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Abstract—To increase the accuracy of static timing analysis,
the traditional nonlinear delay models (NLDMs) are increasingly
replaced by the more physical current source models (CSMs).
However, the extension of CSMs into statistical models for statis-
tical timing analysis is not easy. In this paper, we propose a novel
correlation-preserving statistical timing analysis method based on
transistor-level gate models. The correlations among signals and
between process variations are fully accounted for. The accuracy
and efficiency are obtained from statistical transistor-level gate
models, evaluated using a smart Random Differential Equation
(RDE)-based solver. The variational waveforms are available,
allowing signal integrity checks and circuit optimization. The
proposed algorithm is verified with standard cells, simple digital
circuits and ISCAS benchmark circuits in a 45nm technology.
The results demonstrate the high accuracy and speed of our
algorithm.

I. INTRODUCTION

In static timing analysis (STA), the need for accuracy has

driven the development of delay models. A long time industry

standard is the traditional nonlinear delay model (NLDM)

[1], which models gate delay and output slew as a nonlinear

function of input slew (Sin) and output effective capacitance

(Ceff ). This only represents the signal waveform very crudely,

so more recently current source models (CSMs) [2]–[7] have

gained attention. Instead of modeling gate delay directly,

CSM models every gate with a current source and multiple

capacitors, which depend on Sin and Ceff [2] or input and

output voltages [3]–[7]. This CSM representation improves

delay calculation accuracy thus there is a level of industry

acceptance. However, most CSMs use the assumption that

only one input is switching while others are static. As a

consequence, some effects such as multiple input simultaneous

switching (MISS) are not modeled, leading to large errors

[7]. Recently, even higher accuracy is achieved by transistor-

level gate models [8]–[10] which can accurately model effects

like MISS. Since most CSMs [3]–[7] and transistor-level gate

models [8]–[10] have elements dependent on input and output

voltages, they are called Voltage-in Voltage-out (ViVo) gate

models in this paper.

The down-scaling of technology brings a significant increase

in the device and interconnect manufacturing process varia-

tions, causing larger spreads in circuit timing uncertainty. To
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analyze the resulting variation in delay, STA can be performed

at multiple corners. Although STA is accurate at every corner,

the corner-based method is too pessimistic since it is close to

impossible for all process parameters to have extreme values

at the same time. Additionally, if the number of process

variations is Np, there are 2Np process corners—often too

many to analyze. Consequently, statistical STA (SSTA) has

been developed, which requires statistical gate modeling or

statistical gate delay models.

Many published SSTA methods, denoted as function-based

SSTA in this paper, model gate delay as a (non)linear function

of process variations. The coefficients are stored in look-up

tables with entries of Sin and Ceff . This modeling method

is similar to the NLDM concept [1]. Most SSTA methods

assume Sin and Ceff are fixed when calculating gate delay

distributions. However, due to process variations in receiver

and driver, both Sin and Ceff are variational. Not considering

the statistical Sin and Ceff can result in 30% delay errors and

even worse for bigger circuits [4]. Also, like NLDM, function-

based SSTA models can not account for resistive intercon-

nect loads and nonlinear input waveforms. Furthermore, the

variational waveforms can not be obtained since only delay

and slew variations are available. Additionally, function-based

SSTA is entirely based on non-physical or empirical models,

which is the major source of inaccuracy [3].

For these reasons, to increase accuracy, CSM models also

have been extended for use in SSTA [3]–[6]. In [3], the

variational voltages and all elements in CSM are modeled

as a stochastic first-order expression in terms of process

variations. Then the output voltage is treated as a Markovian

process for delay distribution calculation. In [4], the current

source value and capacitances in CSM are modeled as a

quadratic Hermite function of process variations. Crossing

time distributions are calculated by process variation sampling

and linear interpolation. A CSM with parametric nonlinear

voltage-dependent current source and parametric capacitance

is used in [5] and [6]. The voltage in [5] is represented as a

time-domain statistical variable and time-domain integration

is performed. The gate output voltage distribution in [6] is

obtained by Monte Carlo (MC) sampling. However, these

methods are just verified on several simple single gates, and

the correlations between input and output signals and among

process variations are not considered.

To gain even higher accuracy than the above CSM methods,
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and to be able to see the important effects such as MISS, in this

paper we propose a statistical timing analysis solution based

on statistical transistor level gate models to provide statistical

information of any required crossing time. The proposed solu-

tion has the following features: 1) The variational waveform,

which models several varying crossing times, is calculated and

propagated through circuits; 2) In the proposed Random Dif-

ferential Equation (RDE-) based statistical simulation, all input

signals are considered together and calculated directly, thus

fundamentally addressing MISS in statistical timing analysis;

3) As we use a common format for waveforms and elements in

gate models, the correlations among input signals and between

input and output signals are preserved during probability

density function (pdf ) computation; 4) Arbitrary distributions

of process variations can be handled in pdf calculation. The

proposed algorithm is verified on some simple circuits and

ISCAS85 benchmark circuits considering correlations.

Compared to our previous publications on this topic [10]–

[12], in this paper we contribute: 1) optimization on our

transistor model for gate modeling; 2) improved algorithms

to solve the RDE system in the simulation more efficiently;

3) consideration of correlations between different signals and

different process parameters; 4) experiments including circuits,

not just single gates.

II. TRANSISTOR-LEVEL GATE MODELING

Transistor-level gate models have been introduced for higher

accuracy and faster characterization of STA [9], [10]. Since

the gate models are constructed at the transistor level, the

transistor model is a key issue which needs to have sufficient

accuracy, account for the impact of process variations, while

still being simple enough to be evaluated efficiently. In this

paper, we use the table-based Statistical Simplified Transistor

Model (SSTM) [10] for gate modeling. Every transistor in the

circuit is modeled by a current source ids and five capacitors

as shown in Fig. 1. In SSTM, gate channel capacitances, cgs,

cgb and cgd, are modeled as a function of Vgs and Vds while

junction depletion capacitances, csb and cdb, are represented,

for simplicity, by constant values. The current and capacitances

in the SSTM are modeled as a linear function of the process

variations of interest ξ.

For stage-by-stage timing analysis of large circuits, the input

capacitance of every gate is required. In the SSTM-based gate

models, the input capacitance of a gate at any input is the sum

of the gate capacitances Cg of all the transistors connected to

that input, where Cg is the sum of all gate channel capacitances

in SSTM. We improved on [10] by characterizing the Cg of

every transistor in the library w.r.t. Vg only, based on the
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Fig. 1. Statistical Simplified Transistor Model (SSTM)

following concerns: i) The cgs,cgb and cgd in SSTM [10]

depend on Vds which is unknown for the previous gate; ii)
Evaluating a simple closed-form expression is much more

efficient than interpolating from matrices three times.

The gate models are constructed by replacing every tran-

sistor in the gate by its corresponding SSTM. To reduce the

complexity of the interconnect model after RC extraction,

model order reduction techniques can be employed, such as

[13]. Every resistance and capacitance in the interconnect

model is also modeled as a linear function w.r.t. ξ. It should

be noted that the statistical timing analysis method presented

in Section III is independent of the type of ViVo-gate models.

In other words, it can be used with other ViVo-gate models.

By using efficient threading algorithm and multiple pro-

cessors, [9] shows that it is practical to use transistor level

gate models for multi-million gate STA runs to reach the

combination of accuracy and speed.

III. STATISTICAL TIMING ANALYSIS

For optimized ViVo-gate models, like CSMs and transistor-

level gate models [3]–[10], nodal analysis (NA) or modified

NA (MNA) is used for gate simulation. The NA/MNA equa-

tion solution is deterministic with all parameter values fixed.

If process variations are included, typically a corner-based

method is used as an outer loop. As mentioned in Section

I, however, corner-based methods are pessimistic and time-

consuming. In this section, we propose a RDE-based statisti-

cal simulation method which provides variational waveforms

directly after simulating only once. The theoretical derivation

in Section III-A is an extension based on our previous work

[11].

A. RDE-based statistical simulation

The deterministic NA equation can be written in the com-

pact format:

F (ẋ, x, t, p) = 0 p = p0, x(t0) = x0 (1)

where x denotes node voltages, ẋ is its time derivative and p0

is the nominal value of the process parameter vector p. Denote

xs(t) as the solution of (1) which satisfies:

Fs = F (ẋs, xs, t, p0) = 0 x(t0) = x0 (2)

Since all process parameters have their nominal values p0,

xs(t) is deterministic, which means it can be solved similar to

ViVo-gate model based STA methods, like [8]–[10]. However,

if process variations are considered the solution becomes

statistical.

If we take into account process variations, p = p0+ξ where

ξ is the process variation vector which includes both global

and local variations. Consequently, (1) becomes a random

differential equation (RDE):

Fx = F (ẋ, x, t, ξ) = 0 ξ = p − p0, x(t0) = x0 + δ0 (3)

where δ0 denotes the initial condition variation caused by

process variations. It is worth noticing that the main difficulty

to solve (3) is the high nonlinearity w.r.t. the random variables



ξ and the large number of process variations including local

variations. If the number of local variables in the problem is

very large, techniques exist to reduce it considerably [9]. In

order to make (3) manageable, it is linearized1 by a truncated

Taylor expansion around xs and p0:

Fx ≈ Fs +
∂Fs

∂ẋs

(t)(ẋ(t) − ẋs(t))

+
∂Fs

∂xs

(t)(x(t) − xs(t)) +
∂Fs

∂p0
(t)ξ = 0 (4)

where Fs is defined in (2).

To simplify the notation, the variation of state variable x is

denoted by y, thus x(t) can be rewritten as x(t) = xs(t) +
y(t). Inserting this and (2) into (4) and replacing the matrices

∂Fs/∂ẋs, ∂Fs/∂xs and ∂Fs/∂p0 with C(xs), −E(xs) and

−F(xs), respectively, we obtain:

C(xs)ẏ(t) = E(xs)y(t) + F(xs)ξ y(t0) = y0 = δ0 (5)

C, E and F are Nv × Nv , Nv × Nv and Nv × Np matrices

respectively, where Nv is the number of unknown nodes and

Np is the number of process variations. Consequently, the

nonlinear equation (3) is converted to a linear RDE in y
with xs-dependent coefficient matrices. xs(t) can be solved

by well-known deterministic STA methods like in [8]–[10].

Unfortunately, the variation of state variable y(t) can not

be calculated directly from (5) since ξ is a random variable.

According to the Random Differential Equation (RDE) theo-

rem [14], (5) has a unique mean square solution which can be

represented as (6).

y(t) = Φ(t, t0)y0 + Θ(t)ξ (6)

= Ψ(t)ξ (7)

where Φ(t, t0) is the homogeneous solution of (5) satisfying

C(xs)Φ̇(t, t0) = E(xs)Φ(t, t0) (8)

and Θ(t) is an integral in the range [t0, t], which depends on

Φ, C and each column of F [11]. If the initial condition x0

is deterministic, then y0 is zero. Since the voltage variation

can be considered as zero when the signal is not switching

for delay calculation, the initial condition for our problem is

deterministic. Even if the initial condition y0 is statistical due

to process variations, it can also be represented as a first-order

function w.r.t. ξ. Therefore, y(t) is rewritten as Ψ(t)ξ in (7)

where Ψ(t) is a Nv × Np matrix.

We obtain Ψ(t) by substituting (7) into (5):

C(xs)Ψ̇(t) = E(xs)Ψ(t) + F(xs) (9)

After solving xs and Ψ(t), x(t) can be obtained based on

x(t) = xs(t) + y(t) and y = Ψ(t)ξ in (7):

x(t) = xs(t) + Ψ(t)ξ (10)

Equation (10) is used to calculate the time-varying moments

of the output voltage. The first two central moments and

1Higher accuracy can be obtained by using higher-order models or piece-
wise linear simulation method at the cost of complexity.

covariance are expressed in (11)-(13), where the correlation

coefficient ρ between every two process variations are included

in the E{ξξT } calculation. Since both input and output

voltages have the same model w.r.t. ξ, the correlations among

input and output voltages and the correlations among process

variations can be easily considered during moment calculation.

For more efficient memory consumption, a smaller number of

normal voltage (xs) points and their corresponding coefficients

at the node of interest can be saved and propagated.

E{x(t)} = xs(t) (11)

V ar{x(t)} = Ψ(t)E{ξξT }ΨT (t) (12)

Cov{x(ta), x(tb)} = Ψ(ta)E{ξξT }ΨT (tb) (13)

B. Analysis flow

The Delay distribution analysis procedure is shown in

Algorithm 1. The implementation details of steps 1-6 are

presented below.

Step 1. Initial condition x0 of every gate is obtained from

the data characterized in library according to the switching of

nominal input signals (rising, falling or static).

Step 2. The nominal waveform xs(t) is computed by a

method as commonly in CSM-based STA. In our simulation,

instead of Newton-Raphson iterations, Broyden’s method is

used at each integration step, as it is a better fit for our

table-based representation of the SSTM. Additionally, for

higher efficiency, we choose linear interpolation based on

triangulation [15].

Step 3. At every time point, once xs is known, C, E

and F are updated and function (9) can be solved to obtain

Ψ. However, the high dimensionality of Ψ and F poses an

additional difficulty, which is solved in Step 4.

Algorithm 1 Delay distribution calculation flow

Initialization :
SSTM-based gate models {section II}
Input waveform data (variational or deterministic)

The number k: the kth node output which needs to propa-

gate

Analysis

1. Initial condition x0

2. STA: solve (1) for nominal value xs(t)
3. Update matrices C, E, F based on xs(t)
4. Solve (9) for Ψ by following iterations:

for j = 1 to Np do

if Fj(xs) 6= 0 then

solve C(xs)Ψ̇j(t) = E(xs)Ψj(t) + Fj(xs)
else

Ψj(t) = 0 {0: empty vector}
end if

end for

Ψj and Fj are the jth column of Ψ and F, respectively

5. Save the output data for propagation: xsk(t) and Ψ(k)(t)
6. Compute the delay distribution {section III-C}



Step 4. Based on moment matching, (9) is split into Np

ordinary differential equations (ODEs):

C(xs)Ψ̇j(t) = E(xs)Ψj(t) + Fj(xs) j = 1 : Np (14)

where Fj and Ψj are the jth column of F and Ψ, re-

spectively. After using a numerical integration method, due

to xs-dependent coefficients C, E and Fj , (14) becomes

a linear algebraic equation (LAE), which means that the

LAE can be solved fast without the necessity of root-finding

iterations. Only LU decomposition, and forward and backward

substitution are needed to solve the LAE. Additionally, the

same coefficients C and E of Np ODEs in (14) requires LU

decomposition only once to solve these Np ODEs.

Step 5. The kth node voltage, which needs to be stored and

propagated (denoted as v(t)), can be expressed as:

v(t) = xsk(t) + Ψ(k)(t)ξ (15)

where xsk(t) and Ψ(k)(t) are the kth element of xs(t) and the

kth row of Ψ(t) respectively.

C. Computing the delay distribution

For timing analysis, the problem of interest is to compute

the moments of arrival time, gate delay or in general crossing

time. The crossing time tη is defined as the first time for

voltages to cross the threshold voltage Vη = η% · Vdd. The

cdf of crossing time is calculated when the nominal voltage

is in transition. For a rising transition this is expressed as:

Fn = P (tη ≤ tn) = 1 − P (tη > tn) = 1 − Gn (16)

Gn = P (v1 ≤ Vη ∩ v2 ≤ Vη ∩ · · · ∩ vn ≤ Vη) (17)

= P (vn ≤ Vη|vn−1 ≤ Vη, . . . , v1 ≤ Vη) · Gn−1(18)

= P (vn ≤ Vη|vn−1 ≤ Vη) · Gn−1(n = 2 : N) (19)

=
P (vn ≤ Vη ∩ vn−1 ≤ Vη)

P (vn−1 ≤ Vη))
· Gn−1 (20)

where vi is the voltage of interest at time ti and Fn denotes

the cdf of crossing time at time tn. Equation (18) is rewritten

in (19) since the voltages are modeled as Markovian processes

[3], [12]. Based on (16) to (20) an iteration method is used

to calculate the cdf of the corresponding crossing time with

initial condition G1=1. Given the moments and covariances

calculated in the RDE-based statistical simulator in (11)-(13),

the joint probability and single probability in (20) can be

obtained easily.

The relationship between the cdf (F (t)) and the discretized

pdf (f(t)) in our algorithm is illustrated in Fig. 2. To simplify

the calculations, the cdfs and pdfs have these properties: i)
F = 1 if F ≥ Fmax and F = 0 if F ≤ Fmin. The

time tstart and tend correspond to Fmin and Fmax shown

in Fig. 2, respectively; ii) f(t) is calculated during the period

[tstart, tend], hence the pdf has values only on the definite

interval [tstart, tend]. Let tn′ = (tn−1 + tn)/2, then the

discretized pdf is approximated by the following method:

f(tn′) =
∫ tn

tn−1

f(t)dt = F (tn) − F (tn−1) where f(t1) = 0.

The effective cdf is defined as the cdf within [tstart, tend].
If the simulation uses a non-uniform time step algorithm,

tn-1 tn

tstart tend

Fmin

Fmax

F(t)

t

t

f(t)
tstart tend

pn

(tn-1+tn)/2

F(tn)

F(tn-1)

Fig. 2. Cumulative distribution function (cdf ) and discretized probability
density (pdf ) function.

the effective cdf needs to be uniformly sampled for pdf
computation. After uniformly sampling and interpolating from

the effective cdf with Ns samples, the Ns × 1 time and cdf
vectors are obtained and denoted as T1 and cdfu, respectively.

These vectors are used to calculate the pdf vector Ω with

element Ωk = cdfuk − cdfuk−1 (Ω1 = 0, k = 2 : Ns).

The last step is to calculate the moments of crossing time

(mean µ, standard deviation σ and skewness γ). Denoting TT
1

as the transposition of the column vector T1, the calculation

method can be formulated as following:

µ = TT
1 Ω σ = TT

2 Ω − µ2 (21)

γ = (Γ − 3µσ2 − µ3)/(σ3) (Γ = T3Ω
T ) (22)

The relationships between the elements of T2 and T3 with T1

are T2(k) = T 2
1 (k) and T3(k) = T 3

1 (k) where k = 1 : Ns.

The calculation method for a falling transition is similar to

the above methods with the only difference in (17) where vi

is replaced by Vdd − vi. If the waveform is non-monotonic

and crosses Vη multiple times, the method above is used to

iteratively find all crossing times.

D. Complexity analysis

As shown in Algorithm 1, the majority of the runtime

is consumed in step 2 to calculate the nominal value xs

and in step 4 to compute the sensitivities Ψ. Therefore,

TSSTA ≈ TSTA + TΨ, where TSSTA is the runtime of

the whole statistical timing analysis algorithm, TSTA is the

runtime of step 2 and TΨ is the time of step 3-4. Step 2

can be solved by ViVo-gate model based STA procedures [3]–

[6], [8]–[10], and its complexity depends on the gate models

used. For the proposed SSTM-based gate models, the method

proposed in [8], [9] also can be used. Compared to traditional

ViVo-gate model based STA, our statistical timing analysis

method requires extra runtime TΨ.

Step 4 has complexity O(Np). There are 5-7 most important

process parameters such as length and threshold voltage.

Fortunately, the local variations can be collapsed into a much

smaller number of variations (or even one variation [9]) after

using Principle Component Analysis-like methods [16]. In

our method, after using numerical integration the solving

procedure of the Np ODEs in (14) requires LU decompo-

sition only once. Furthermore, to calculate Ψ, no root-finding

iterations are necessary. Therefore, compared to TSTA, TΨ



is approximately proportional to
Np

Niter
· TSTA if the average

number of iterations at each integration step in step 2 is Niter.

This is more efficient than a corner-based method.

IV. CORRELATIONS OF VARIATIONAL WAVEFORMS

During statistical timing analysis, the correlation of signals

caused by process variations and path re-convergence should

be considered and efficiently simulated. Fig. 3 indicates the

delay standard deviation (σ) and delay skewness (γ) of a

NAND2 with respect to different correlation coefficient (ρ)

of input arrival times, with different nominal arrival time

difference (dt). ρ changes from 0 to 0.9. Input signals are

simple ramps with the same arrival time variance (σt = 10ps),

but different arrival time means (µt). It should be noted that,

when µts are far away from each other (dt = 6σt), the

correlation has significantly less impact on delay distribution

and therefore can be ignored.
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Fig. 3. The importance of correlations

If more than one input switches in a multi-input gate,

the 50% crossing time cdfs of the switching inputs can be

calculated and the corresponding effective cdf range men-

tioned in section III-C is used. Take NAND2 as a case and

denote the effective cdf range of two inputs as [tstart1, tend1]
and [tstart2, tend2], separately. If tstart2 − tend1 > ε or

tstart1 − tend2 > ε, the correlation between two inputs will

be ignored and the latest/earliest input or inputs will be

propagated while the other is assumed static. However, if the

effective cdf ranges are overlapping, all stochastic correlated

inputs must be considered.

V. EXPERIMENTAL RESULTS

The effectiveness and accuracy of the proposed approach

was evaluated on some most commonly used standard cells

and ISCAS85 benchmark circuits using the GVT library in the

latest Nangate 45nm package [17]. The SSTM is characterized

based on the simulated data using a full BSIM4 model, and

every gate model is constructed by replacing every transistor

in the gate by its corresponding SSTM. The whole algorithm

is implemented in Matlab in a computer with single processor.

SSTM-based deterministic delay calculation for STA:

Since the statistical simulation depends on the nominal value

computation (xs in (2)), the accuracy of the proposed SSTM-

based gate models for deterministic timing analysis (no pro-

cess variations) is important. It was tested by the minimum-

sized standard cells listed in Table I. Every switching input

signal is a ramp with input slew varying from 7.5ps to 600ps
and the load capacitance changes from 0.40fF to 25.6fF .

Both rising and falling inputs are simulated. The µ and σ
of gate delay relative errors and output slew relative errors

after thousands of simulations are listed in the Table I. The

scenarios that all input signals switch at the same time are

also included in the experiments. The results indicate a high

accuracy of deterministic delay and slew calculation by using

our SSTM-based gate modeling.

TABLE I
THE MOMENTS OF DELAY ERROR AND OUTPUT SLEW ERROR FOR

DETERMINISTIC DELAY AND SLEW CALCULATION

Standard delay error slew error
cells µ σ µ σ

INV 0.2135% 0.2122% 0.1882% 0.7504%

NAND2 0.4828% 0.2346% 0.0244% 1.1621%

NOR2 0.4521% 0.2557% 0.2659% 0.7047%

AND2 0.7842% 0.2659% 0.0448% 0.8974 %

XOR2 0.0782% 0.4304% 0.2748% 0.5666%

BUF 0.3633% 0.2109% 0.2765% 0.9400%

MUX2 0.2996% 0.2463% 0.0304% 0.5285%

AOI21 0.3540% 0.2412% 0.0947% 0.8084%

AOI211 0.7570% 0.3503% 0.0651% 1.0603%

NAND4 0.9568% 0.3468% 0.7210% 1.6800%

Statistical timing analysis considering MISS: In order

to evaluate the capability of our statistical simulation method

for multiple variational inputs, we applied our approach in

circuits with up to four inputs. All inputs of every gate are

variational with signal correlations and have high possibilities

to switch near-simultaneously (MISS). The multi-input cells

are NAND2, NOR2, NOR3, NAND3, AOI21, AOI211,

AOI22 and NAND4. Every variational input signal is mod-

eled as a ramp signal of 40ps input transition time with voltage

variations. The σ of voltages and the arrival time differences

among input signals are varied to obtain results at diverse

scenarios. The correlation among every two voltage variations

varies from 0 to 0.8. All the statistical simulation results are

compared to 10K Spectre Monte Carlo (MC) simulations. Fig.

4 illustrates the relative errors of all the experiments. Most of

µ relative errors are within 1% while AOI211 has over 1%
relative errors when correlation coefficient is 0.8 and variance

is large. All the σ relative errors are within 6% except two

biggest σ cases (6.42% and 6.71%) coming from NAND4

and AOI21 respectively. All of the skewness errors are within

8%. The average µ, σ and γ relative errors are 0.38%, 2.30%
and 2.87% respectively. Fig. 5 shows the discrete pdf with

50 samples and the histogram of MC simulation in Spectre

of AOI21. All inputs have the exact same mean value of

arrival times (MISS). The discrete pdf was scaled to provide

a straightforward shape comparison.
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Fig. 4. All moment percentage relative errors comparison

Statistical timing analysis with Leff and Vth variations:

Effective length Leff and threshold voltage Vth are chosen

as the representative process variables, which both have 3σ
equal to 20% of the mean value with correlation coefficients

of 0, 0.2, 0.5 and 0.8. We firstly applied the proposed method
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Fig. 5. The pdf and histogram comparison of AOI21

to nine common standard cells with different input transitions.

Fig. 6 illustrates the average relative errors (absolute values) of

µ and σ for nine common standard cells. The worst σ relative

errors are −4.03% and 3.04% from AOI211 and XOR2 with

falling output respectively. Fig. 7 shows what the variational

waveforms look like. The discrete pdf of the 50% crossing

time is shown on the upper right corner of Fig. 7.
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Fig. 6. RDE-based simulator for standard cells. The numbers of 1 to 9 stand
for INV, NAND2, NOR2, BUF, AND2, XOR2, AOI211, NAND4 and MUX2
respectively.
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Fig. 7. Variational waveforms of AOI211 and its discrete pdf . The discrete
pdf of 50% crossing time is amplified on the upper right corner.

Secondly, we used the proposed transistor-level statistical

timing analysis method for some circuits listed in Table II,

where the absolute µ and σ relative errors of delay distribution

calculation are included. The gates with more than 3 inputs in

C432 and C499 are replaced with several logic gates with no

more than 3 inputs provided by gate library. 10K Monte Carlo-

based Spectre simulations are used for accuracy and efficiency

comparison. The correlation coefficient (ρ) among process

variations are considered to be constant 0 (independent), 0.2,

0.5 and 0.8. The results show high accuracy of our method.

Compared to Spectre MC runs, our method achieves 712×
speed-up on average. The ratio TΨ/TSTA of C17, Adder, C432

and C499 are 1/2.27, 1/2.25, 1/3.68 and 1/2.25 respectively.

It indicates that TSSTA ≈ 1.383 · TSTA on average for two

process variations. It is expected that using a more efficient

solving method would contribute to even higher efficiency.

TABLE II
THE ABSOLUTE VALUES OF DELAY µ AND σ RELATIVE ERRORS (UNIT: %)

OF SOME CIRCUITS WITH DIFFERENT CORRELATION COEFFICIENTS ρ,
COMPARED WITH 10K SPECTRE MC RESULTS

ρ 0 0.2 0.5 0.8

name µ σ µ σ µ σ µ σ

C17 0.50 0.35 0.47 2.33 0.27 2.52 0.44 2.52

Adder 0.01 0.05 0.54 0.40 1.00 2.28 1.04 2.63

C432 0.18 2.00 0.71 1.46 0.88 1.04 1.15 0.50

C499 0.81 2.19 0.37 0.95 0.47 2.32 1.07 2.97

VI. CONCLUSIONS

In this paper, we have presented a new transistor-level

gate model based statistical timing analysis method. The gate

models are constructed based on statistical simplified transistor

models for higher accuracy. Correlations among input signals

and among process variations are preserved during simulation

since the voltages and all elements in gate models have the

same model format. Furthermore, the multiple input switching

problem is addressed by considering all input signals together

for output information. The variational waveforms of the gate

output are calculated by RDE-based statistical simulations,

which is used for delay distribution calculation. The exper-

iments demonstrate the high accuracy and efficiency of the

proposed method for both deterministic delay calculation and

statistical timing analysis.
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