
Time-triggered Implementations of
Mixed-Criticality Automotive Software

Dip Goswami1, Martin Lukasiewycz2, Reinhard Schneider3 and Samarjit Chakraborty3
1Alexander von Humboldt Research Fellow, TU Munich, Germany

2TUM CREATE, Singapore
3Institute for Real-Time Computer Systems, TU Munich, Germany

(dip.goswami@tum.de, martin.lukasiewycz@tum-create.edu.sg, reinhard.schneider@rcs.ei.tum.de and samarjit@tum.de)

Abstract—We present an automatic schedule synthesis frame-
work for applications that are mapped onto distributed time-
triggered automotive platforms where multiple Electronic Con-
trol Units (ECUs) are synchronized over a FlexRay bus. We
classify applications into two categories (i) safety-critical control
applications with stability and performance constraints, and
(ii) time-critical applications with only deadline constraints. Our
proposed framework can handle such mixed constraints arising
from timing, control stability, and performance requirements.
In particular, we synthesize schedules that optimize control per-
formance and respects the timing requirements of the real-time
applications. An Integer Linear Programming (ILP) problem is
formulated by modeling the ECU and bus schedules as a set
of constraints for optimizing both linear or quadratic control
performance functions.

I. INTRODUCTION

Mixed critical systems such as automotive software consist
of a mix of safety-critical control applications with perfor-
mance and stability constraints and time-critical applications
with only deadline constraints. The constraints associated
with the control applications (e.g., engine control, brake-by-
wire, vehicle dynamics control) are crucial for ensuring the
safety of the vehicle. Timing constraints associated with the
real-time, e.g., driver-assistance applications, help improve
usability and driving comfort. Both classes of applications
co-exist, interact and share common resources like electronic
control units (ECUs), and buses. Scheduling and platform
design to ensure such a mix of timing, control performance
and stability constraints is a challenging problem, especially
for architectures with multiple ECUs and buses with complex
protocols like FlexRay [1].

Real-time applications only have deadline constraints
and predefined sampling rates. However, both stability and
performance of control applications depend on the choice
of sampling periods, which in turn determine the deadlines
imposed by them. In this work, we consider the problem of
implementing such a mix of applications on a time-triggered
platform with eCos-based [2] ECUs connected via FlexRay-
based buses. We proposed a co-design scheme that finds
schedules for both the ECUs and the buses such that all the
above-mentioned constraints are satisfied.

Related Work The problem of jointly scheduling applications
with a mix of real-time and control performance constraints
has not been sufficiently addressed in the literature. However,
there has been a flurry of recent work on platform/schedule
synthesis for control applications such that control functional-
ities are robust and they provide the desired performance [3],

ECU1 ECU2 ECU3

FlexRay

ps pc pasensor actuator

m1 m2

(a) FlexRay-based automotive control system.

ps

pc

pa
m1 m2

ps

pc

pa
m1 m2

ps

pc

pa
m1 m2

ECU1

ECU2

FlexRay

ECU3

FlexRay cycle
ha (period)

τsc τca

τa (sensor-to-actuator delay)

(b) FlexRay-based scheduling.

Fig. 1. (a) Distributed implementation of a control application on a FlexRay-
based network and (b) a scheduling example for the processes and messages.

[4], [5], [6], [7], [8], [9], [10]. While these approaches have
made excellent contributions in the area of control/scheduler
co-design, they may be further extended along the following
lines, which is what we attempt to do in this paper: (i) ac-
curately model the relation between control performance and
stability on one hand and sampling period and feedback delay
(because of a distributed implementation) on the other hand,
(ii) model the low-level details of the platform, i.e., ECU
operating systems and bus arbitration policies, (iii) respect
constraints from other concurrently running (e.g., real-time)
applications, and (iv) automatically synthesize schedules for
real-life distributed systems with a large number of design
parameters.

A. Problem Statement

We focus on automatic synthesis of a schedule S for a
set of applications A implemented on a FlexRay based time-
triggered platform. The applications consist of sets of data-
dependent processes P and messages M . The processes are
implemented on a set of ECUs R that use an eCos-based non-
preemptive time-triggered scheduling. Two processes p, p̃ ∈ P
communicate via the FlexRay bus by sending a message
m ∈ M . The schedule S is determined by the start times
of all processes and slot/cycle assignment of the messages.
Applications are periodic with ha being the sampling period978-3-9810801-8-6/DATE12/ c©2012 EDAA



a ∈ Ac :
sampling period ha

ILP Solver

minimize:
J =

∑
a∈Ac

Ja(ha, τa)

subject to:
∀a ∈ A : τa ≤ da

τa > da
OR

unstable

a ∈ A :
S and τa

J < Jmin

+a ∈ A :
S s.t. τa ≤ da

a ∈ Ac :
ha s.t. J is minimal

no

yes

yes

next
set of
ha

no

ECUs and FlexRay
architecture

a ∈ A :
task mapping, da

a ∈ Ac :
ha

Fig. 2. Overview of our proposed optimization flow.

of application a ∈ A. The applications are classified into two
categories: control and real-time. Let Ac and Ac be the sets
of all control and real-time applications, respectively. The set
of all applications A = Ac ∪Ac. The overall architecture and
the associated timing diagram are illustrated in Fig. 1(a) and
(b), respectively.

The stability (constraint) and performance (optimization
objective) of a control application depend on (sampling)
period ha and sensor-to-actuator delay τa < ha. Hence,
the performance of control application a ∈ Ac is denoted
by Ja(ha, τa). Each application a ∈ A is specified by its
maximum end-to-end delay da.

The overall goal is to find:
1. Sampling periods ha for each a ∈ Ac
2. Schedule S for all a ∈ A

Such that:
1. The control applications are stable and the following

performance function is minimized:

J =
∑
a∈Ac

Ja(ha, τa) (1)

2. The end-to-end delay τa < da for all a ∈ A

B. Overview of Our Scheme
An overview of our co-design framework is shown in Fig. 2.

In Section II, we introduce the feedback control model that is
specific to the time-triggered implementation platform. The
platform consists of a set of ECUs with eCos-based non-
preemptive time-triggered scheduling, and a FlexRay bus for
communication among the ECUs. We model the platform by
a set of constraints imposed by eCos and FlexRay. Section III
presents the formulation of various constraints imposed by
eCos and FlexRay. We consider a given architecture, i.e., the
number of ECUs and topology are predefined. Moreover, the
task partitioning and their mapping to the ECUs are given for

all applications a ∈ A. The real-time applications a ∈ Ac
are specified by the sampling period ha and the maximum
end-to-end delay da.

Based on all the constraints coming from the given
architecture (described in Section III), task mapping and
timing requirements of the applications, we formulate an
Integer Linear Programing (ILP) problem and invoke an
ILP solver. The objective of the ILP formulation is to find
a schedule S for applications a ∈ A such that τa < da
and cost function (1) is minimal for a particular set of ha
for a ∈ Ac. It is notable that the ILP formulation needs
a linear or quadratic cost function and hence, we use an
approximated version of the cost function (1) to cast the ILP
problem. The approximated cost function is computed for the
control applications based on the range of operating points
of the designer’s interest. In Section IV-C, we describe the
approximation of the cost function (1). We repeat the above
for every allowable sampling period ha until we get S for
all a ∈ A with τa < da and ha such that (1) is globally
minimized for all a ∈ Ac. Note that the allowable set of ha
is restricted by the constraints coming from FlexRay protocol
and range of operating points of the control applications.
Finally, S is the schedule for both processes at the ECUs
and messages at the bus for the optimal implementation of
control applications with sampling periods ha, a ∈ Ac. It
may be noted that we have kept the design space of sampling
periods out of the ILP formulation to obtain a Pareto-optimal
front between the load coming the control applications and
the control performance. Section IV presents the overall
control/scheduling co-design framework and the experimental
results are shown in Section V.

II. DISTRIBUTED FEEDBACK CONTROL SYSTEM

A feedback control system aims to achieve the desired
behavior of a dynamical system by applying appropriate inputs
to the system. In a dynamical system, the relation between
inputs and outputs is modeled by a set of differential equations,
called the state-space model,

ẋ(t) = Ax(t) +Bu(t), (2)

where x(t) ∈ Rn is the system state and u(t) ∈ R is the
control input to the system. A ∈ Rn×n and B ∈ Rn×1 are the
system and input matrices, respectively. State-feedback control
essentially implies the design of u(t) as a function of the states
x(t) (feedback signals) so as to meet certain high-level design
requirements.

A. Modeling feedback control over network
In general, a feedback control loop performs mainly three

operations:
• measure the states x(t) (measure),
• compute input signal u(t) (compute) and,
• apply the computed u(t) to the plant (2) (actuate).

Performing these operations in a continuous fashion in any
implementation platform requires infinite computation power.
Hence, in a digital implementation platform of such feedback
loop, these operations are performed only at discrete-time
intervals (sampling instants). In view of the above operations,
the control tasks are broadly classified into three categories:
sensor task ps, controller task pc and actuator task pa. At



System

ẋ(t) = Ax(t) +Bu(t)

Sample

ps

Hold

pa

Network

τsc

Network

τca

Controller
pc

Fig. 3. Control over network.

the sampling instants, ps reads the continuous states x(t) or
measure, pc computes u(t) or compute and sends the output
to the task pa or actuate.
Fig. 3 shows the overall implementation of such feedback loop
over the network. ps samples the states x(t) periodically with
sampling period ha at tk and it is sent over the communication
bus to pc with a delay τsc. Next, pc computes the control input
u(t) and in this work, we consider state-feedback controllers
of the form u(t) = Kx(t) where K is the state-feedback
gain which needs to be designed. u(t) is sent over the
communication bus to pa with a delay of τca. pa applies u(t)
to the system at time t = (tk + τsc + τca). Further, pa holds
u(t) until the next update comes, i.e.,

u(t) = Kx(tk), tk ≤ t ≤ tk+1 (3)

The total delay τa = (τsc + τca) between the sampling of
the system states and the receipt of the corresponding control
value is called sensor-to-actuator delay. It may be noted that
the response time of ps is included in τsc and similarly, the
response times of pc and pa are included in τca (Fig. 1(b)).
Given the input signal (3) and the sensor-to-actuator delay
being τa < ha , the continuous-time system (2) becomes a
sampled-data system [11],

x[k + 1] = Adx[k] +B0(τa)u[k] +B1(τa)u[k − 1], (4)

where

Ad = eAha , B0(τa) =

∫ ha−τa

0

eAtdt ·B,B1(τa) =

∫ τa

0

eAtdt ·B

Putting (3) in (4), we get the following closed-loop system,

x[k + 1] = Adx[k] +B0(τa)Kx[k] +B1(τa)Kx[k − 1]. (5)

In (5), we assume that u[−1] = 0 for k = 0. Next, we define
new system states z[k] = [ x[k] x[k − 1] ]

′ and we get,

z[k + 1] = Acl(ha, τa)z[k], (6)

where
Acl(ha, τa) =

[
0 I

B1(τa)K Ad +B0(τa)K

]
, (7)

where I is the unity matrix. Stability of the overall closed-
loop system is governed by the properties of Acl(ha, τa) and
for stability, the absolute value of maximum eigenvalue of
Acl(ha, τa) should be less than unity, i.e.,

|λmax(Acl(ha, τa))| < 1. (8)

The closed-loop system might become unstable when τa is
long and fails to meet (8).

III. TIME-TRIGGERED IMPLEMENTATION

For determining a schedule S that considers all platform
constraints, we propose an ILP formulation. First, the schedul-
ing policy of the ECUs is an eCos-based operating systems
without preemption. The static segment of a FlexRay bus
is used for the bus system. Finally, the end-to-end timing
constraints are defined.

A. eCos-based Task Scheduling
The tasks on each ECU (including sensors and actuators)

have to be scheduled in compliance with the used operating
system scheduler. Here, the processes Pr = {p|target(r) =
p, p ∈ P} are scheduled for each ECU r ∈ R separately
where target(p) determines the resource on which the task
is executed. Each task is associated with its period hp and
worst-case execution time ep. For each ECU, the schedule S
is determined by the offset/start time of each task.

The formulation for the eCos operating system requires the
following variables:
• sp ∈ R[0,hp] - start time of task p ∈ P
• fp ∈ R[0,hp] - finish time of task p ∈ P
• ofp ∈ {0, 1} - offset for finish time p ∈ P
• yi,jp,p̃ ∈ {0, 1} - 1 if job i of task p ∈ P finished before

job j of task p̃ ∈ P
The constraints are determined as follows:
∀p ∈ Pr :

fp + hp · ofp = sp + ep (9)

∀p, p̃ ∈ Pr, p 6= p̃, i = {0, .., 2·Hr

hp
− 1}, j = {0, .., 2·Hr

hp̃
− 1} :

i · hp + sp + ep ≤ j · hp̃ + sp̃ + 2 ·Hr · (1− yi,jp,p̃) (10)

j · hp̃ + sp̃ + ep̃ ≤ i · hp + sp + 2 ·Hr · yi,jp,p̃ (11)
Constraint (9) determines the finish time of each task.

In case the process finishes in the next cycle, the finish
time is smaller than the start time. In this case, the variable
ofp becomes 1 to fulfill constraint (9). The constraints (10)
and (11) ensure that two tasks never preempt each other within
two hyper-periods (2 ·Hr with Hr = lcm

p∈Pr

(hp)). The variable

yi,jp,p̃ is used for switching, i.e., one of the constraints (10)
or (11) is trivially satisfied depending on yi,jp,p̃.

B. FlexRay Scheduling
The FlexRay bus is used as a central communication bus

in the proposed architecture. This bus system enables a syn-
chronization of the ECUs and the establishment of a fully
time-triggered system. For message scheduling, we assume
the static segment of FlexRay is used. The static segment of
the FlexRay is organized in nfx static slots with each slot
having a duration of efx and available payload of lfx in bytes.
The static segment is transmitted in the beginning of every
FlexRay cycle which has a duration of hfx. A message that
is transmitted on the FlexRay bus, is defined by the repetition
that is deduced from the period, the execution time that equals
the slot duration, and the length in bytes.

The constants used are as follows:
• hfx - cycle duration of the FlexRay bus
• nfx - number of static slots
• efx - duration of a static slot (it holds nfx · efx ≤ hfx)
• lfx - capacity of one FlexRay static slot in bytes
• hm - period of message m ∈M



• rm = hm

hfx
- repetition of message m ∈M

• em = efx - transmission time of message m ∈M
• lm - length of a message m ∈M in bytes
For each message, a slot and base cycle has to be deter-

mined. From this value, the assignments of slots to ECUs is
deduced implicitly. For the schedule S, the following values
have to be determined for each message:
• s, b - slot id and base cycle for each message m ∈M
The slot and base is encoded in the binary variable [s, b]m.

Independent of the FlexRay version, the following variables
are required:
• sm ∈ R[0,hm] - start time of message m ∈M
• fm ∈ R[0,hm] - finish time of message m ∈M
• [s, b]m ∈ {0, 1} - slot and base cycle pair for each

message m ∈M with s ∈ {1, .., nfx}, b ∈ {0, .., rm−1}
• sr ∈ {0, 1} - becomes 1 if slot s is assigned to ECU r

and 0 otherwise
These constraints are defined as follows:

∀m ∈M : ∑
s∈{1,..,nfx}

∑
b∈{0,..,rm−1}

[s, b]m = 1 (12)

sm =
∑

s∈{1,..,nfx}

∑
b∈{0,..,rm−1}

((s− 1) · efx + b · hfx) · [s, b]m

(13)
fm = sm + efx (14)

∀s ∈ {1, .., nfx}, b ∈ {0, ..,
lcm
m∈M

(hm)

hfx
− 1} :∑

m∈M
lm · [s, b%rm]m ≤ lfx (15)

∀s ∈ {1, .., nfx} : ∑
r∈R

sr ≤ 1 (16)

∀m ∈M, s ∈ {1, .., nfx}, b ∈ {0, .., rm − 1}, r = target(m) :

[s, b]m ≤ sr (17)

Constraint (12) states that each message is scheduled in
exactly one slot at a specific base cycle. Constraint (13)
determines the start time of a message transmission based on
the slot and base cycle. Constraint (14) defines the finish time
of a message transmission depending on the duration of the
transmission of a static slot. Constraint (15) ensures that the
capacity of a slot is not exceeded. Constraint (16) states that
a slot can be assigned to a most one ECU. Constraint (17)
ensures that if a message is send in a specific slot, the slot is
assigned to the sending ECU.

C. Sensor-to-Actuator Delay
Control applications have strict end-to-end timing con-

straints. In this case, it becomes necessary to define constraints
that restrict the latencies of these applications. Here, da ∈ R
defines the maximal tolerated delay of an application a ∈ A.
Additionally, Πa determines all paths of a function from the
source processes (sensors) to the sink processes (actuators).

The end-to-end delay is determined in an additive manner
as follows. Along the paths the delay is determined by the sum
of the execution times of all tasks and messages as well as the
waiting time between the data-dependent tasks and messages,
respectively. To constrain the end-to-end delay, the following
variables are required:

• τa ∈ R[0,da] - the maximal delay of a function a ∈ A
• wp,p̃ ∈ R[0,hp] - waiting time between the finish of p ∈
P ∪M and start of p̃ ∈ P ∪M

• owp,p̃ ∈ {0, 1} - 0 if p ∈ P ∪M starts before p̃ ∈ P ∪M ,
1 otherwise

The constraints are defined as follows:
∀a ∈ A, π ∈ Πa, (p, p̃) ∈ π :

wp,p̃ = sp̃ − fp + hp · owp,p̃ (18)
∀a ∈ A, π ∈ Πa :

τa ≥
∑
t∈π∩P

ep +
∑

t∈π∩M
efx +

∑
(p,p̃)∈π

wp,p̃ (19)

Constraint (18) determines the waiting time between a
data-dependent task and message. The binary variable owp,p̃
ensures that the waiting time is always within the predefined
bounds, i.e., not negative. Constraint (19) determines the end-
to-end delay of a function. The end-to-end delay is defined as
the maximal latency along all paths of a function.

IV. CO-DESIGN SCHEME

The controller gain K in (3) is designed based on the
Linear Quadratic Regulator (LQR) for sensor-to-actuator delay
τa = 0 and sampling period ha, a ∈ Ac. This essentially boils
down to designing an LQR gain K with Ad and constant
B0 (B1(τa) = 0) in (4). In a distributed platform modeled
as described in Section III, the sensor-to-actuator delay τa
is non-zero and constant. Thus, the resultant closed-loop
system behaves as described in Section II and the condition
for stability of the control applications is given by (8). In
this section, we describe the proposed scheme for optimal
implementation of the control applications respecting all the
platform constraints.

A. Performance function
It can be noticed from (7) that the closed-loop system

depends on (i) the sampling period ha (ii) the sensor-to-
actuator delay τa. Based on this observation, we consider the
following commonly used quadratic performance function for
each control application (for minimization),

Ja(ha, τa) =

N∑
k=0

∫ (k+1)ha

kha

[u(t)2 + x(t)′x(t)]dt, (20)

where u(t) and x(t) are as per (2) and N is the total number
of samples under consideration. In the following paragraph,
we explore the dependency among Ja(ha, τa), ha and τa.
We consider the following system for illustration,

A =

[
0 1.0
20 35

]
, B =

[
0
1

]
. (21)

We compute the performance of the system (21) utilizing (20)
considering an initial condition x1(0) = 0.3 and x2(0) = 0.1.
The open-loop system is highly unstable (as one pole is at
35.56) and hence, the system has stringent timing require-
ments. The FlexRay cycle length hfx = 5ms. The possible
sampling periods are ha ∈ {5, 10, 20, 40, 80, 160, 320} (in ms)
as per FlexRay 2.1. The system behavior becomes unaccept-
able for ha ≥ 40ms in terms of systems’s response time.
Therefore, we restrict our interest to ha ∈ {5, 10, 20} (in ms).
The system with feedback delay τa leads to system dynamics



2.5 3 3.5 4 4.5 5
12

14

16

18

τa [ms]

J
a
(h
a
,τ
a
)

ha = 5ms
ha = 10ms
ha = 20ms

Fig. 4. Performance Ja(ha, τa) vs. sensor-to-actuator delay τa and sampling
period ha.

given by (6) which is utilized to compute the performance
given by (20). Given an architecture, a feedback signal expe-
riences a minimum τa (because of the finite execution times
of the processes and the transmission times of the messages).
We assume that minimum τa = 2.5ms. Let us assume that
the performance becomes unacceptable for τa > 5ms, i.e.,
da = 5ms. Hence, it is sufficient to observe the behavior of
the system for a τa in the range of 2.5ms to 5ms. Fig. 4 shows
the plot of Ja(ha, τa) vs. τa for ha = 5ms, ha = 10ms
and ha = 20ms. It can be noticed from the plots that
the performance deteriorates with increasing τa (for constant
ha) and the performance degradation is closely linear with
τa. Based on these observations, we approximate (20) as a
function of τa which is discussed in the next subsection.

B. Approximated performance function

The performance function (20) is approximated by,

Ĵa,n(τa) =

n∑
i=0

κiτ
i
a, (22)

where n is the order of the approximation polynomial and
κi are the coefficients. Note that Ĵa,n(τa) is computed for
every ha. The accuracy of the approximation improves with
increasing order of the polynomial, i.e., higher n.

The accuracy depends on the choice of operating points
of the control applications, i.e., sampling periods ha and
sensor-to-actuator delay τa. Generally, the sampling period is
less than 40ms for the safety-critical control applications in
the automotive domain. With increasing τa, the performance
deteriorates and the system might even become unstable failing
to meet the stability condition (8). Hence, the choice of
its allowable range is restricted by the desired performance
constraints and the stability condition. We are especially in-
terested in the approximation accuracy of quadratic and linear
approximations as they are utilized as an objective function in
the ILP formulation for co-design (discussed in the following
subsection). We notice that the quadratic (less than 0.005%
error) and linear (less than 0.5% error) approximations provide
sufficiently good accuracy for common operating points in the
automotive domain, i.e., a sampling period in the range of
[5, 40] (in ms) and a sensor-to-actuator delay in the range of
[0, 10] (in ms).

0.4 0.45 0.5 0.55 0.6

2

2.2

2.4

·104

h = (5 20 20)

h = (20 20 20)

h = (20 20 40)

h = (20 40 20)

h = (20 40 40)

Load=
∑ ep

ha
(for control applications)

co
nt

ro
l

pe
rf

or
m

an
ce
J

dominated
Pareto optimal

Fig. 6. Performance J vs. execution load resulting from the control
applications.

C. Co-design algorithm
Our overall goal is to find sampling periods ha for a ∈ Ac

such that cost function (1) is minimized and timing require-
ments of all applications are respected, i.e., τa < da for a ∈ A.
For control performance optimization, we formulate an ILP
problem which models the platform by the set of constraints
described in Section III. The ILP optimizes either linear or
quadratic approximations of control performance functions.
Hence, we use quadratic and linear approximations described
in Section IV-B and use objective function,

J =
∑
a∈Ac

Ĵa,n(τa), (23)

where n = 1 (for linear approximation) and n = 2 (for
quadratic approximation). Utilizing linear cost function (23)
in the ILP solver, we obtain schedule S for a ∈ A that
minimizes (1) for a particular ha and a given range of τa
(determined from the range of operating points), a ∈ Ac. For
global optimization, we invoke the ILP solver for all possible
combinations of sampling periods ha for a ∈ Ac that are
allowed by the platform and within the range of operating
points. Thus, we obtain the sampling periods ha for a ∈ Ac
and schedules S for a ∈ A corresponding to the minimum (1)
and τa < da.

V. EXPERIMENTAL RESULTS
In this section, we present the experimental results consid-

ering following setup: There are 4 ECUs that are connected
via a FlexRay bus. Each ECU is running eCos-based non-
preemptive time-triggered operating systems. The FlexRay
cycle length is hfx = 5ms and number of static slot nfx = 20
with each slot duration efx = 0.2ms. For hfx = 5ms, the fea-
sible sampling periods are ha ∈ {5, 10, 20, 40, 80, 160, 320}
(in ms). There are five applications: three control applications
- a1, a2, a3 and two real-time applications - a4, a5. Table I
shows the given architecture, applications, task mappings, da
and minimum τa of these applications. The execution times
ep of all control processes are chosen between [0.3, 0.8] (in
ms). For the two real-time applications: ha4 = 10ms and
ha5 = 5ms.

We consider three safety-critical automotive control plants:
brake-by-wire a1, engine control a2 and cruise control a3



5
5

5
5

5
1
0

5
5
2
0

5
5
4
0

5
1
0

5
5
1
0
1
0

5
1
0
2
0

5
1
0
4
0

5
2
0

5
5
2
0
1
0

5
2
0
2
0

5
2
0
4
0

5
4
0

5
5
4
0
1
0

5
4
0
2
0

5
4
0
4
0

1
0

5
5

1
0

5
1
0

1
0

5
2
0

1
0

5
4
0

1
0
1
0

5
1
0
1
0
1
0

1
0
1
0
2
0

1
0
1
0
4
0

1
0
2
0

5
1
0
2
0
1
0

1
0
2
0
2
0

1
0
2
0
4
0

1
0
4
0

5
1
0
4
0
1
0

1
0
4
0
2
0

1
0
4
0
4
0

2
0

5
5

2
0

5
1
0

2
0

5
2
0

2
0

5
4
0

2
0
1
0

5
2
0
1
0
1
0

2
0
1
0
2
0

2
0
1
0
4
0

2
0
2
0

5
2
0
2
0
1
0

2
0
2
0
2
0

2
0
2
0
4
0

2
0
4
0

5
2
0
4
0
1
0

2
0
4
0
2
0

2
0
4
0
4
0

2

2.2

2.4
·104

h = (ha1, ha2, ha3)

co
nt

ro
l

pe
rf

or
m

an
ce
J

dominated Pareto optimal

Fig. 5. Performance J for different combinations of the periods h of the applications.

Applications Paths Task Mappings da (ms) min. τa (ms)
a1 T1 → m1 → T2 → m2 → T3 T1 : ECU1, T2 : ECU2, T3 : ECU3 5 1.775
a2 T4 → m3 → T5 → m4 → T6 T4 : ECU1, T5 : ECU4, T6 : ECU2 10 2.55
a3 T7 → m5 → T8 → m6 → T9 T7 : ECU4, T8 : ECU1, T8 : ECU2 10 2.275
a4 T10−13 → m7−10 → T14 → m11 → T15 T10,14 : ECU1, T11,15 : ECU2, T12 : ECU3, T13 : ECU4 20 3.7
a5 T16,17 → m12,13 → T18 → m14 → T19 T16,18 : ECU1, T17,19 : ECU2 20 3.7

TABLE I
GIVEN ARCHITECTURE, APPLICATIONS AND TASK MAPPINGS OF THE SETUP UNDER CONSIDERATION.

(we skip their details). a1 has the higher degree of criticality
compared to a2 and a3. Hence, we choose ha1 ∈ {5, 10, 20}
while ha2,a3 ∈ {5, 10, 20, 40}. We used the approximated
cost function (23) based on the stated operating points of the
applications.
Results and discussions: We implemented the co-design
scheme with CPLEX ILP solver [12] on an Intel i5 2.53
GHz with 4 GB RAM. The runtime of the entire optimization
process is 4143sec. Fig. 5 shows the performance J for
various combinations of sampling periods ha, a ∈ Ac. The
optimal sampling periods for the control applications are
h = (5, 20, 20) (in ms). Due to higher criticality, a1 needs
lower sampling period (i.e., 5ms) for the optimal operation. It
may be noted that h = (5, 20, 20), h = (20, 5, 20) and h =
(20, 20, 5) do not provide similar performance. Moreover, the
lower sampling periods do not essentially guarantee to provide
better performance, e.g., h = (10, 20, 5) or h = (20, 10, 5).
Hence, the control performance depends on the criticality, the
task mapping, the execution demand of the control processes
and finally, the sampling period. The ILP finds the sampling
periods for optimal periods for a given set of rest of the
parameters.

The sampling period indicates how frequently the processes
are executed and how many messages are transmitted. Natu-
rally, the execution demand or load from the control appli-
cations goes up with lower sampling periods. It is reflected
in the schedules with more than two applications having
sampling periods 5ms which fail to find feasible solutions
(indicated by faded columns in Fig. 5 ). Fig. 6 shows Pareto-
optimal front in the solution space obtained from the ILP
between J and load coming from the control applications.
The nature of the front indicates that the schedules with lower
sampling periods impose higher execution load and provide
better control performance, and vice versa. It is also evident
from the Pareto-front that the optimal solutions are not obvious
and the design space has to be explored.

VI. CONCLUSIONS
The automotive softwares are mix of the safety-critical

control applications with stringent stability and performance
requirements and the time-critical applications with strin-
gent deadline constraints. This paper presents a co-design
framework for automatic schedule synthesis of optimal im-
plementation of such applications with mixed criticality onto
a time-triggered platform. The main technical challenge is
the formulation of an ILP by integrating the exact models
of platform and application constraints with control stability
(constraint) and performance (optimized). The framework can
be extended to heterogeneous architecture with both preemp-
tive (e.g., OSEK, OSEKTime) and non-preemptive scheduling
policies on the ECUs and, time- and event-triggered (e.g.,
CAN, dynamic segment of FlexRay) arbitration on the buses
(possible future work).

REFERENCES

[1] “The FlexRay Communications System Specifications, Ver. 2.1,” www.
flexray.com.

[2] “eCos,” ecos.sourceware.org.
[3] E. Bini and A. Cervin, “Delay-aware period assignment in control

systems,” in IEEE RTSS, 2008.
[4] A. Quagli, D. Fontanelli, L. Greco, L. Palopoli, and A. Bicchi, “De-

signing real-time embedded controllers using the anytime computing
paradigm,” in IEEE ETFA, 2009.

[5] S. Samii, P. Eles, Z. Peng, P. Tabuada, and A. Cervin, “Dynamic
scheduling and control-quality optimization of self-triggered control
applications,” in IEEE RTSS, 2010.

[6] A. Cervin and P. Alriksson, “Optimal on-line scheduling of multiple
control tasks: A case study,” in ECRTS, 2006.

[7] S. Samii, A. Cervin, P. Eles, and Z. Peng, “Integrated scheduling and
synthesis of control applications on distributed embedded systems,” in
DATE, 2009.

[8] R. Castane, P. Mart, M. Velasco, and A. Cervin, “Resource manage-
ment for control tasks based on the transient dynamics of closed-loop
systems,” in ECRTS, 2006.

[9] F. Zhang, K. Szwaykowska, W. Wolf, and V. J. Mooney, “Task schedul-
ing for control oriented requirements for Cyber-Physical Systems,” in
IEEE RTSS, 2008.

[10] A. Anta and P. Tabuada, “On the benefits of relaxing the periodicity
assumption for networked control systems over can,” in IEEE RTSS,
2009.

[11] A. Y. Bhave and B. H. Krogh, “Performance bounds on state-feedback
controller with network delay,” in IEEE CDC, 2008.

[12] IBM, “ILOG CPLEX,” http://www.ibm.com/software/, Version 12.2.


