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Abstract—We present an efficient and scalable framework
for the generation of guaranteed passive compact dynamical
models for multiport structures. The proposed algorithm enforces
passivity using frequency independent linear matrix inequalities,
as opposed to the existing optimization based algorithms which
enforce passivity using computationally expensive frequency de-
pendent constraints. We have tested our algorithm for various
multiport structures. An excellent match between the given
samples and our passive model was achieved.

I. INTRODUCTION

Generating a passive multiport model from available fre-

quency domain data is an extremely challenging task. Con-

siderable effort has been put into finding a convex relaxation

to such highly nonlinear and non convex problem [1]–[3].

These techniques are computationally expensive. Some of

these algorithms ( [2], [3]) rely on enforcing the positive real

lemma by constraining the real part of the impedance matrix to

be positive definite over all frequencies. Although such a con-

straint can be certifiably enforced by using a Sum-Of-Squares

(SOS) relaxation, it is normally a costly operation, specially

when the constraints are defined on frequency dependent

matrices such as in [2], [3]. In [1], passivity constraints are

formulated as linear matrix inequalities, but the problem is still

computationally expensive because of the large matrices used

in defining the constraints. Furthermore, these optimization

based algorithms exhibit poor scalability, and quite often

exhaust computational resources, such as memory.

Researchers have been working on an iterative perturbation

framework such as [4], [5]. In these techniques a stable but

non-passive model is first identified. This non-passive model

is then checked for passivity violations by examining if there

exist pure imaginary eigenvalues of the corresponding Hamil-

tonian matrix. Finally, some parameters of the initially iden-

tified non-passive model are perturbed to correct for passivity

violations. These techniques are computationally efficient,

however since perturbing the system is an ill-posed problem,

there is no guarantee that the final passivated model is optimal

for accuracy. For instance we will show in Section VI that the

passive models generated by using [5] may lose accuracy when

the initial passivity violations are significant.

In this paper we present a framework for identifying passive

dynamical models from frequency response data. We cast the

problem as a standard semidefinte program (SDP) which can

be solved by SDP solvers such as [6], [7].We solve the problem

in two steps. First a set of common poles is identified using

already established techniques [2], [8], [9]. Next, we identify

residue matrices while simultaneously enforcing passivity.

Theoretically our identified models are restrictive in the

sense that we are enforcing passivity through a sufficient but

not necessary condition, however in practice these models can

model most practical systems as is demonstrated in Section VI.

By paying a small price in terms of accuracy we manage to

solve larger problems within limited computational resources,

such as memory, and gain orders of magnitude improvement

in terms of speed compared to [1], [2]. We remark that

although [1], [2] can generate more accurate models, their

usability is limited to very small examples.

We use a framework similar to the one proposed in [10],

however we overcome the underlying challenges which arise

from the decoupling of the two steps (i.e. identification of

stable poles and passive residues) by proposing an adaptive or

assisted pole placement algorithm which improves the stable

pole placement. The optimization problem in [10] suffers from

poor conditioning and may run into problems for systems with

a large number of poles. The algorithm proposed in this paper

addresses the conditioning problem, and proposes an efficient

way of preconditioning the matrices for the optimization

problem, hence allowing us to model multiport structures with

larger number of poles. Furthermore the algorithm proposed

in this paper is tested on a set of challenging examples for

which existing approaches do not perform well.

Although, passivity conditions similar to the ones used in

this paper were derived in [11], [12], in these papers such con-

ditions were used only to ‘check’ for passivity violations. In

our proposed algorithm, these conditions are instead built into

the model generation procedure to ‘enforce’ passivity. Also,

no efficient algorithm was proposed in [11], [12] to rectify

for passivity violations. For example in [11] it was proposed

that the pole-residue pairs violating passivity conditions should

be discarded, this is highly restrictive and can significantly

deteriorate the accuracy. We instead propose that the identified

residue matrices should conform to passivity conditions during

the model generation, such that there are no passivity violation

in the final model. The formulation presented in this paper,

being convex, is guaranteed to converge to the global minimum

and can be easily implemented using publicly available convex

optimization solvers such as SeDuMi [6].

The remainder of the paper is organized as follows: Sec-

tion II describes background on rational fitting of transfer

matrices and the notion of passivity. Section III formulates

the problem of passive fitting for multiport LTI systems. Sec-

tion V describes our algorithm and implementation. Finally,

Section VI demonstrates the effectiveness of the proposed

approach in modeling various multiport structures.
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II. BACKGROUND

A. Rational Transfer Matrix Fitting

The problem of constructing a rational approximation of

multiport systems can be formulated as finding residue ma-

trices An, poles pn and the matrices A0 and A∞ such that the

generated model, defined by the transfer function Ĥ(s) in (1),

approximates the given data.

Ĥ(s) =
N

∑
n=1

An

s− pn

+A0 + sA∞ (1)

where An,A0 and A∞ are M×M residue matrices (assuming

the system has M ports) and pn are poles. Since most of the

passive structures are reciprocal systems, An,A0 and A∞ are

assumed to be symmetric matrices.

B. Passivity of a Transfer Matrix

Passivity is the inability of a system (or model) to gen-

erate energy. Since arbitrary connections of passive systems

are guaranteed to be passive, passivity becomes an essential

requirement if the model is to be used for time domain

simulations while being interconnected with other subsystems.

While it may be possible for a non-passive model to provide

high accuracy in the frequency domain, the same model,

when used in time domain simulation could produce extremely

inaccurate results, resulting from passivity violations.

Passivity for an impedance or admittance system corre-

sponds to ‘positive realness’ of the transfer matrix. The

transfer matrix Ĥ(s) is positive real if and only if it satisfies

the following constraints

Ĥ(s̄) = Ĥ(s) (2a)

Ĥ(s) is analytic in Re{s}> 0 (2b)

Ĥ( jω)+ Ĥ( jω)† � 0 ∀ω (2c)

Where Re{ } denotes the real part, and † indicates the

hermitian transpose.

The first condition (2a), commonly known as conjugate

symmetry, ensures that the impulse response corresponding to

Ĥ(s) is real. The second condition (2b) implies stability of

the transfer function. A causal linear system in the transfer

matrix form is stable if all of its poles are in the left half of

the complex plane, i.e. all the poles have negative real part.

The third and final condition (2c), i.e. the positivity condition,

implies that the real symmetric part of the transfer matrix on

the jω axis is positive semidefinite.

III. PASSIVE MODEL FORMULATION

Separating purely real from complex poles in (1) and

evaluating it on the imaginary axis we obtain

Ĥ( jω) =
Nr

∑
n=1

Ĥr
n( jω)+

Nc/2

∑
n=1

Ĥc
n( jω)+A0 + jωA∞ (3)

where: Ĥr
n( jω) =

Ar
n

jω− pr
n

(4)

Ĥc
n( jω) =

Re{Ac
n}+ j Im{Ac

n}

jω−Re{pc
n}− j Im{pc

n}
+

Re{Ac
n}− j Im{Ac

n}

jω−Re{pc
n}+ j Im{pc

n}

Here Nr and Nc denote the number of purely real and

the number of complex poles, respectively and N = Nr + Nc.

Also, Ar
n ∈ R

M×M , Ac
n ∈ C

M×M , pr
n ∈ R, pc

n ∈ C ∀n, and

A0,A∞ ∈ R
M×M , where M is the number of ports. In the

following subsections, we consider one by one the implications

of each passivity condition in (2) on the structure of (3).

A. Implications of Passivity on Ĥ( jω)

Conjugate Symmetry requires that the complex-poles pc
n

and complex residue matrices Ac
n always appear in complex-

conjugate-pairs. Stability requires Re{pn}< 0.

The positivity condition for passivity (2c) is the most

difficult condition to enforce analytically. To enforce (2c)

we consider a sufficient condition which is described by the

following lemma
Lemma 3.1: (Positive Summation Lemma) Let Ĥ( jω) be a

stable and conjugate symmetric transfer matrix given by (3),
then Ĥ( jω) satisfies positivity if Ĥr

n( jω), Ĥc
n( jω) and A0

satisfy positivity ∀n. (using H + H† = Re{H}, for H = HT )
i.e.

Re{Ĥr
n( jω)} � 0,Re{Ĥc

n( jω)} � 0∀n & A0 � 0 =⇒ Re{Ĥ( jω)} � 0 (5)

Lemma 3.1 requires Ĥr
n( jω), Ĥc

n( jω) and A0 to satisfy posi-
tivity. After rationalizing Ĥr

n( jω), Ĥc
n( jω) and using the fact

that all poles are stable i.e. (Re{pn}< 0) we get:

Re{Ĥr
n( jω)} � 0 =⇒ Ar

n � 0 ∀n = 1, ...,Nr

Re{Ĥc
n( jω)} � 0 =⇒ −Re{pc

n}Re{Ac
n}± Im{pc

n}Im{Ac
n} � 0 ∀n = 1, ...,Nc/2

Re{A0} � 0 =⇒ A0 � 0 (6)

Hence in order to enforce passivity during the model iden-

tification, we can enforce the conditions described in (6) as

constraints.

IV. PASSIVE MODELING ALGORITHM

In this section we describe our algorithm for generation of

passive compact dynamical models for multiport systems. In

order to relax the original non-convex problem into a convex

problem, we solve the optimization problem in two steps.

The first step consists of finding a set of stable poles pn for

the system. The second step is finding a passive multiport

dynamical model for the system, given stable poles from step

1. We also propose an adaptive algorithm to add new poles as

described in Section V-E.

A. Step 1: Identification of stable poles

Several efficient algorithms already exist for the identifi-

cation of stable poles for multiport systems. Some of the

stable pole identification approaches use optimization based

techniques such as in [2]. Some schemes such as [8], [9]

find the location of stable poles iteratively. Any one of these

algorithms can be used as the first step of our algorithm,

where we identify a common set of stable poles for all the

transfer functions in the transfer matrix. As mentioned before,

to enforce conjugate symmetry, the stable poles can either be

real or be in the form of complex-conjugate pairs. We have

used [8] in our tests.

B. Step 2: Identification of Residue Matrices

In this section we formulate a convex optimization program

for the identification of the residue matrices which correspond

to passive H( jω), using stable poles pn from step 1. Combin-

ing the passivity conditions derived earlier (6), we get the

following convex optimization problem.

minimize
Ar

n,Ac
n,A0,A∞

∑
i

∣

∣

∣
Re{Hi}−Re{Ĥ( jωi)}

∣

∣

∣

2

+∑
i

∣

∣

∣
Im{Hi}− Im{Ĥ( jωi)}

∣

∣

∣

2

subject to A0 � 0, Ar
n � 0 ∀n = 1, ...,Nr

−Re{pc
n}Re{Ac

n}± Im{pc
n}Im{Ac

n} � 0 ∀n = 1, ...,Nc/2

where Ĥ( jω) =
Nr

∑
n=1

Ĥr
n( jω)+

Nc/2

∑
n=1

Ĥc
n( jω)+A0 + jωA∞

(7)



Here Hi refers to the given frequency samples. This final

problem (7) is convex, since the objective function is a

summation of L2 norms. All the constraints in (7) are linear

matrix inequalities. This convex optimization problem is a

special case of semidefinite programming, enforcing linear

matrix inequalities. This problem formulation can be solved

much faster compared to other convex formulations [2], [3]

where the unknown matrices are frequency dependent. The

implementation details on how to solve this optimization prob-

lem using a standard semidefinite programming framework is

described in Section V.

C. Proposed Algorithm

We summarize the identification procedure in Algorithm 1.

Algorithm 1 Passive Multiport Model Identification

Input: The set of frequency response samples {Hi,ωi}, and

the number of poles N

Output: Passive model Ĥ( jω)
1: Find a stable accurate system with N poles pn

2: Solve the optimization problem (7) for An

3: Construct the model in pole/residue form as in (3)

This algorithm minimizes a cost function based on L2 norm

subject to linear matrix inequalities. Such a formulation is

guaranteed to converge to the global minimum. Furthermore,

the fact that this algorithm provides analytical expressions to

enforce passivity in an efficient manner has potential, such

as in future extensions to parameterized passive multiport

models; or to include designers specific constraints such as

ensuring a good match for qualify factors in RF inductor

dynamical models.

D. Complexity

In the problem formulation (7), all the matrices are symmet-

ric, allowing us to search only for the upper triangular part.

Also, complex-valued residues are enforced by construction to

appear in conjugate pairs, hence we solve directly only for half

of the terms in the complex conjugate pair. This implies that

the unknowns in our problem are η = M(M+1)
2

(N +2), where

N is the number of poles and M is the number of ports. If we

are given κ frequency samples then the complexity of solving

our problem is roughly O (κνηγ), where γ = 2 and ν = 2.5
typically.

V. IMPLEMENTATION

In this section we will show how to cast the optimization

problem (7) into a standard semidefinite program (SPD) for-

mat: SPDA [13] which can then be solved using any SPD

solver [6], [7], [14].

A. Semidefinite Programs

Semidefinte Programs, or simply SDPs, belong to a special

class of convex optimization problems where a linear cost

function is minimized, subject to linear matrix inequalities.

SDPs in standard form can be written as

minimize cT x

subject to F1x1 +F2x2 + · · ·+Fnxn−F0 � 0
(8)

where F0,F1, . . .Fn ∈ Sk, where Sk indicates set of symmetric

matrices of order k× k.

B. Casting the Objective Function into Standard SDP

The objective function in our optimization problem (7) is a

quadratic function, which needs to be reformulated as an SDP.

For illustration we consider a generic quadratic function of the

form ||Ax−b||2. We can cast this minimization problem into

an equivalent semidefinite program as

minimize
x

||Ax−b||2

≡minimize
t,x

t

subject to

[

tI (Ax−b)
(Ax−b)T t

]

� 0 (9)

In (9) we used the Schur Complement. The constraint in (9)

can be transformed into standard SDP constraint resulting into

the final program as:

minimize
x

||Ax−b||2 =⇒

minimize
t,x

t

subject to

[

I 0

0 1

]

t +
n

∑
i=1

[

0 Ai

AT
i 0

]

xi−

[

0 b

bT 0

]

� 0

(10)

here Ai indicates the i-th column of matrix A.

C. Casting the Positive Real Constraints into SDP

The constraints for our problem (7) are comprised of Linear

Matrix Inequalities (LMIs). In this section we discuss how we

can cast LMIs as SDP in standard format. For the purpose

of illustration, we consider a generic LMI enforced on 2× 2

matrices as in (11).

c1

[

x1 x2

x2 x3

]

+ c2

[

x4 x5

x5 x6

]

� 0 (11)

such a constraint can be enforced as a standard SDP constraint

as follows
[

c1 0

0 0

]

x1 +

[

0 c1

c1 0

]

x2 +

[

0 0

0 c1

]

x3 + . . .

[

c2 0

0 0

]

x4 +

[

0 c2

c2 0

]

x5 +

[

0 0

0 c2

]

x6 � 0 (12)

D. Pre-Conditioning of the SDP Matrices

When we formulate our problem as an SDP, the coeffi-

cients for the constraints and the objective function appear

in the same matrix. These numbers may be several orders

of magnitude apart from each other, causing ill-conditioning

of the SDP matrices. To solve this problem, we normalize

our constraints with the magnitude of the associated pole. If,

however, stable residue matrices are available from step 1 the

norms of the corresponding residue matrices should instead be

used for normalization.

E. Adaptive Pole Placement

In the algorithm [10], placement of poles is independent

from the identification of passive residue matrices. Such an

isolation between the two steps simplifies the problem, the

price is paid in terms of accuracy of the final passive model.

Specially, when the fitting for stable poles reaches saturation,

adding new poles leads to over fitting and does not help in the

first step, while the fitting for residue matrices still has some

room for improvement.



In order to address this point we propose the following

semi-coupled procedure which takes into account the error

in the passive model while adding new poles as described in

Algorithm 2. We weight frequency samples (used as input to

the stable pole identification procedure) with the normalized

absolute value of the error obtained from passive identification

using the previous set of poles. This way we ensure that the

frequency band where mismatch was larger gets more weight.

Algorithm 2 Adaptive Pole Placement Algorithm

Input: Ninitial ,Nincrement ,Winitial(W := weights)
1: N← Ninitial ,W ←Winitial

2: while N ≤ Ndesired do

3: Stable Pole Identification ←{Hi,ωi,N,W}
4: Ĥ← Passive Model Identification

5: W ← |Hi− Ĥ( jωi)|∀i
6: N = N +Nincrement

7: end while

VI. RESULTS

In this section we shall present the efficacy of our algorithm

in modeling various industry provided examples of passive

multiport structures. All the computations, except for the

60 port example, are performed on a laptop with 2.1 GHz

Core2Duo processor, 3 GB of main memory and running

Windows 7. For demonstration purposes, the 60 port example

was run on a server. Our modeling algorithm generates passive

models from frequency response data formated in either Y or Z

parameters. If the samples are given in S− parameter format,

they are first converted into equivalent Y or Z− parameters

and then fed to the passive modeling algorithm to generate

passive models. Table I summarizes the performance of our

algorithm. We have compared our algorithm with [1], [2], [5].

The implementation for [4] available at the authors’ website

is restricted to two port structures only, and hence could not

be used for our comparison.

A. 1-Port Structure

The data set corresponding to the single port structure in

Table I is contained in the code distribution package available

on the website of the authors of [2]. We have tested [2] using

the original implementation provided by the authors. For this

structure we compute a model with 4 poles. The data is noisy

and hence the peak and total errors for all the techniques are

high, even with very good fits. The total error defined by (13)

for our work and for [1], [5] are very similar. However, despite

the fact that this was the only example for which we were able

to test [2], the total error for [2] was very large i.e. 161%.

etotal =
√

∑
i

|ℜHi−ℜH(ωi)|2 +∑
i

|ℑHi−ℑH(ωi)|2 (13)

Here Hi and H(ωi) are normalized values.

B. 4-Port Structure

In this section we discuss in detail the 4− port test case

from Table I. To demonstrate the accuracy of our generated

model, we’ve plotted Y11 in the form of a 3D plot in Figure 1.

Here frequency is plotted on the x-axis, while the real and
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Fig. 2. 4-port structure: Error between given data and the identified
transfer matrix. Each curve corresponds to the mismatch for individual transfer
function.

imaginary parts of Y11 are plotted on the y and z-axes respec-

tively. We observe an excellent match between the output from

our passive dynamical model (solid red line) and the data from

the touchstone file (blue dots). We’ve also plotted the error

defined by ei,k(ω) =
|Hi,k( jω)−Ĥi,k( jω)|

maxi,k,ω |Hi,k( jω)| in Figure 2 which shows

that the peak error is less than 2.5%.

We provide a comparison with the algorithm presented

in [1]. To make a fair comparison, both algorithms are imple-

mented in matlab and the convex optimization problems are

solved using the same solver SeDuMi. To compare scalability

of the two algorithms, we perform comparison both in terms

of CPU time and the memory requirement. Figure 3 plots

the amount of allocated memory (left y-axis, blue solid lines)

and the CPU time (right y-axis, red dotted lines) required

to generate the models for both algorithms. It is clear from

Figure 3 that for same model order, we get orders of magnitude

improvement both in terms of speed and memory compared

to [1]. On average we observed a significant 80× speedup.

We note that the even for very small model orders, very large

amount of memory is required by [1], and increasing model

parameters quickly exhausts the resources. Our algorithm, on

the other hand, utilizes only 1% of the memory required by

the algorithm presented in [1].

Although our proposed technique is theoretically more

restrictive then the one in [1] and [2]. We can see from

the accuracy plots that our technique can successfully model

practical passive networks, in a very reasonable time, and

using only a fraction of the memory required for other convex

optimization based algorithms. For this example none of the

other convex optimization based algorithms were able to

generate models with 45 common poles which were required

to get sufficient accuracy.



TABLE I
RESULTS SUMMARY

No. of Ports No. of Com-
mon Poles

Model
Order

Generation
Time
(seconds)

Peak
Percentage
Error

Total error
[This work]

Total error
for [5]

Total error
for [1]

Total error
for [2]

1 4 4 0.38 5.7% (noisy
data)

23.7%
(noisy data)

21.8%
(noisy data)

21.8% (0.53 sec)
(noisy data)

161% (noisy
data)

2 11 22 0.58 1.9% 7% 4% 4% (13 sec) Out of Memory

4 45 180 144.4 1.8% 12% 8% Out of Memory Out of Memory

8 5 40 0.498 0.3% 2.7% 0.014% 0.33% (58 sec) Out of Memory

12 9 108 98.30 0.007% 0.043% 1.71% Out of Memory Out of Memory

16 9 144 115.4 0.1% 2.391% 16.717% Out of Memory Out of Memory

60 5 300 9720 1.5% - - - -
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Fig. 3. 4-port structure: Allocated memory (left y-axis, blue solid lines)
and CPU time (right y-axis, red dotted lines) required to generate the models
for both algorithms.

C. 16-Port Structure

In this section we present a 16-port example. Important

model parameters are summarized in Table I. The accuracy

of the generated model is demonstrated in Figures 4 and 6.

We see that our algorithm scales efficiently with the number

of ports, compared to other optimization based algorithms

such as [1], [2] which scale very badly and hence failed

to generate model for our example. We also compared our

passive model with the passive model generated by [5]. It

is clear form Figure 5 that [5] lost significant accuracy

during the passivity enforcement step, while our passive model

achieved an excellent match with the given samples while

simultaneously enforcing passivity. From Table I we can see

that the total error, defined by (13) is 16.171% for [5] while

it is only 2.391% for our algorithm. Passivity of our identified

model was verified by Hamiltonian matrix based test and by

checking the feasibility of the final solution.

D. 60-Port Structure

To demonstrate that our algorithm can handle much larger

structures, we have also tested it on a 60 port structure. This

example was run on a server where it took approximately 3

hours to generate the model of order N = 300. In Figure 7

we plot magnitude of few Y parameters selected arbitrarily,

both from the model and the given data. The generated model

exhibits good accuracy where the peak error was less than

1.4%.We trust that a dedicated solver will significantly reduce

the computational resources required.
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E. General Discussion

For all of the test cases, passivity of our identified model

was verified by the absence of purely imaginary eigenvalues of

the associated Hamiltonian matrix. Since we enforce passivity

as constraints in the optimization problem, passivity of our

models was further certified by checking feasibility of the

solution i.e. by the presence of only positive eigenvalues for

the semidefinite constraints defined in (7).

From Table I, we note that the algorithms presented in [1]

and [2], ran out of memory for most of the test cases and did

not generate the model. For the smaller test cases, where [1]

did generate a model, we gained significant speed-up (22× and

116×) at the price of small degradation in accuracy. Compared

to [5] we gain accuracy for some test cases, while for others,

the algorithm in [5] performs better. This is because for some

of the testcases the initially identified stable model in [5] is

already passive or have minor passivity violations, in such

a scenario, the model generated by [5] retains accuracy and

performs better than our algorithm. For the test cases where the

initial non-passive models have significant passivity violations,

the perturbation step could severely degrade the accuracy for

[5] (such as the 12 and 16 port examples in Table I). For such

examples our algorithm gives better accuracy.

To summarize, we encourage the user to first try the

relatively inexpensive algorithm [5]. If the initially generated

stable model is already passive then the model can be used

as is. On the other hand, if significant passivity violations are

observed before the perturbation step in [5], then the user may

switch to our algorithm to get better results. The proposed flow

is demonstrated in the Figure 8.

VII. CONCLUSION

In this paper we have presented an efficient optimization

based framework for the identification of passive multiport

models. We have also presented a standard semidefinite pro-

gramming based implementation. Furthermore, the underlying

challenges related to over fitting and poor conditioning are

addressed. The algorithm is supported by various multiport

examples where accurate and certified passive models are

identified in a reasonable time demonstrating the scalability

of the algorithm. A comprehensive comparison with existing

techniques is provided and a framework is proposed which

uses our algorithm in conjunction with the existing approaches.
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