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Abstract—Future computing clusters will prevalently run par-
allel workloads to take advantage of the increasing number of
cores on chips. In tandem, there is a growing need to reduce
energy consumption of computing. One promising method for
improving energy efficiency is co-scheduling applications on
compute nodes. Efficient consolidation for parallel workloads is a
challenging task as a number of factors, such as scalability, inter-
thread communication patterns, or memory access frequency of
the applications affect the energy/performance tradeoffs. This
paper evaluates the impact of co-scheduling parallel workloads
on the energy consumed per useful work done on real-life servers.
Based on this analysis, we propose a novel multi-level technique
that selects the best policy to co-schedule multiple workloads on
a multi-core processor. Our measurements demonstrate that the
proposed multi-level co-scheduling method improves the overall
energy per work savings of the multi-core system up to 22%
compared to state-of-the-art techniques.

I. INTRODUCTION

Multi-core processors are broadly used in modern comput-
ing, from embedded to large-scale computing systems such
as data centers and high performance computing (HPC) clus-
ters. Multi-core processors offer performance improvements at
lower power densities compared to complex single cores by
utilizing simpler and more power-efficient cores on the same
die. To take advantage of increasing number of cores on multi-
core processors, parallel applications are expected to take over
the application space in future computing clusters.

Although all parallel applications are designed to exploit
various levels of parallelism on a multi-core system, perfor-
mance scaling of some applications are limited by system
resources (i.e., memory, bus, network, etc.), which lowers
the system utilization. Lower utilization of multi-core systems
increases the amount of idle power, which reduces the overall
energy efficiency of the computing systems. As the energy
consumption of the computing systems is among the major
contributors to the total cost of ownership, reducing the energy
cost is a significant goal for sustainable computing.

One promising method to reduce the energy cost is co-
scheduling applications. By consolidating multiple workloads
on the same physical nodes, energy spent per job can be
reduced significantly. Nonetheless, energy savings due to co-
scheduling varies depending on the characteristics of the appli-
cations that are being consolidated. In Figure 1, we show min-
imum and maximum energy consumed per useful work (E/w,
energy per retired µOP) savings achieved by consolidation
of PARSEC parallel benchmarks [1] compared to executing

the same benchmarks on separate nodes. E/w metric considers
both the energy consumption and the throughput of the system,
thus it is a pertinent measure of energy efficiency. Figure 1
demonstrates a 60% range between maximum and minimum
savings across benchmarks. While some of the benchmarks
such as bodytrack or dedup consistently benefit from
consolidation, some benefit minimally, such as vips. These
results confirm that depending on the choice of consolidated
applications, E/w savings vary dramatically. Thus, energy
efficiency achieved through co-scheduling is a function of
application characteristics; and it is important to consider such
characteristics in designing co-scheduling policies.

In this paper, we first introduce a methodology to accurately
evaluate the effect of co-scheduling on multi-core systems. We
then analyze various co-scheduling policies (i.e., cache miss
based, bus access based, instruction-per-cycle (IPC) based).
We observe that success of the co-scheduling metric depends
on the overall set of applications arriving at the cluster. In
order to address this, we propose a novel multi-level tech-
nique to choose the best co-scheduling policy depending on
the characteristics of the workload sets to improve the E/w
savings. We evaluate 50 randomly created workload sets out
of the PARSEC suite and show that our multi-level policy
selection technique provides additional E/w savings up to 22%
in comparison to state-of-the-art techniques.

The rest of the paper is organized as follows. Section
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Fig. 1: Minimum and maximum change in E/w when a
PARSEC application is consolidated with another PARSEC
benchmark on an AMD Magny-cours server, each running
with 6 threads, w.r.t. running the benchmarks separately with
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II discusses the prior work. In Section III, we explain our
methodology to evaluate the effect of co-scheduling on multi-
core systems. Section IV discusses the factors affecting energy
efficiency and provides the details of the proposed technique.
In Section V, we evaluate our multi-level co-scheduling policy.
Section VI concludes the paper.

II. RELATED WORK

Dynamic power and energy management techniques such
as controlling low-power/sleep modes and dynamic voltage-
frequency scaling (DVFS) are well studied in the litera-
ture (e.g., [2],[3]). Both software and hardware-based power
management strategies have been proposed in recent years.
Kim et al. study on-chip regulators to achieve DVFS at a
finer granularity reaching nanosecond range [4]. Shin et al.
propose intra-task voltage scheduling through compiler-level
static timing analysis [5].

Workload scheduling is another control knob that can
achieve desirable performance and energy tradeoffs. Snavely
et al. propose symbiotic job scheduling for single-threaded
applications to improve system throughput [6]. Aydin et al.
propose power-aware scheduling for real-time tasks [7].

Another group of energy management techniques focuses
on improving the energy efficiency of large scale computing
systems such as data centers and high performance computing
(HPC) clusters (e.g., [8], [9]). Srikantaiah et al. study the
correlation between energy consumption and resource uti-
lization on the cloud by exploring performance and energy
consumption of consolidated workloads through analyzing
CPU and disk space usage [10]. They show that there is an
optimal solution to the consolidation problem and provide a
heuristic algorithm to find the consolidation scenarios pro-
viding minimal energy allocation. Romosan et al. propose
algorithms for co-scheduling computation and data on clusters
by load balancing frequently used files across multiple cluster
nodes [11]. These analyses on large-scale multi-core systems
provide important insights about the correlation between sys-
tem utilization and energy efficiency; however, they do not
consider application-level analysis during consolidation.

Frachtenberg et al. propose a co-scheduling technique
through monitoring MPI (message passing interface) calls of
parallel applications [12]. Their proposed co-scheduler iden-
tifies processes that communicate frequently through an MPI
monitoring layer to make co-scheduling decisions. McGregor
et al. present scheduling algorithms to improve performance
by determining the best thread mixes [13]. They monitor
workload behavior through performance counters and propose
three scheduling policies which are based on bus transaction
rate, stall cycle rate and last level cache miss rate. Raghavendra
et al. propose a multi-level power management technique
to coordinate different individual approaches such as virtual
machine controller, enclosure manager etc. [14]. Bhadauria
et al. propose resource-aware co-scheduling techniques for
multi-core systems to improve energy-delay (ED) [15]. Their
schedulers make decisions based on bus contention, last level
cache miss rates and thread number to decide on time and

space share of each workload. Dhiman et al. propose an energy
efficient virtual machine scheduling technique based on CPU
and memory usage of the workloads through performance
counter monitoring [16]. Their technique estimates the CPU
and memory usage information specific to virtual CPUs,
and leverages the estimated data to make process migration
decisions for better performance and power tradeoffs. Dey
et al. propose a methodology to characterize the shared-
resource contention of parallel applications [17]. They provide
experimental analysis on inter- and intra-thread dependencies
for PARSEC benchmarks.

Our work differentiates from the previous work as follows.
First, we present an experimental approach to accurately evalu-
ate the energy-performance tradeoffs for co-scheduling parallel
workloads. We then show that best-performing co-scheduling
policy varies depending on the overall characteristics of the
workload sets running on a cluster. We design a multi-level
selection mechanism that improves the energy efficiency by
choosing the best co-scheduling policy, and demonstrate the
benefits of our approach on a real-life multi-core system.

III. METHODOLOGY

This section presents the details of our experimental
methodology. We run all experiments on an AMD 12-core
Magny-cours (6172) server, running 2.6.29 Linux kernel OS.
Magny-cours is a single-package CPU comprising two 6-core
dies (each similar to AMD Istanbul architecture) attached side
by side. There is a 1MB private L2-cache for each core and
a 6MB shared L3-cache for each 6-core die.

We collect data from the performance counters to identify
possible performance bottlenecks for parallel applications such
as cache misses, stalls, memory accesses, etc. We use pfmon
3.9 utility tool to collect the following core-level performance
counters at a 100ms sampling interval: µ-OPs retired, unhalted
CPU cycles, data cache misses, L2-cache misses, executed
lock operations, mispredicted branch instructions, dispatch
stalls, dispatched FP operations. In addition to per-core mea-
surements, we collect system-level L3-cache misses. We also
measure system power, CPU and memory utilization data at a
1s sampling interval. We measure the system power by using
a Wattsup PRO power meter. As system power includes CPU,
motherboard, and cooling power, it determines the total energy
cost of computing. CPU and memory utilization percentages
are collected using mpstat and top.

Parallel applications consist of serial I/O stages and the par-
allel phase, i.e., region-of-interest (ROI). In order to accurately
measure the power and performance effects of consolidating
parallel workloads on a single machine, it is important to con-
sider only the ROI of the workloads. Parallel phases already
dominate the execution time in HPC clusters and are expected
to occupy a large portion of the cycles in future systems. Most
of the prior work on consolidation, however, considers the
full execution of the PARSEC applications including the serial
phases (e.g., [15] [16]), which may cause inaccurate evaluation
of co-scheduling tradeoffs.



In order to manage the start/finish times of application ROI
phases and the data collection, we implement a consolidation
management interface, consolmgmt, on top of the default
PARSEC benchmark management interface, parsecmgmt.
consolmgmt interface manages thread affinity settings to
assign each thread to one core and the ROI-Synchronization
routine (ROI-Synch) to synchronize the ROI of multiple
workloads. We implement the ROI-Synch inside the HOOKS
library routines of the default PARSEC package. In Figure 2,
we demonstrate the synchronization flow for a hypothetical
two benchmark consolidation case. ROI-Synch ensures that
benchmarks A and B wait at the ROI checkpoints (ROIA,
ROIB). After all benchmarks reach the ROI checkpoint, ROI-
Synch calls roi-Trigger() function to synchronously trigger
the benchmarks to resume their execution. Data loggers are
triggered by the start-Logging() function to collect the ROI
performance and power characteristics. We collect all exper-
imental data for the first 20s of the parallel phase of the
PARSEC 2.1 parallel workloads [1].
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Fig. 2: ROI-Synchronization flow for the case of co-scheduling
two benchmarks A and B.

We compute energy consumed per work done (E/w) to
evaluate the impact of consolidation on energy efficiency. E/w
measures the required energy for the useful work, which is
basically the efficiency of the system. Our comparison is based
on two scenarios on the 12-core server. In the consolidation
scenario, a benchmark is co-scheduled with another bench-
mark, each running with 6 threads on a distinct 6-core die of
the Magny-cours system. In the second scenario, benchmarks
are executed alone with 12 threads on 12 cores. While similar
methodology can be applied to other consolidation scenarios,
in this work we target co-scheduling two applications as E/w
savings decrease for more aggressive consolidation cases. E/w
values for consolidated and 12-thread cases are derived from
Equations 1 and 2, respectively. Thrput6T and Thrput12T
denote the throughput of the application at 6 and 12 threads,
which is equal to total number of retired µOPs per second.
We then compute the percentage of E/w decrease with respect
to the execution with 12 threads.

E/wcon =
EnergyA,B(con)

ThrputA−6T + ThrputB−6T
(1)

E/w12T =
EnergyA−12T + EnergyB−12T

ThrputA−12T + ThrputB−12T
(2)

IV. ENERGY-EFFICIENT CO-SCHEDULING OF PARALLEL
WORKLOADS

In this section, we first discuss the factors that impact energy
efficiency of multi-core systems. We then present our multi-
level co-scheduling policy to improve the energy efficiency
during consolidation of parallel workloads.

A. Factors Affecting Energy Efficiency

Energy consumption of a multi-core system varies as a func-
tion of the characteristics of the parallel workloads running
on the system. As a result, the range of potential E/w savings
show significant variations across workloads. To understand
these variations, next we analyze the energy tradeoffs for a
set of performance events for the PARSEC benchmarks.
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Fig. 3: First two principal component coefficients for various
performance metrics.

We use Principal Component Analysis (PCA) to deter-
mine which performance events vary considerably across the
benchmark suite. Figure 3 shows the coefficients for various
performance events for their first two principal components
(PCs). First two PCs together explain more than 85% of the
overall variations. Figure 3 demonstrates that performance
events cover the PC space in four distinct directions. Cache
misses and bus accesses almost have the same coefficients.
Similarly, retired µOPs and IPC are closely related. These two
groups of events cover distinctive features on the x axis of the
PC space. On the other hand, CPU and memory utilization
cover other distinct features of the applications on the y-
axis of the PC space. Note that memory utilization is located
at a different quadrant than the cache misses, motivating
investigating the impact of both cache misses and memory
utilization metrics separately. Following the results of the
PCA, we focus on the performance events discussed below. We
focus on the average values of the performance counters, since
in this paper we target co-scheduling the applications at the
job allocation stage, without considering run-time workload
migration scenarios.

CPU utilization: CPU utilization measures percentage of
active (non-idle) time of the CPU. Figure 4 shows average
CPU utilization percentages of the PARSEC benchmarks while
running 12 threads. Applications that heavily utilize the CPU
resources are CPU-bounded as their performance improvement
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(a) (b) (c)Fig. 4: CPU utilization of the benchmarks running 12 threads.

is only limited by the CPU resources. CPU-bounded applica-
tions are expected to benefit marginally from co-scheduling
in terms of energy efficiency because running CPU-bounded
benchmarks with a higher number of threads improve perfor-
mance significantly. Therefore, the energy increase for running
a larger number of threads is compensated with an increase
in throughput, without the need of consolidation. On the
contrary, applications that are not CPU-bounded benefit from
co-scheduling. Applications such as dedup, bodytrack
and x264 poorly utilize the CPU resources and they are
the only PARSEC benchmarks that consistently benefit from
consolidation as Figure 1 implies.

Cache misses: Cache miss rates are measures of the mem-
ory stall cycles. Figure 5 shows the weighted cache miss per
µOP. Since different levels of cache differ in access times,
we evaluate the weighted cache misses by using the specific
miss penalty cycles for L1 and L2 caches. High cache miss
rates cause large number of stall cycles, resulting in sub-linear
performance scaling of the applications. Thus, applications
with high cache miss rates are expected to benefit more
substantially from co-scheduling compared to running with a
higher number of threads. Figure 5 shows that canneal and
streamcluster have significantly higher cache miss rates
than other benchmarks, as canneal operates on significantly
large datasets and streamcluster solves a clustering prob-
lem on continuously streaming data points as its input. These
two benchmarks have relatively higher E/w savings when they
are co-scheduled with other benchmarks.

Memory utilization: Memory utilization percentage shows
the utilization of the DRAM modules. Figure 6 shows the
memory utilization percentages of PARSEC benchmarks.
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Fig. 5: Weighted cache miss per µOP for PARSEC benchmarks
running 12 threads.
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Fig. 6: Memory utilization percentages for PARSEC bench-
marks running 12 threads.

When consolidating multiple benchmarks on a multi-core
system, it is important to consider the degree of memory
utilization, as memory is a shared resource across applica-
tions. canneal, dedup and freqmine utilize the memory
significantly higher compared to the rest of the benchmarks.
Note that despite having low cache miss rates, freqmine
and dedup utilizes the memory heavily. On the other hand,
streamcluster does not utilize the memory heavily, al-
though it generates high cache misses. These observations
confirm memory utilization and cache misses both needs to
be considered while making consolidation decisions.

Our analysis on performance events show that considering
a single performance event would not be sufficient to make
optimum consolidation decisions. In addition, PARSEC bench-
marks differ significantly in their performance bottlenecks.
Therefore, as the overall set of applications (i.e., workload
set) running on a cluster changes, we would potentially
select a different metric for grouping the benchmarks during
consolidation. This motivates having a meta-policy to select
which metric to use for consolidation. Next, we explain our
multi-level consolidation technique.

B. Proposed Multi-level Co-scheduling Policy

The goal of our consolidation technique is to improve
energy efficiency, or in other words, to decrease E/w. Our
multi-level co-scheduling technique utilizes principles from
two previously proposed co-scheduling policies: cache miss
based [15] and IPC*CPU-Utilization based [16] consolidation.
We follow two main steps:

1) Selecting the co-scheduling policy: The goal is to
choose the best-fitting policy for co-scheduling depending
on the overall workload set running at the cluster. We
first distinguish between computation and communication-
intensive benchmarks by computing the sum of IPC, CPU-
Utilization and bus access of each workload and derive
the computation-to-communication ratio for the given work-
load sets, IPC ∗ CPUUtil/BUSacc. Workload sets that have
lower computation-to-communication ratio mostly suffer from
high bus accesses causing lower IPC. Therefore, balanc-
ing the useful work done lowers E/w by increasing the
w. We experimentally derive a threshold (Th1) of 5000
and classify the workload sets according to their cumula-
tive IPC ∗ CPUUtil/BUSacc values. If the computation-
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to-communication ratio of the workload set is below Th1,
we choose the IPC ∗ CPUUtil policy to balance the useful
work done. Workload sets that have high computation-to-
communication ratio (> Th1) are co-scheduled using either
IPC ∗ CPUUtil or cache miss based policy. Before choos-
ing the policy, we first evaluate the IPC ∗ CPUUtil and
memory utilization (MEMUtil) separately. In this step, we
identify whether there is a stronger bottleneck compared to
the cache misses for computationally intensive workloads.
Computationally intensive workload sets (> Th2 = 900) that
have high memory utilization (> Th3 = 25) are scheduled
using IPC ∗ CPUUtil policy, as higher memory utilization
lowers the useful work done. Rest of the workload sets would
have only cache misses as their major bottleneck. Thus, we
co-schedule them using the cache miss based policy. Algo-
rithm 1 demonstrates the pseudo-code of the policy selection
algorithm.

2) Co-scheduling benchmarks in a given workload set:
After choosing the appropriate policy, we rank benchmarks
in each workload set according to the selected metric. If the
selected policy is IPC ∗ CPUUtil, we rank the benchmarks
from high to low according to their IPC ∗ CPUUtil values.
We then co-schedule the benchmarks starting by pairing up the
two benchmarks with the lowest and the highest ranking and
progressing through the list this way. We use the same sorting
and balancing principle for the cache miss based policy.

Algorithm 1 Policy Selection

if (IPC ∗ CPUUtil/BUSacc) > Th1 then
if (IPC ∗CPUUtil > Th2) & (MEMUtil > Th3) then

Balance: IPC ∗ CPUUtil

else
Balance: CacheMiss

end if
else

Balance: IPC ∗ CPUUtil

end if

V. EXPERIMENTAL RESULTS

This section presents the experimental evaluation. To com-
pare our multi-level co-scheduling policy against previously
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proposed approaches, we generate 50 workload sets. Each
workload set contains 10 randomly selected PARSEC appli-
cations. For example, Set1 in Figure 7 consists of 4 instances
of blackscholes, 2 instances of vips and one instance of
bodytrack, freqmine, streamcluster and swaptions applications.
On the other hand Set2 consists of 3 instances of canneal and
ferret, 2 instances of bodytrack and one instance of dedup
and vips applications. As Figure 7 shows, randomly generated
workload sets cover a wide range of bus accesses and CPU
usage values. In Figure 7, we also show the selected policies
and the computation-to-communication ratio threshold (Th1).
For a set of 50 randomly generated workload sets, proposed
multi-level technique achieves 82% accuracy for selecting the
best co-scheduling policy within a 2% error margin of the
best-case consolidation in terms of E/w savings.

We implement three co-scheduling algorithms based on
previous approaches [16] [15]. These three approaches allocate
applications on given machines by balancing the cache misses
(L1 and L2), bus accesses (L3 cache misses) or computational
intensity (IPC ∗ CPUUtil) across co-scheduled application
pairs (e.g., co-scheduling a benchmark with a high cache miss
rate together with a benchmark with low cache miss rate on
the same machine). Figure 8 shows IPC∗CPUUtil values and
Figure 9 shows L3-cache misses of 10 PARSEC benchmarks.

In Figure 10, we show average E/w savings for 50 workload
sets. We report savings due to consolidating applications with
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Fig. 9: Last level cache (L3) misses per µOP for PARSEC
benchmarks running 12 threads.



various co-scheduling policies with respect to each applica-
tion running with 12 threads separately on a single node.
Bus access based policy performs worst among all policies,
since bus accesses per µOP does not necessarily capture the
frequency of the bus accesses. Our multi-level co-scheduling
policy provides 31.3% E/w savings on average, which is 8.6%
higher than the best performing previous policy.
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Fig. 10: Average E/w saving improvements for 4 policies w.r.t
12 thread execution on a single node.

In Figure 11, we show maximum E/w saving improvements
achieved by our multi-level policy across the 50 workload sets.
We also report energy savings and throughput difference for
the maximum savings case. Our proposed approach improves
the E/w savings by 14.1% with respect to best performing
cache miss based policy with a 0.1% throughput (retired µop
per second) decrease. E/w savings reach up to 45.2% with
respect to the bus access based policy along with a throughput
loss of 16.9%.

VI. CONCLUSIONS

Improving energy-efficiency of multi-core systems is one
of the major challenges of future computing clusters. Co-
scheduling multiple applications on the same node provides
opportunities to improve the energy-efficiency. In this pa-
per, we propose an experimental methodology to accurately
evaluate the effects of co-scheduling on multi-core systems.
Using this methodology, we show that none of the existing
policies consistently outperforms the others as the success
of consolidation is dependent on the overall workload set
running on the cluster. Also, we demonstrate that the ben-
efits of consolidation vary dramatically depending on which
applications are co-scheduled on the same resources. In order
to address these challenges, we propose a novel multi-level
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Fig. 11: Maximum E/w savings, energy savings, and perfor-
mance loss of our multi-level policy w.r.t. previous methods.

technique that first selects a co-scheduling policy by evaluating
various cumulative characteristics of the workload sets and
then balances the workload on the machines in terms of a
performance metric determined by the selected policy. Our
technique provides additional 22% E/w savings on average
and improves the E/w savings up to 14% in comparison to the
best performing state-of-the-art co-scheduling policy.
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