
Combining Module Selection and Replication for
Throughput-Driven Streaming Programs

Jason Cong, Muhuan Huang, Bin Liu, Peng Zhang and Yi Zou
Computer Science Department, University of California, Los Angeles

Abstract—Streaming processing is widely adopted in many
data-intensive applications in various domains. FPGAs are com-
monly used to realize these applications since they can exploit
inherent data parallelism and pipelining in the applications
to achieve a better performance. In this paper we investigate
the design space exploration problem (DSE) when mapping
streaming applications onto FPGAs. Previous works narrowly
focus on using techniques like replication or module selection
to meet the throughput target. We propose to combine these
two techniques together to guide the design space exploration.
A formal formulation and solution to this combined problem is
presented in this paper. Our objective is to optimize the total
area cost subject to the throughput constraint. In particular, we
are able to handle the feedback loops in the streaming programs,
which, to the best of our knowledge, has never been discussed
in previous work. Our methodology is evaluated with high-level
synthesis tools, and we demonstrate our workflow on a set of
benchmarks that vary from module kernel design such as FFT
to large designs such as an MPEG-4 decoder.

I. INTRODUCTION

The primary goal of implementing streaming application-
s is to meet throughput requirements. Streaming programs
are usually modeled in graphs, where each node in the
graph represents an actor. Previous approaches to increasing
throughput focus on replicating the bottleneck actors [1]–
[7]. Those approaches point out that stateless actors, which
have no dependence between consecutive executions, offer
much data parallelism opportunities that can be exploited
by replication of these actors. This strategy is targeted at
a multicore architecture [1]–[6] or a multicore architecture
with accelerators such as GPU [7]. For example, a greedy
algorithm for mapping actors to different cores was proposed
in [2]. If there are fewer actors than cores, the partitioner
considers the actors in decreasing order of their computational
requirements and replicates the candidate actors until all the
cores are occupied. Conversely, if there are more actors than
cores, the partitioner repeatedly fuses the least demanding
actors until all actors fit in the multicore. In the context of
the FPGA platform, a similar idea was also exploited. [8] [9]
extend the idea of actor replication to the FPGA platform with
consideration of resource limitations. For example, in [8] the
proposed algorithm essentially performs maximal replication
of all the stateless actors bounded only by the FPGA resource,
then fuses the actors that do not affect the throughput. While
replication does increase the throughput, such a mechanism is

978-3-9810801-8-6/DATE12/©2012 EDAA

quite resource-consuming since occupied resources increase
quickly as the number of replicas increases. High resource
utilization might lead to a timing closure problem in FPGA
implementation. Another disadvantage of this scheme is that
it does not evaluate different possible implementation options
for the actors to improve the performance; thus, only limited
design space is explored.

In this paper we address the following issue: how do we
design area-efficient FPGA implementations for streaming
programs under the throughput constraints? We notice that
most actors in streaming programs could have different im-
plementations that trade off the processing throughput and
area. Their combinations provide great opportunities for op-
timization since much area can be saved by selecting slower
implementations for non-critical actors. This idea of module
selection has been extensively explored in the past (for exam-
ple in [10]–[14]). However, these studies target a fine-grained
circuit level, and thus replication techniques are not employed.
Moreover, most studies focus on the tradeoff between area and
time, and do not consider throughput as a constraint.

In this work we are interested in building a library of
implementations and selecting the best implementation from
the library to replicate. Thus, our strategy could be viewed as
a combination of module replication and module selection. As
far as we know, we are the first to tackle the DSE problem
by combining these two techniques. In contrast to previous
work on design space exploration [1] [8] [9] that considers
only streaming programs without feedback loops, we also
take feedback loops into consideration since these are usually
significant throughput bottlenecks in streaming programs [15].

The remainder of the paper is organized as follows. Section
II provides background and our motivating example. Section
III details the formulation and our methodology for the design
space exploration problem. Section IV presents experiment
results, and we conclude in Section V.

II. BACKGROUND AND MOTIVATING EXAMPLE

In this work we use a synchronous data flow (SDF) [16] as
our computation model. Streaming applications are represent-
ed as SDF graphs (SDFGs.) Nodes in the graph are actors,
and the edges are called channels.

In general, actor replication is not an area-efficient design
technique for increasing throughput because control logics,
which do not directly contribute to throughput, are also du-
plicated. Moreover, some computing logics might be wasteful
after replication. For example, consider an actor that contains

(1, 6059)

(2, 3556)

(4, 2133)
(8, 2125)

(16, 1668)

(32, 1451) (254, 725)

0

20

40

60

80

100

120

140

160

0

1000

2000

3000

4000

5000

6000

7000

1 10 100 1000

Initiation Interval

SLICE

DSP

Fig. 1. Tradeoff between performance and area of one actor in benchmark
“filterbank.”

two add and one multiply operation, while the slowest imple-
mentation would use one adder and one multiplier to do the
computation. When we duplicate such an implementation, two
adders and two multipliers are generated, and one multiplier
is wasted.

When mapping an actor in streaming programs onto FPGAs,
by setting different design goals and deploying different opti-
mization configurations we can generate “functionally equiv-
alent” implementations that differ in area and performance.
Therefore, we could generate a library of implementations
for each actor so that design space is enlarged. For example,
initiation interval (II) is a well-known parameter that trades
off between area and throughput. In streaming applications,
the initiation interval specifies the number of cycles between
the consecutive firing of an actor and indicates to what
extent the actor is pipelined. A pipelined actor offers high
throughput, but usually at a large area cost because resource
sharing opportunities are reduced. Fig. 1 plots the initiation
interval and area cost of our FPGA-based implementations
for one actor in the StreamIt benchmark “filterbank” [17]. The
initiation interval of these design points are 1, 2, 4, 8, 16 and
254, respectively. We can see from the figure that decreasing
the initiation interval results in more DSP logics and slices.
To achieve a throughput of one firing per cycle, we could
either replicate the slowest implementation (with II = 254)
into 254 copies, or use the implementation with II = 1 directly.
Obviously the latter option is more area efficient.

It’s worthwhile to mention that pipelining does not guaran-
tee that the throughput target can be satisfied, and replication
is still needed in cases where a fully pipelined design cannot
satisfy the high throughput target. There are also situations
when hardware designers choose to use the predefined IP cores
to avoid high development cost, and they do not have many
choices for different implementations.

III. PROBLEM FORMULATION AND SOLUTIONS

Consider a stream graph that has M actors. When mapping
actor fm in the stream graph to a physical module on FPGAs,
we can have different implementations P 1

m, P 2
m,...,PSm

m , where
each implementation P s

m can perform the functionality of fm
with area cost A(P s

m), initiation interval δ(P s
m), and execution

time t(P s
m). Sm denotes the number of implementations we

have for actor fm. Moreover, to meet the throughput target, fm

fm

 in
1(fm)

2

1

2

4

8

 out
1(fm)=max{ in

1(fm)/2, in
2(fm)/1, in

3(fm)/2} * 4

 in
2(fm)

 in
3(fm)

 out
2(fm)=max{ in

1(fm)/2, in
2(fm)/1, in

3(fm)/2} * 8

Fig. 2. Throughput target propagation.

can be implemented as several replicas of one implementation
selected from the library. The DSE problem for streaming
applications requires selecting implementations for each actor
under throughput constraint while minimizing the total area
cost. Such a throughput-driven DSE problem for streaming
applications differs from traditional DSE problems in that we
need to maintain a balance between the consecutive actors;
i.e., it is not beneficial to increase the throughput of a
producer actor when its producer rate is higher than the highest
consumer rate that the following actor can sustain.

A. Throughput Calculation

For actor fm and its implementation P s
m, the maximal input

throughput θin(P
s
m) and output throughput θout(P

s
m) of fm

are calculated as

θin(P
s
m) =

In(fm)

δ(P s
m)

, θout(P
s
m) =

Out(fm)

δ(P s
m)

, (1)

where In(fm) and Out(fm) equals the number of data tokens
that fm consumes on the input data channel and produces on
the output data channel during each firing. And δ(P s

m) is the
initial interval of P s

m. This definition is different from [8] in
which the authors substitute δ(P s

m) with t(P s
m), because their

definition does not consider pipelined implementations. If an
actor has multiple input channels, the channel with the lowest
data consumer rate is used in function (1).

The system throughput is measured at the first actor in the
SDFG. It measures how many data tokens the system can
consume in one clock cycle. We notice that for the SDFG
that does not contain feedback loops, we are able to express
the relationship between the system throughput target and the
throughput target of each actor. Thus, we can break down
the original problem into independent module selection sub-
problems for each actor and greatly reduce the problem size.
For a SDFG with feedback loops, system throughput is related
to the total execution time of the actors on the feedback path,
and thus we need to consider the operation semantics of these
actors. We will describe the detailed formulations of these two
scenarios in the following two subsections.

B. SDFGs Without Feedback Loops

Let us first discuss how to propagate the input throughput
target to the output throughput target for a single actor. Denote
the number of input and output channels for actor fm as
numIn(fm) and numOut(fm). The throughput target on the
input/output channel is denoted as θjin(fm)/θkout(fm), where
1≤j≤numIn(fm) and 1≤k≤numOut(fm). Now, given the
input throughput target θjin(fm), the output throughput target

f
3

f1

2

f2

4

111 2

(a)

f5

f
1

2

f
4

4

111 2f2
1 1

f
31 1

21

(b)

f5

f
1

2

f
4

4

111 2
f
23

1 1

(c)

f
5

f1

2

f4

4

111
2f2

1 1

f
31 1

21

(d)

Fig. 3. (a) An example of the simplest form of feedback loop. (b) An
example of a more complicated form of feedback loop. (c) and (d) are two
ways to transform (b) into a simpler form. In (c), f2 and f3 are merged into
one actor f23. In (d), assume f3 has a longer execution time than f2, then
we only need to consider f3 in the feedback path.

θkout(fm) is calculated as

θkout(fm) = max
j

{
θjin(fm)

Inj(fm)

}
·Outk(fm),

1≤k≤numOut(fm). (2)

The use of max presumes that the selected physical implemen-
tations of fm could sustain the highest input throughput target.
Fig. 2 illustrates the throughput target propagation process.

The system throughput target is enforced on the input
channels of the first actor. Using formulation (2), we can
propagate the throughput target to each input and output
channel in the graph. We can also derive the initial interval
target (δtgt(fm)) for actor fm as

δtgt(fm) = min
j

{
Inj(fm)

θjin(fm)

}
. (3)

Therefore, given an SDFG and the system throughput target,
we can compute the initial interval target for each actor.

Then, the DSE problem can be described as follows: Given
a throughput (or initial interval) constraint for an actor, which
implementation should be selected and how many replicas are
needed so that the aggregated throughput of all the replicas is
no less than the throughput constraint? That is, for actor fm
we want to get binary integers x1, x2,...,xSm indicating which
implementation is selected, and integer um indicating number
of replicas needed. Then the formulation of the problem is:

minimize um ·
Sm∑
i=1

A(P i
m)xi

subject to 1
um

·
Sm∑
i=1

δ(P i
m)xi ≤ δtgt(fm)

Sm∑
i=1

xi = 1

(4)

where δtgt(fm) is calculated as in function (3).
To solve this problem, we could simply enumerate all the

possible values of xi, compute the number of replicas needed
based on the throughput constraint, compute the area cost,

f
1
1

f
1

2

f1
3

f
1

4

f
2

1

f
2

2 f
3

1

(a)

f1
1

f
1

2

f1
3

f
1

4

f
2

1

f
2

2 f
3

1

(b)

Fig. 4. Precedence graphs of feedback loop in Fig. 3(a). According to the data
dependency, in each iteration actor f2 could fire once after every two firings
of actor f1. In Fig. 4(a), each actor has only one physical implementation,
thus each pair of consecutive firings is connected with a dashed edge. In Fig.
4(b), actor f1 has two physical modules. According to the cyclic scheduling
policy, the first and third firings are scheduled to one physical implementation,
while the second and the fourth firings are scheduled to another physical
implementation.

and select the implementation that consumes the least area.
The complexity of this method is O(Sm), where Sm is the
number of implementations in the library for actor fm.

C. SDFGs With Feedback Loops

1) Feedback Loops: In this section we will discuss the
simplest form of feedback loop — actors are sequentially
connected with each other along the feedback path. Despite
strong restrictions, many SDFGs that do not meet such re-
quirements can still be transformed into this simple form as
shown in Fig. 3. Fig. 3(a) shows examples of the SDFGs that
we are dealing with. Fig. 3(b) is an SDFG that violates the
requirement — it has two actors firing concurrently rather than
sequentially. We can either merge these two actors (Fig. 3(c))
or only consider the bottleneck actor in the loop (Fig. 3(d).)

The iteration of a feedback loop is a set of actor firings with
as many firings as in the corresponding entry in the repetition
vector q [18]. After one iteration, the SDFG returns to the
same state; i.e. the number of tokens on each channel remains
the same. In Fig. 3(a), the repetition factor q is [4;2;1].

We also assume that the initial data tokens on the feedback
loop are located at the input edge of the first actor in the
feedback path. Those feedback tokens, or in other words,
dependency distance, are intrinsic in the algorithm. In fact,
such distance is 1 in many streaming applications. Therefore,
we also assume that the number of feedback tokens is just
enough for the first actor to fire for one iteration.

2) Formulation: In the feedback loop, the throughput target
imposes a constraint on the execution time of all the actors
in the loop. Semantics of how the actors are fired are the
key to estimate the latency of the loop. To delineate such a
firing sequence, we construct a precedence graph as in [19].
The weight of edge denotes by how many cycles two firings
should be separated.

Fig. 4 shows the precedence graph of a feedback loop in
Fig. 3(a). Each node in the graph represents an actor firing.
Solid edges denote the data dependency between adjacent
actors. Dashed edges reflect the physical resource conflict
between consecutive firings of the same actor. Physical re-
source conflict depends on the number of physical modules

(implementations) selected, their initiation intervals, and how
the firings are scheduled to these physical modules. We adopt
the cyclic scheduling policy, which assigns a firing to the first
available physical module. Two firings that are scheduled to
the same physical module should be separated by at least as
many cycles as the initiation interval. In the precedence graph,
edges with a dot denote the dependence across the iteration.

Our problem has two parts: module selection and schedul-
ing. In module selection, we select one implementation and
decide the number of replicas for each actor, thus finalizing the
area cost, module execution time, initiation interval and specif-
ic structure of the precedence graph. In module scheduling, we
schedule the start time of each node in the precedence graph to
see if it can satisfy the throughput target. Usually scheduling
is performed after the module selection, but in our proposed
formulation we perform module selection concurrently with
scheduling. Moreover, we should generate a scheduling that is
feasible among all iterations, although we are only scheduling
the firings in one iteration. Thus, we unfold the precedence
graph to include the f1’s firings in the second iteration (as
shown in Fig. 5). The reason is that if f1 has the same firing
timeline in iteration 2 as in iteration 1, then all the other actors
would also have the same timeline in the first two iterations.
And if the second iteration has the same firing timeline as the
first iteration, we are guaranteed to get a periodical scheduling.

The total area cost, execution time, and initiation interval of
the selected implementation for actor fm is denoted as Am,
tm and δm respectively. We introduce binary integers xi

m to
denote if implementation P i

m is selected and use um to denote
the number of replicas. Then we have

Am = um ·
Sm∑
i=1

A(P i
m)xi

m, (5)

δm =
Sm∑
i=1

δ(P i
m)xi

m, (6)

tm =
Sm∑
i=1

t(P i
m)xi

m, (7)

Sm∑
i=1

xi
m = 1. (8)

In the unfolded precedence graph, the set of nodes in the graph
is V , and the set of edges is E. For e(u, v) ∈ E, denote the
weight as w(u, v). If u and v are the firings of different actors
fm and fm+1, then

w(u, v) = tm. (9)

If u and v are different firings fk,j
m and fk,j′

m of the same actor
fm, then w(u, v) can be expressed as:

∀j,∀j′, j < j′, w(fk,j
m , fk,j′

m) =

{
δm, if j′ − j = um

0, otherwise
. (10)

Since um is an unknown variable, every two firings of the
same actor can be connected with an edge. And since the
number of firings for fm in one iteration is q[m], the number
of such constraints is O(q[m]2). In realistic cases, we usually

f
1
11

f1
12

f
1
13

f
1
14

f2
11

f2
12

f3
11

f
1

21

f1
22

f
1

23

f
1

24

t
1

t
1

t
2

t
3

1

 1

1

2

 1

1

 1

Fig. 5. Unfolded precedence graph of feedback loop in Fig. 3(a).

know the maximum possible number of replicas (umax
m). Thus

the number of constraints is O(q[m] · umax
m).

Denote the start time of the jth firing of actor fm in iteration
k as T (fk,j

m). We can formulate the problem as follows,

minimize
M∑

m=1

Am,

subject to

∀j ∈ {1, 2, ...,q[m]− 1},
T (f1,(j+1)

m)− T (f1,j
m) = T (f2,(j+1)

m)− T (f2,j
m),(11)

∀j ∈ {1, 2, ...,q[1]},

T (f2,j
1)− T (f1,j

1) ≤ In(f1) · q[1]
θtgtin (f1)

, (12)

∀e(u, v) ∈ E, T (v)− T (u) ≥ w(u, v). (13)

where θtgtin (f1) is the throughput target of the feedback loop,
which is measured at actor f1. Constraints (11) and (12)
guarantee that the schedule is periodical and should meet the
system throughput. Constraint (13) ensures the dependency
that firing v follows u by at least w(u, v) cycles. w(u, v) is
calculated as shown in functions (9) and (10).

Functions (5) to (13) present our formulation of the DSE
problem for an SDFG with feedback loop.

3) Solution: The above set of formulas are difficult to solve
because function (5) and (10) contain nonlinear expressions.
Therefore, we propose the following techniques to transform
the formulation into linear expression so that we can use an
ILP solver to solve the problem.

Let us look at function (10) first. We could enumerate the
possible values of um as 1, 2,. . . ,umax

m and introduce binary
integer variables yim to denote which one is the actual value
of um. Thus w(fk,j

m , fk,j′

m) and um is:

w(fk,j
m , fk,j′

m) = δm · yj′−j
m , (14)

um =
umax
m∑
i=1

i · yim, (15)

umax
m∑
i=1

yim = 1. (16)

Combining function (6) and (14), we have:

w(fk,j
m , fk,j′

m) = (

Sm∑
i=1

δ(P i
m)xi

m) · yj
′−j

m . (17)

Due to the product of unknown variables xi
m and yj

′−j
m , the

function is not linear. Thus, we propose the following theorem:

Theorem 1: Function F () is a function of integer variable

x and binary variable y1,y2,. . . ,yn.
n∑

i=1

yi = 1, n > 1. Given

the value of binary variables, if F () is a linear function of x,
then F (x, y1, y2, . . . , yn) ≥ 0 is equivalent to the following
set of functions which are all in the linear form:

F (x, 1, 0, . . . , 0) ≥ (1− y1) · infx F (x, 1, 0, . . . , 0)
F (x, 0, 1, . . . , 0) ≥ (1− y2) · infx F (x, 0, 1, . . . , 0)

. . .
F (x, 0, 0, . . . , 1) ≥ (1− yn) · infx F (x, 0, 0, . . . , 1)

(18)

where inf means the infimum of the function. We can
also derive a similar set of functions for the case where
f(x, y1, y2, . . . , yn) ≤ 0 (which is omitted here due to page
limitation). This theorem can be easily proved by enumerating
all the possible values of binary variables.

In function (17), the variables xi
m and yj

′−j
m correspond

to the binary variables yi and x in the above theorem. We
could also apply this theorem to function (5); thus all of the
formulation of our problem is in a linear form, and can be
solved with an ILP solver. The total number of variables is

O(
M∑

m=1
Sm +

M∑
m=1

umax
m), and the number of constraints is

O(
M∑

m=1
umax
m q[m]).

IV. EXPERIMENT RESULTS

The experiment is carried out in two parts. For the streaming
programs without feedback loops, we evaluate our strategies
using StreamIt benchmarks [17]. For those containing feed-
back loops we examine our methodology using the MPEG-4
decoder. Implementation of these benchmarks on an FPGA is
carried out by the high-level synthesis tool Autopilot [20] from
AutoESL Xilinx (version: AutoESL 2011.1). It takes C code
as input and generates synthesizable RTL code which can be
fed into a Xilinx ISE design suite. Thus, most benchmarks are
rewritten into C code. The FPGA device we use is the Xilinx
Virtex6 XC6VLX240T board. The target FPGA clock cycle
is set at 100 MHz. Initiation intervals are specified in the
C program by Autopilot pragmas. Estimated execution time
and resource usage (i.e., DSP, Block RAM, FF and LUT) are
provided by the Autopilot synthesis report. The area metric is
empirically estimated as the maximum utilization percentage
of any of these four kinds of resources.

A. Results on StreamIt Benchmarks

StreamIt benchmarks provide us with high-level structure
and behavior for realistic streaming applications. The actors
in StreamIt benchmarks are restricted to have only one in-
put/output channel, and data distribution and merging are
implemented as split-join nodes. Since we allow multiple
input/output channels in SDF, we modify the benchmarks
to embed the split-join nodes into the actors. For example,
if an actor fm is followed by a split node, we embed the
split node into fm. Within fm, data tokens are distributed
to multiple output channels. We compare our methodology
with two baselines: 1) the strategy in previous work [8]

Syn.

Node

CC_MC TU

1584

1
Parser

PP IDCT

1584

1
1

6 1 1 1

1 1

1
6

1
 sys

(a)

6

11

Syn.

Node

CC_MC TU

1584

1
Parser

PP IDCT

1584

1

1

6 1 1 1

1

1 6

1
 sys pass

through
6

1

(b)

Fig. 6. SDFGs of MPEG-4 decoder.

[9] that simply replicates the non-pipelined actors to reach
high throughput; 2) the strategy that all the actors are fully
pipelined. In the first case, throughput is usually achieved at a
large area cost, while in the second case, non-bottleneck actors
are over-performed and thus occupy more area than they really
need. The comparison results are shown in Table I. For each
benchmark we show the area of baseline 1, baseline 2 and
our method that combines module selection and replication
(CMSR for abbreviation). We also show the area reduction.

B. Results on MPEG-4 Decoder

MPEG-4 is a collection of methods and standards to perform
audio and video coding. The reference C code for the MPEG-
4 decoder is provided by Xilinx. The C code has already been
developed with synthesis in mind, and most unsynthesizable
constructs (such as dynamic allocation) are avoided. The
design description and block diagram are presented in [21].
The modules are connected by either FIFOs or shared memory.

The MPEG-4 decoder can be represented in an SDFG
as shown in Fig. 6(a). There are five actors in the graph:
Parser, CC MC (copy control and motion compensations),
TU (texture update), PP (pre-processor) and IDCT. The data
format is set as 4CIF and the data token granularity is set at the
macroblock (16x16 pixels) level. So, a 4CIF-size image frame
(704x576) corresponds to 44x36 macroblocks. The firing of
CC MC requires the output data from TU in the previous
frame; thus there is a synchronization node between CC MC
and TU. While maintaining the correctness of the algorithm,
we can transform the SDFG in Fig. 6(a) into Fig. 6(b) — a
pass-through actor is added. There are two feedback paths in
the new SDFG, and we select the path that takes the longer
execution time (estimated from the Autopilot synthesis report)
as the feedback loop.

We use function block pipelining inside some actors to
generate hardware modules with different II. For example,
IDCT is further broken into two modules, IDCT row and
IDCT col, and they can be pipelined. The initial interval
of IDCT is the larger value between the execution time of
IDCT row and IDCT col. The implementation library we
generated for Parser, PP, IDCT, CC MC and TU is shown
in Table II. In Table III we show that the minimum area cost
for a given throughput target that varies from 30fps to 60fps.
For each actor, we list the selected implementation, number
of replicas, and total area usage for the actor.

As we can see from the table, bottleneck actors are Parser,
PP and IDCT, which require a larger number of replicas and
implementation with smaller II. It is worthwhile to point out
that Autopilot uses the worst case latency as the estimated ex-

TABLE I
DESIGN SPACE EXPLORATION FOR THREE STREAMIT BENCHMARKS.

Filterbank FFT Autocor
Throughput (# of data per cycle) 0.5 0.25 0.125 0.5 0.2 0.1 0.5 0.25 0.125

Baseline1 Area 56.6 28.6 14.6 38.8 19.4 18.9 83.5 42.6 24.5
Baseline2 Area 62.8 55.2 51.4 21.5 20.6 20.2 61.2 60.3 59.9

CMSR Area 39.9 20.9 11.5 20.7 19.4 18.9 61.2 36.75 24.51
Reduct1 -29.5% -26.8% -21.1% -46.6% 0 0 -26.6% -13.8% 0
Reduct2 -36.5% -62.1% -77.6% -3.7% -5.8% -6.4% 0 -39.1% -59.1%

TABLE II
IMPLEMENTATION LIBRARY FOR MPEG-4 DECODER KERNELS

Parser PP IDCT CC MC TU
v1 v2 v1 v2 v3 v1 v2 v3 v1 v2 v3 v1 v2

II 3278 2798 590 339 262 1250 378 250 4495 907 733 604 250
FF 1071 1218 1084 1014 1098 185 619 1055 602 629 666 300 371

LUT 2614 2947 2294 2311 2333 463 739 1699 1213 1260 1610 414 456

TABLE III
DESIGN SPACE EXPLORATION FOR MPEG-4 DECODER.

Throughput Parser PP IDCT CC MC TU Total Area
(fps) impl rep area % impl rep area % impl rep area % impl rep area % impl rep area % %
60 v2 3 5.87 v2 2 3.07 v2 3 1.47 v2 1 0.84 v1 1 0.27 11.52
50 v1 3 5.20 v2 2 3.07 v2 2 0.98 v2 1 0.84 v1 1 0.27 10.36
40 v2 2 3.91 v3 1 1.55 v2 2 0.98 v2 1 0.84 v1 1 0.27 7.55
30 v1 2 3.47 v2 1 1.53 v2 2 0.98 v2 1 0.84 v1 1 0.27 7.09

ecution time, thus may underestimate the actor’s performance
in reality. Parser is such a case. The ILP solver we use is
GLPK [22], and results are generated on the order of minutes.

V. CONCLUSION

In this paper we studied the design space exploration
problem of mapping streaming applications onto FPGAs. Our
method differs from existing methods because it combines
both module selection and replicationto find a better design
point in design space. The method is verified with both small
designs like FFT and large designs like the MPEG-4 decoder,
and results can be computed in minutes using an ILP solver.
In the future, we would like to investigate more on the
communication cost in this design space exploration problem.

ACKNOWLEDGMENT

This research was partially supported by the NSF Expedi-
tion in Computing Award CCF-0926127 (Center for Domain-
Specific Computing), Altera and Mentor Graphics.

REFERENCES

[1] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs,” SIGOPS,
vol. 40, pp. 151–162, 2006.

[2] M. I. Gordon et al., “A stream compiler for communication-exposed
architectures,” SIGARCH, vol. 30, pp. 291–303, 2002.

[3] M. Kudlur and S. Mahlke, “Orchestrating the execution of stream
programs on multicore platforms,” SIGPLAN, vol. 43, pp. 114–124,
2008.

[4] A. Hormati et al., “MacroSS: macro-SIMDization of streaming applica-
tions,” SIGARCH, vol. 38, pp. 285–296, 2010.

[5] A. Hormati et al., “Flextream: Adaptive compilation of streaming
applications for heterogeneous architectures,” in PACT, 2009, pp. 214–
223.

[6] S. Liao et al., “Data and computation transformations for Brook stream-
ing applications on multiprocessors,” in CGO, 2006, pp. 196–207.

[7] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil, “Synergistic ex-
ecution of stream programs on multicores with accelerators,” SIGPLAN,
vol. 44, pp. 99–108, 2009.

[8] A. Hagiescu et al., “A computing origami: Folding streams in FPGAs,”
in DAC, 2009, pp. 282 –287.

[9] F. Plavec, Z. Vranesic, and S. Brown, “Enhancements to FPGA design
methodology using streaming,” in FPL 2009, 2009, pp. 294 –301.

[10] M. Ishikawa and G. De Micheli, “A module selection algorithm for
high-level synthesis,” in ISCAS, 1991, pp. 1777 –1780 vol.3.

[11] I. Ahmad, M. Dhodhi, and C. Chen, “Integrated scheduling, allocation
and module selection for design-space exploration in high-level synthe-
sis,” CDT, vol. 142, no. 1, pp. 65 –71, 1995.

[12] K. Ito, L. Lucke, and K. Parhi, “ILP-based cost-optimal DSP synthesis
with module selection and data format conversion,” VLSI, vol. 6, no. 4,
pp. 582 –594, 1998.

[13] W. Sun, M. J. Wirthlin, and S. Neuendorffer, “FPGA pipeline synthesis
design exploration using module selection and resource sharing,” TCAD,
vol. 26, no. 2, pp. 254 –265, 2007.

[14] D. Chen, J. Cong, and J. Xu, “Optimal module and voltage assignment
for low-power,” in ASP-DAC, 2005, pp. 850 – 855.

[15] W. Thies and S. Amarasinghe, “An empirical characterization of stream
programs and its implications for language and compiler design,” in
PACT, 2010, pp. 365–376.

[16] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235 – 1245, 1987.

[17] “StreamIt benchmarks,” http://groups.csail.mit.edu/cag/streamit/shtml/
benchmarks.shtml.

[18] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” Computers, IEEE
Transactions on, vol. C-36, no. 1, pp. 24 –35, 1987.

[19] Govindarajan et al., “Rate-optimal schedule for multi-rate DSP compu-
tations,” J. VLSI Signal Process. Syst., vol. 9, pp. 211–232, 1995.

[20] J. Cong et al., “High-level synthesis for fpgas: From prototyping to
deployment,” TCAD, vol. 30, no. 4, pp. 473 –491, 2011.

[21] P. Schumacher et al., “A scalable, multi-stream mpeg-4 video decoder
for conferencing and surveillance applications,” in ICIP 2005, vol. 2,
2005, pp. II – 886–9.

[22] “GNU Linear Programming Kit,” http://www.gnu.org/software/glpk.

