. Various traffic patterns were used in
the simulation, including synthetic traffic and real benchmarks.

Real benchmarks include MWD (Multi-Window Display) [8],
MMS (Multimedia system) [9] , MPEG4 (MPEG4 codec)
[8] and DVOPD (Dual Video Object Plane Decoder) [10] as
well as three applications named auto_indust, telecom and
consumer from E3S [11] benchmark. For these application-
specific traffic benchmarks, we use the energy-aware mapping
[9] to map the task graphs onto the mesh architecture first.

B. Simulation results on synthetic traffics
For synthetic traffic evaluation, five traffic patterns were

used: uniform random, transpose, hotspot, shuffle and bit-
reversal [7]. Figures 6 a-e summarize the comparison results
on the latency. For all the cases, the proposed flit-level speedup
scheme out-performs the other three schemes. As observed
from the figure, the improvement highly depends on the traffic
patterns. For most non-uniform traffics such as the transpose
traffic, our proposed scheme can effectively utilize the links
and hence improve the performance. Compared with the bi-
directional switching scheme, the flit-level speedup further
improves the throughput by 5%-30%.

In Figure 6-f, we evaluate the saturation throughput under
different packet length (4-16 flits) and buffer depth (8-20 flits
per VC) for the uniform traffic. As observed from the figure,
the throughput improvement increases when a longer packet
length is adopted which is the case in many existing NoC
designs [5], [3].

C. Simulation results on real benchmarks
Figure 7 compares the saturation throughput of several

real benchmarks. As shown from the figure, while the bi-
directional switching scheme out-performs the two unidirec-
tional schemes, our proposed flit-level speedup scheme con-
sistently further improves the performance. The improvement
ranges from 2% to 17%. In Figure 8, we show the histogram
of the packet delivery time under 80% saturation injection
factor of the typical NoC for the telecom application. As
shown in the figure, not only the average latency but also
the maximum delay are significantly reduced which provides
a good prospective to satisfy the QoS requirements.

D. Implementation overhead

Each scheme is modeled in Verilog and synthesized using
Synopsys Design Vision based on Nangate 45nm library [12].
From the synthesis results, the area overhead of the input
speedup, bidirectional switching and the proposed flit level
speedup scheme is 1.87%, 4.41% and 8.08%, respectively.
Compared with a typical NoC design, the additional area is
mainly due to the larger crossbar size (3.14% overhead) and
the modified buffer organization (3.87% overhead) to support
flit-level speedup.

V. CONCLUSIONS

In this work, we propose a flit-level speedup scheme for
improving the NoC performance using self-reconfigurable bi-
directional links. In order to support transmitting two flits
within the same packet at the same cycle, a novel channel
direction control protocol is proposed to dynamically configure
the link directions. The corresponding design of the input



(a) Random traffic latency (b) Transpose traffic latency (c) Hotspot traffic latency

(d) Shuffle traffic latency (e) Bit-reversal traffic latency (f) Impacts of buffer depth and packet length

Figure 6: Simulation results for synthetic traffics

Figure 7: Benchmark throughput comparison

buffer organization and the switch allocator are also proposed.
From the simulation results, significant improvement in la-
tency and throughput are achieved for both synthetic traffic
and the real benchmarks.

REFERENCES

[1] L. Benini and G. De Micheli, “Networks on chips: a new soc paradigm,”
Computer, vol. 35, no. 1, pp. 70 –78, jan 2002.

[2] M.A. Al Faruque, T. Ebi, and J. Henkel, “Configurable links for runtime
adaptive on-chip communication,” in Design, Automation Test in Europe
Conference Exhibition, 2009. DATE ’09., april 2009, pp. 256 –261.

[3] William Dally and Brian Towles, Principles and Practices of Intercon-
nection Networks, Morgan Kaufmann, 2003.

[4] P. Bogdan and R. Marculescu, “Quantum-like effects in network-on-
chip buffers behavior,” in Design Automation Conference, 2007. DAC
’07. 44th ACM/IEEE, june 2007, pp. 266 –267.

[5] Ying-Cherng Lan, Hsiao-An Lin, Shih-Hsin Lo, Yu Hen Hu, and Sao-
Jie Chen, “A bidirectional noc (binoc) architecture with dynamic self-
reconfigurable channel,” Computer-Aided Design of Integrated Circuits

Figure 8: Histogram of the delivery time for Telecom

and Systems, IEEE Transactions on, vol. 30, no. 3, pp. 427 –440, march
2011.

[6] Myong Hyon Cho, M. Lis, Keun Sup Shim, M. Kinsy, T. Wen,
and S. Devadas, “Oblivious routing in on-chip bandwidth-adaptive
networks,” in Parallel Architectures and Compilation Techniques, 2009.
PACT ’09. 18th International Conference on, sept. 2009, pp. 181 –190.

[7] Noxim simulator, http://noxim.sourceforge.net, 2011.
[8] D. Bertozzi, A. Jalabert, Srinivasan Murali, R. Tamhankar, S. Stergiou,

L. Benini, and G. De Micheli, “Noc synthesis flow for customized do-
main specific multiprocessor systems-on-chip,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 16, no. 2, pp. 113 – 129, feb. 2005.

[9] Jingcao Hu and R. Marculescu, “Energy- and performance-aware
mapping for regular noc architectures,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 24, no.
4, pp. 551 – 562, april 2005.

[10] A. Pullini, F. Angiolini, P. Meloni, D. Atienza, Srinivasan Murali,
L. Raffo, G. De Micheli, and L. Benini, “Noc design and implementation
in 65nm technology,” in Networks-on-Chip, 2007. NOCS 2007. First
International Symposium on, may 2007, pp. 273 –282.

[11] E3S benchmarks, http://ziyang.eecs.umich.edu/dickrp/e3s/.
[12] Nangate 45nm library, http://www.nangate.com.


