
Automated Construction of a Cycle-Approximate
Transaction Level Model of a Memory Controller

Vladimir Todorov†, Daniel Mueller-Gritschneder‡, Helmut Reinig†, Ulf Schlichtmann‡
† Intel Mobile Communications GmbH ‡ Technische Universität München

vladimir.todorov@intel.com helmut.reinig@intel.com daniel.mueller@tum.de ulf.schlichtmann@tum.de

Abstract—Transaction level (TL) models are key to early design
exploration, performance estimation and virtual prototyping.
Their speed and accuracy enable early and rapid System-on-
Chip (SoC) design evaluation and software development. Most
devices have only register transfer level (RTL) models that are
too complex for SoC simulation. Abstracting these models to
TL ones, however, is a challenging task, especially when the
RTL description is too obscure or not accessible. This work
presents a methodology for automatically creating a TL model
of an RTL memory controller component. The device is treated
as a black box and a multitude of simulations is used to obtain
results, showing its timing behavior. The results are classified into
conditional probability distributions, which are reused within
a TL model to approximate the RTL timing behavior. The
presented method is very fast and highly accurate. The resulting
TL model executes approximately 1200 times faster, with a
maximum measured average timing offset error of 7.66%.

I. INTRODUCTION

Modern system-on-chip (SoC) designs are very complex
and, thus, very hard to simulate and verify. The conventional
register transfer level (RTL) modeling is of too fine granularity
to allow whole system designs to be rapidly simulated or used
as virtual prototypes. Therefore, another more abstract level of
modeling, namely electronic system level (ESL) [1], has to be
applied.

ESL concentrates on abstract models of hardware compo-
nents, which manage to keep the same or approximately the
same timing accuracy as an RTL one, but execute much
faster than their RTL counterparts. The ESL models, however,
may not be synthesizable. The important factor is the correct
representation of the original’s device behavior. These models
provide a fast and versatile way of design exploration and
performance estimation. Therefore, a multitude of design
decisions can be evaluated in a short amount of time.

To further reduce the simulation effort, the abstract models
use a different communication paradigm. Instead of signals (as
in RTL), which are directly mapped onto physical wires, they
exchange messages, called transactions [2], [3]. Thus, ESL
uses transaction level modeling (TLM) [4]. Each transaction
occupies simulation time and represents the whole communi-
cation intent as one entity. This removes the need for signals
and reduces the number of breakpoints in the simulation by
making the models sensitive to a much smaller amount of
events.

SoC designs contain significant numbers of devices, some of
which may only have RTL models. Hence, transaction level
(TL) models have to be created in order to proceed with ESL

simulations. However, the task might be a challenging one, as
some devices may be an Intellectual Property (IP), provided
by external vendors and, thus, no access to RTL description is
granted or their RTL description is too complex and obscure
and manual remodeling might consume too much time.

This work tackles the problem of rapidly creating an abstract,
cycle-approximate TL model of an RTL IP block, describing
a memory controller, to be used within an industrial virtual
prototype on ESL. A memory controller is a device responsible
for managing memory media such as DRAM and/or any non-
volatile medium and the flow of information to and from it. It
takes care of serving the memory as required by its protocol
(refreshing, opening/closing of banks and rows) and provides
a general interface to the rest of the system for storing and
loading data.

The complexity and obscurity of the memory controller’s
RTL description do not allow for abstracting the model by
hand. The functional part is straightforward - the device
just passes information between the system and the memory.
However, the timing exhibited by the device remains hidden
within the RTL logic. To solve the problem, an automatic, fast,
and accurate method is devised. It extracts the timing behavior
from the RTL model by means of simulations, organizes
the results into conditional probability distributions (cycle-
approximate timing model) and provides the distributions in
a usable form to an abstract generic TL model (functional
model), written in SystemC. The TL model uses the con-
ditional probability distributions to recreate the delay and
applies it on transactions. This methodology allows for a rapid
construction of accurate, low complexity TL models.

The main contribution of this work is a novel methodology
for automatic and rapid generation of a cycle-approximate
model of a memory controller, where:

• No access to RTL description is required
• The resulting TL model has very high execution speed
• The timing accuracy of the resulting TL model is high

(low timing error)

The rest of the paper is structured as follows. Section II
presents the related work on abstracting away RTL models
and co-simulating such with TL ones. In Section III the core
of this work, the modeling methodology, is presented. Section
IV provides the obtained results about the accuracy and speed
of the approach. Finally, Section V presents conclusions and
an outlook.978-3-9810801-8-6/DATE12/ c©2012 EDAA

II. RELATED WORK

Several other approaches for abstracting or translating RTL
descriptions exist. The authors in [5] present an automatic
way for construction of transactors, i.e., abstract adapter
modules that translate the transactions to RTL signals and
vice-versa, allowing for co-simulation between different levels
of granularity. However, transactors decrease the simulation
performance as the RTL implementation remains the bottle-
neck. There exist several off-the-shelf tools like Verilator [6],
V2SC [7] and a tool called V2X presented in [8] that deal
with the translation of hardware description languages like
VHDL and Verilog to SystemC, which can be adapted to
work with transactions. However, this approach translates the
code with minor optimizations performed on the structure and
there is almost no performance gain. The tools also require
access to the RTL structure itself, which may not always be
available. Another approach for automatically converting RTL
descriptions to TL equivalents is presented in [9], [10]. This
approach uses extended finite state machines [11] to create a
formal description of a module. The formal description serves
as a template for the creation of the TL model with the
same functionality. This approach, however, removes timing
information and produces untimed models. In comparison, the
approach presented in this paper provides an RTL description
independent, fast and accurate method for constructing timed
TL models.

III. MODELING METHODOLOGY

To solve the problem, the RTL description of the memory
controller is treated as a black box module with sets of inputs
and outputs (Fig. 1). The exact internal behavior of the device
remains hidden, but the activity on its periphery is observable
in RTL simulations. The intrinsic timing of the black box can
be obtained by performing measurements on the results of
these simulations.

����
����
����

����
����
����

����
����
����
����

tin t

in

out
∆

tout

in

out

RTL Module
(black box)

Fig. 1. Black box module

The set of inputs is comprised of all the signals that carry
information from the system to the memory controller and the
set of outputs contains all the signals that do the opposite. The
variable of interest is the delay caused by the RTL module,
∆ = tout−tin, or how much time is needed for a given input to
produce some output. For example, ∆ can be the time between
the arrival of a read request (tin) and the appearance of the
first data beat (tout) or the time between an arrival of a write
access (tin) and the end of its last data beat (tout).

By applying constrained random accesses (distributed over
the range of meaningful inputs), the behavior of ∆ for many
different requests to the RTL component is extracted. The re-
sults are then used to construct a statistical profile for ∆, which

is reused within a functional model on TL. The functional
model just forwards transactions between the memory and the
rest of the system.

A. Statistical Timing Model

During the RTL simulation of the memory controller, each
provided request xi (read or write) triggers a response yi of
some kind. The delay ∆i marks the difference between the
arrival time of the request (txi) and the one of the response
(tyi). The goal is to gather the delays for the different request
and then reuse them within the TL model. However, the delay
∆i resulting from xi is not stationary and has more than one
realization (Fig. 2). Due to dynamical processes occurring
within the controller, providing the same input xi at two
different time points t1 and t2 may result in ∆t1

i 6= ∆t2
i .

Thus, an access xi may produce different ∆i, depending on
circumstances, such as the internal state of the controller. By
producing a large number of observations, a profile of ∆i

in the form of histogram is constructed, yielding a statistical
distribution of the variable.

Fig. 2. Delay distribution for read accesses

To minimize uncertainty and, respectively, the variations of
the resulting distributions, dependencies are included. They
enable the splitting of a single statistical model of the delay
into several smaller ones, represented in the form of condi-
tional probabilities.

The results of the RTL simulations of the memory controller
are formatted as waveforms. Waveforms predominantly have
illustrative purposes, as they provide a convenient, but cum-
bersome way for exploring the activity of a particular circuit
(Fig. 3).

Opcode

Address

Write

Read

clk

Data_in

Data_out

WRAP 2 WRAP 4

A B

A1 A2

B4B3B2B1

Fig. 3. Waveform scanning

To speed up the process, waveform analysis is done by
software. It slides a virtual marker through the simulation
results, while observing the values on the wires W and in
the registers R, representing the input/output of the memory
controller. As the marker is slid, the pattern (||W|| and ||R||)
formed by the members of W and R changes. The algorithm
is informed about the communication protocol and usesW and
R to identify the beginning of an access and its corresponding
response. The identified accesses, together with the responses
are encapsulated into data structures. Each instance of the data
structure Ai saves all the properties of a particular memory
access xi. Additionally, it has two timestamps. One is the txi
(start time), indicating the arrival time of the access and the
other one is the tyi (end time), indicating the arrival time of
the response. This allows the structure to represent also the
delay ∆i. All extracted accesses are sorted by start times into
a queue Qaccess .

A set of criteria C is devised according to the specifics of
a general memory controller in order to embrace factors that
affect the delay. The criteria are used as dependencies in the
construction of the conditional probability functions. The set
C used for the memory controller is the following:

• Type - Differentiates types of accesses(Read or Write).
• Opcode - Differentiates accesses’ lengths in terms of data

words. Shorter requests are expected to take shorter time.
• Predecessor - Sorts accesses by their predecessors. For

example, a read access preceded by a write access is
different than a read access preceded by a read access.
The possible outcomes grow with number of predeces-
sors considered (taps) by a factor of two (2taps, with
taps ∈ [1,∞)).

• Successor - Differentiates accesses according to the type
of access that follows the one being classified.

• Bank - Differentiates whether an access exhibits a bank
change or not. A bank is a portion of the memory, which
is specified in the address field of an access. Changing
banks is expected to impose higher delay.

• Row - Similar to the Bank criterion, but tracks changes
on sub-portions of a bank, called rows.

• Distance - Sorts out accesses according to the distance
between them and their immediate predecessors. The
distance d is measured in cycles and d ∈ [1,M], where
M,d ∈ N. M is the maximum considered distance and
if d > M d is set to M .

• Status - Decides if the controller is busy or not when the
current request arrives. Higher delay is expected when
the controller is busy.

• Overlap - Works in the opposite direction. A larger
delay for the current access in service is expected, if the
controller has to accept another request meanwhile.

By making use of C a classification scheme is constructed.
The criteria in C or a subset of them are applied one after
the other to construct it. Each criterion C ∈ C is a filter with
multiple outcomes, the combination of several criteria results
in a tree structure Tclass = (N ,K, ρ), described by its inner

nodes N , leafs K and the function ρ : K → N+, giving the
path from the root to each leaf. Each node N ∈ N designates
a criterion and each leaf is associated with a delay distribution
D ∈ D via the bijective mapping ν : D → K. D is the set of
resulting conditional distributions. The accesses from Qaccess

traverse the tree and are classified to the respective leafs.

Fig. 4. Tree traversal

For illustrative purposes, only two criteria are utilized, while
in the final application the whole C is used. Fig. 4 is an
example for a tree spanned by two criteria, e.g. C1 = Type
and C2 = Status, each with two possible realizations. The
depicted access is first identified as a read and the appropriate
branch is selected. Next, the controller is identified as busy
and the left branch is selected. Finally, the delay of the access
is added to the histogram of the leaf, which represents the
delay distribution of read accesses that have occurred while the
controller has been busy. As an example, Fig. 5 shows the real
histograms of the delays of read accesses, differentiated by the
controller’s state. Algorithm 1 lists the traversal process.CMY

is the criterion at the current node,|CMY | denotes the number
of realizations of the criterion and ~Qout is the vector of the
resulting sub-queues from a criterion.

Fig. 5. Delay histograms for read accesses based on controller’s state

Fig. 6 shows the example tree after the traversal has finished.
To end up with more accurate statistical representation, effects
like the additional delay from a memory refresh can be omitted
from the original distributions. The refresh of a memory comes
with a predefined period and duration. Thus, it can be easily,
deterministically included in the TL model. Including the
refresh impact in this manner makes the model more accurate
as it preserves the periodicity.

Algorithm 1 Propagation Algorithm
1: PROCEDURE: Tclass.traverse(Q)

2: BEGIN
3: root.propagate(Q,NIL) {NIL stands for nothing in list}
4: END

1: PROCEDURE: N.propagate(Q,Qorig)

2: BEGIN
3: ~Qout ← CMY (Q,Qorig)

4: for n ∈ [1, |CMY |] do
5: child[n].propagate(~Qout[n], Qorig)

6: end for
7: END

1: PROCEDURE: K.propagate(Q,Qorig)

2: BEGIN
3: for i ∈ [1, length(Q)] do
4: Dleaf .insert(Qi.delay time)

5: end for
6: END

At the end all D ∈ D are converted to cumulative distribution
functions (CDFs) by discrete integration. Therefore, each class
K ∈ K is mapped to a CDF F ∈ F with the bijective mapping
η : K → F . The statistical timing model is then represented
by Tclass = (N ,K, ρ,F , η).

Fig. 6. Established PMFs

B. Transaction Level Model

Tclass is loaded within a functional TL model and designated
as Tmodel. It is used to classify incoming transactions. During
the TL simulation, the properties of the controller and of each
transaction are examined. Based on them a correct delay is
assigned to the transaction. As an example, in Fig. 7 a read
transaction occurs, while the controller is idling. Therefore,
the READ and IDLE edges are taken, leading to the second
leaf. The CDF associated with this leaf is used to determine
the delay of the transaction because it describes the delay
distribution of read accesses that occur when the controller
is idle. As it is a distribution and not a deterministic value, a
random delay is generated as follows.

Fig. 7. Delay generation

The regeneration of a random variable X is done by the use
of another uniformly distributed one U ∈ U [0, 1) and the CDF
of X (CDFX), which has to be invertible [12]. Eq.1-5 show
that x = CDF−1X (u), where x is the realization of X and u
is the realization of U . This is a non-parametric approach for
reconstructing a random variable [13]. Another approach is
to extract characteristics like mean, variance and even higher
moments and put them in an already known analytical form.
It, however, is only applicable when the resulting CDFs can
be described by analytical density functions, which is not the
case.

U ∈ U(0, 1) ∧ ∃ CDFX (1)

CDFU (u) =

u∫
0

pdfU (u′)du′ = u (2)

Find f : x = f(u) ∧ u = f−1(x)

u=f−1(x)∫
0

pdfU (u′)du′

︸ ︷︷ ︸
u

=

x∫
−∞

pdfX(x′)dx′ =⇒ (3)

u = f−1(x) = CDFX(x) =⇒ (4)

x = CDF−1X (u) (5)

(a)

(b)

(c)

(d)

Fig. 8. Reduction process

Some of the leafs in K can be associated with empty
distributions in F because no memory access has reached
them during the measurements on the RTL results. Their delay
is, thus, undefined. Due to differences between the levels of

abstraction, a transaction during a TL simulation might reach
such a leaf. To deal with this, Tmodel is pruned and all leafs
associated with empty distributions are removed.

Fig. 8(a)-8(d) shows the pruning process. The approach is
bottom-up. All empty leafs are identified and marked (stripes).
Next, the nodes that have all their children empty are marked
also as empty. The empty elements are cut out and links to
their closest siblings are placed instead. This approach ensures
that if not the correct one, then a close guess is returned as a
delay.

The final TL model is composed of a scheduling algorithm,
the timing model Tmodel, based on the whole C, and a process,
which deterministically adds the impact of a memory refresh.
The refresh in this case is not included in the statistical part. It
has a known period (τrefresh), duration (drefresh), resulting
in a penalty (∆refresh) and is deterministically reconstructed
(Fig. 9). Algorithm 2 shows how the refresh penalty is added
to transactions (Θ).

Memory Access

t

∆refresh

∆refresh

drefresh

N × τrefresh

Fig. 9. Refresh mechanism

Algorithm 2 Refresh Engine Algorithm
1: PROCEDURE: add refresh impact(Θ)

2: BEGIN
3: tafter ← tsim mod τrefresh {Time after the occurrence of the last refresh}
4: {If the refresh occurs before or at the start of a transaction}
5: if tafter ≤ drefresh then

6: ∆refresh ← drefresh − tafter
7: return Θ.twait + ∆refresh × τclk − tafter
8: end if
9: {If the refresh occurs during the transaction}
10: if τrefresh − tafter ≤ Θ.twait then

11: ∆refresh ← drefresh

12: return Θ.twait + ∆refresh × τclk
13: end if
14: return Θ.twait {No hit by a refresh}
15: END

Fig. 10 depicts the memory controller model together with
the memory module. The model has two processes, one for
receiving transactions from the system (Input) and one for
sending transactions, such as responses to read accesses,
to the system (Output). The timing of the memory is, by
construction, contained within the model of the controller.
Thus, the model is attached to an untimed memory, which
further reduces the simulation effort.

Fig. 10. TL model

On Input reside the delay model and the scheduling algorithm
(Algorithm 3), which takes care of queuing up the transactions
in a correct fashion. Enew is the event, notifying the presence
of a new transaction. Lines 6 and 30 track the state of the
controller. Lines 16-22 ensure that there is no out of order
serving of read transactions (the RTL module also does not
support it). When a transaction ΘZ enters the model at tZ
it gets assigned a delay ∆Z and enters the waiting queue Ω.
It waits until its ending time is reached and gets pushed to
the memory model. If meanwhile at tZ+1 another transaction
ΘZ+1 enters the model, ΘZ gets pulled out of the queue
and gets assigned a successor ΘZ+1 (line 11). Its delay gets
recomputed and is pushed back to Ω (lines 12-14). ΘZ+1 is
assigned a delay ∆Z+1 and also inserted in the queue. When
the simulation time reaches an ending time of a transaction,
the transaction gets dispatched to the memory model (line 26).

Algorithm 3 Scheduling Algorithm
1: PROCEDURE: KernelProcess()
2: BEGIN
3: wait(Enew)

4: while true do {Main loop}
5: if ∃ΘZ+1 then {If a new transaction has entered}
6: idle ← false
7: ΘZ+1.twait ← Tmodel.get wait(ΘZ+1)

8: ΘZ+1.twait ← add refresh impact(ΘZ+1)

9: ΘZ+1.tend ← tsim + ΘZ+1.twait

10: if ∃ΘX ∈ Ω ∧ overlap(ΘZ,ΘZ+1) then
11: ΘX.successor ← ΘZ+1.type

12: δ ← max(0, Tmodel.get wait(ΘX) − ΘX.twait)

13: ΘX.twait ← ΘX.twait + δ

14: ΘX.tend ← ΘX.twait + ΘX.tbegin

15: end if
16: if ΘZ+1.type = Read then
17: if ∃ΘLR ∈ Ω ∧ ΘLR.tend ≥ ΘZ+1.tend then
18: ΘZ+1.tend ← ΘLR.tend + τclk × ΘLR.datawords

19: ΘZ+1.twait ← ΘZ+1.tend − tsim
20: end if
21: ΘLR ← ΘZ+1

22: end if
23: Ω.insert(ΘZ+1)

24: Ω.sort()

25: else {A timeout has occurred}
26: dispatch(Ω[0])

27: Ω.pop()

28: end if
29: if |Ω| = 0 then {Wait on a new transaction event}
30: idle ← true
31: wait(Enew)

32: else {Wait on a new transaction event with a timeout equal to Ω[0].tend − tsim}
33: wait(Enew ∨max(0,Ω[0].tend − tsim))

34: end if
35: end while
36: END

Output contains a simple process, which returns responses
of transactions of type read.

IV. EXPERIMENTAL RESULTS

The modeling approach is applied to a memory controller
used in industry. The timing accuracy of the TL model is
compared to the one of the RTL model. For the construction
of Tclass all criteria from C were utilized. Additionally, 250
RTL simulations each consisting of 2000 random accesses
with random sizes were used for constructing the delay distri-
butions. The total amount of time required for obtaining all the
simulation results and constructing the timing model is approx-
imately 100 hours. In contrast, the estimated time for manual
construction of such a model is 3 months. For the comparison
step, both devices were stimulated with constrained random

accesses/transactions, produced by equivalent generators. Each
simulation was performed with 2000 accesses/transactions.
The average cumulative delays for both models were then
compared for accesses of different lengths. Fig. 11 presents the
results. In the figure SINGLE = 1 dataword, BURST2 = 2
datawords, BURST4 = 4 datawords, and BURST8 = 8
datawords. MIXED represents the test-case with all lengths
combined and equally probable.

Fig. 11. Average cumulative delay for 2000 accesses/transactions

Fig. 12 shows the delay distributions of BURST8 ac-
cesses/transactions of the RTL and the TL models. The delays
exhibited by the TL model mimic the ones by RTL one.

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

P
ro

b
a

b
il

it
y

Delay [cycles]

Read Accesses (RTL)

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

P
ro

b
a

b
il

it
y

Delay [cycles]

Read Transactions (TL)

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a

b
il

it
y

Delay [cycles]

Write Transactions (TL)

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

Delay [cycles]

P
ro

b
a

b
il

it
y

Write Accesses (RTL)

Fig. 12. Distributions of assigned delays

Table I shows the averages of the cumulative delay for all
2000 accesses/transactions to the memory controller for the
RTL reference simulation and the TL simulation. Except for
the SINGLE dataword accesses, the delays estimated by the
TL model are slightly smaller as compared to the ones of the
reference RTL simulation. The worst deviation of 7, 66% is
observed for BURST4 accesses. The average execution time
to simulate a test case on TL is approximately 6 seconds.
The average execution time to simulate a test case on RTL is
approximately 2 hours. Hence, a speed gain of approximately
1200× is observed for the simulation of the memory controller.
As simulating a SoC on RTL is infeasible, the time required
for constructing the TL model using this methodology is
reasonable, given its simulation speed.

TABLE I
COMPARISON OF CUMULATIVE DELAYS

HH
HH

RTL [s] TL [s] Error [%]
SINGLE 1.2173e-04 1.2365e-04 -1.58
BURST2 1.4283e-04 1.3775e-04 3.55
BURST4 1.7453e-04 1.6116e-04 7.66
BURST8 3.0652e-04 2.9455e-04 3.90
MIXED 1.8644e-04 1.7900e-04 3.99

V. CONCLUSION

The presented approach for abstracting a cycle-approximate
TL memory controller model from RTL description is fast,
highly accurate and results in a model with low complexity
and excellent simulation speed. It is automated and RTL
specifics independent, producing a cycle-approximate, timed
model in less than a week. The low error margin between
−1.58% and 7.66% and the huge speed-up of 1200× make the
resulting model usable in system level simulations and virtual
prototypes. As future work, the methodology can be extended
to other devices beyond memory controllers. Furthermore, the
timing model can be changed to a more sophisticated one, e.g.
by using neural networks.

REFERENCES

[1] D. C. Black, J. Donovan, B. Bunton, and A. Keist, SystemC:
From the Ground Up, 2nd ed. Springer, 2010.

[2] N. Calazans, E. Moreno, F. Hessel, V. Rosa, F. Moraes, and
E. Carara, “From VHDL Register Transfer Level to SystemC
Transaction Level Modeling a Comparative Case Study,” in
16th Symposium on Integrated Circuits and Systems Design
(SBCCI’03), 2003.

[3] G. Stehr and J. Eckmüller, “Transaction Level Modeling in
Practice: Motivation and Introduction,” in IEEE International
Conference on Computer-Aided Design (ICCAD), 2010, 2010.

[4] L. Cai and D. Gajski, “Transaction Level Modeling: An
Overview,” in CODES+ISSS’03, October 2003.

[5] N. Bombieri, N. Deganello, and F. Fummi, “Integrating RTL
IPs into TLM designs through automatic transactor genera-
tion,” in Design, automation and test in Europe, 2008.

[6] “http://www.veripool.org/wiki/verilator.”
[7] “http://www.mazdak-alborz.com/v2sc.html.”
[8] Y.-H. Liaw, S.-H. Hung, and C.-H. Tu, “V2X: An Automated

Tool for Building SystemC-based Simulation Environments
in Designing Multicore Systems-on-Chips,” in International
Symposium on Parallel and Distributed Processing with Ap-
plications (ISPA), 2010.

[9] N. Bombieri, F. Fummi, and G. Pravadelli, “A Methodology
for Abstracting RTL Designs into TL Descriptions,” in 4th
IEEE/ACM International Conference on Formal Methods and
Models for Co-Design, 2006.

[10] N. Bombieri, F. Fummi, and G. Pravadelli, “Automatic Ab-
straction of RTL IPs into Equivalent TLM Descriptions,” in
IEEE Transactions on Computers, 2010.

[11] C. Kwang-Ting and A. Krishnakumar, “Automatic Functional
Test Generation Using The Extended Finite State Machine
Model,” in 30th Design Automation Conference, 1993.

[12] A. Papoulis, Probability, Random Variables, and Stochastic
Processes, A. V. Balakrishnan, G. Dantzig, and L. Zadeh, Eds.
McGRAW-HILL KOGAKUSHA, LTD., 1965.

[13] F. Flaamennt, S. Guilley, J.-L. Danger, M. A. Elaabid,
H. Maghrebi, and L. Sauvage, “About Probability Denstiy
Function Estimation for Side Channel Analysis,” in COSADE
2010 - First International Workshop on Constructive Side-
Channel Analysis and Secure Design, 2010.

