
Challenges and New Trends
in Probabilistic Timing Analysis

S. Quinton† and R. Ernst† D. Bertrand∗ and P. Meumeu Yomsi∗

†IDA - TU Braunschweig; Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
Email: {quinton, ernst}@ida.ing.tu-bs.de

∗EPI TRIO - INRIA Nancy Grand-Est; 615, rue du Jardin Botanique, 54000 Villiers-lès-Nancy, France
Email: {dominique.bertrand, patrick.meumeu}@inria.fr

Abstract—Modeling and analysis of timing information are
essential to the design of real-time systems. In this domain,
research related to probabilistic analysis is motivated by the
desire to refine results obtained using worst-case analysis for
systems in which the worst-case scenario is not the only relevant
one, such as soft real-time systems. This paper presents an
overview of the existing solutions for probabilistic timing analysis,
focusing on challenges they have to face. We discuss in particular
two new trends toward Probabilistic Real-Time Calculus and
Typical-Case Analysis which rise to some of these challenges.

Index Terms—Real-time systems, Stochastic analysis, Proba-
bilistic Real-Time Calculus, Typical-Case Analysis.

I. INTRODUCTION

Timing modeling and formal verification of real-time sys-
tems are currently hot topics in embedded systems research,
e.g., within the TIMMO-2-USE project [2]. Real-time systems
very often consist of multiple resources such as processors or
buses upon which multiple tasks are executing concurrently.
To arbitrate between tasks trying to execute at the same time,
different scheduling policies are possible, which have different
consequences on the runtime behavior of tasks. Furthermore,
tasks may activate each other and exchange data. These
complex interferences are very hard to capture by simulation,
thus making formal analysis essential in order to obtain safe
information on the behavior of the system.

Two compositional approaches have successfully tackled
this problem, namely Real-Time Calculus (RTC) [5] and Com-
positional Performance Analysis (CPA) [11]. These methods
are compositional in the sense that they use local informa-
tion about tasks and resources (such as execution times or
scheduling policies), which can be determined without taking
into account any interference with other tasks or resources,
to come up with global information about them, that is,
information about how tasks behave within a given system (e.g.
in terms of response times). These methods are efficient and
safe, however their results are often rather pessimistic when
compared to simulations of the system that is under analysis.
This discrepancy has two explanations.
. First, the result of the analysis is an overestimation of the

actual worst-case scenario possible at runtime.

. Second, the actual worst-case scenario may be very rare
and thus may never occur during the simulations of the
system, although it is indeed possible.

Probabilistic approaches (often called stochastic) have been
developed in order to refine results in the latter case. The
basic principle of probabilistic timing analysis is to assume
that some local probabilistic information is available (e.g.,
describing the execution times of tasks) and use it in order
to come up with some global probabilistic information (e.g.,
on the response times of tasks or on the end-to-end latencies).
Initial solutions [7] focused on the monoprocessor case where
several tasks execute on a single resource. In this paper we
discuss current trends toward multiprocessor analysis. Note
that a probabilistic analysis, just like any other analysis,
remains useless unless it satisfies the following conditions.

1) It is efficient enough to scale to the size of real systems.
2) It provides results that are meaningful and helpful for the

system designer.
3) The model used for the analysis is practical — that is,

either it is simple enough to be provided by the system
designer, or it is automatically derivable, e.g. from a trace.

4) Any assumption made by the analysis is formally de-
scribed and can be validated either by the designer or by
some automated method (e.g., using statistical tests).

In the context of probabilistic timing analysis, these four
conditions represent four challenges that are at the core of
current research in the domain.

Efficiency is indeed a key issue as initial approaches aiming
at exact results were in practice computationally too expensive.
The idea of reducing the complexity by using pessimism
on some parameters was introduced in [8]: the distributions
are then interpreted as a safe approximation of the system’s
behavior rather than as an exact representation. In such a pes-
simistic approach several optimizations are possible in terms
of efficiency. For example, there is currently active research
focusing on re-sampling techniques [25], where the goal is
to reduce the co-domain of distributions while preserving
soundness of results.

Unfortunately, while reducing computation costs, pessimism
also degrades the quality of results. This means that efficiency978-3-9810801-8-6/DATE12/ c©2012 EDAA



cannot be the only criterion to evaluate an analysis method and
the accuracy of results is also essential to ascertain that these
results are meaningful. In particular, one should keep in mind
that probabilistic analysis must be more precise than worst-
case analysis to be useful. Besides, not all representations of
probabilistic information are equally expressive. Most exist-
ing probabilistic approaches focus on (possibly pessimistic)
distributions on response times and thus cannot provide any
information on the behavior of the system (e.g., regarding
bursts of missed deadlines) within a bounded time window.
Therefore one must pay attention to which type of probabilistic
information is actually needed or useful for the design of a
given system. Probabilistic Real-Time Calculus (PRTC) [26]
and Typical-Case Analysis [23] are emerging trends which can
provide information about bursts.

Regarding the third above-mentioned challenge, namely
how to obtain the model on which probabilistic analysis
is performed, one must admit that designing a probabilistic
model manually is not always an easy task. For this reason it
is essential to provide methods for deriving such models from
traces of system execution or simulation and then describe
what information can be reasonably extracted from such a
trace. Typically, one will assume that local information is
reliable while global information is not and must be obtained
by formal analysis. Furthermore, randomness properties of
variables must be validated using standard tests on traces,
wherever randomness is assumed [14].

Finally, the most common assumption made by existing
approaches (including PRTC) is the independence of the
various random variables used to represent local probabilistic
information. This typically implies that the execution time
of any instance of a task is correlated neither with the
execution time of any other instance of the same task, nor
with the execution time of any instance of another task. This
assumption is reasonable in different contexts [1] and there
exist statistical tests to check that it is realistic. However it
was shown in [12] that if there are indeed dependencies in the
system then the analysis must take them into account.

Dealing with dependencies is a hard task especially because
determining and representing them is very difficult. Moreover,
adopting a pessimistic approach such as using copulas leads
to results that are as pessimistic as the ones produced by
worst-case analysis. As a consequence of this situation, a
different perspective on the problem is needed. This is what
is proposed by Typical-Case Analysis (TCA) [23]. Strictly
speaking, TCA is not a probabilistic approach because it
provides firm guarantees on the behavior of a system within
a bounded time window but its outcome is sufficiently similar
to that of a probabilistic analysis to be of interest to the
same research community and industrial practitioners. For
example, TCA can prove that the response time of a task
cannot be larger than a given value more than m times out of
k consecutive executions. This type of properties is related to
weakly-hard constraints and (m, k)-firm systems, as explained
in Section IV.

Organization of the paper

This paper is organized as follows. Section II describes the
initial monoprocessor approaches developed mainly by Dı́az
et al. over the past decade. Section III presents Probabilistic
Real-Time Calculus as a new approach for providing precise
results when randomness and independence can be assumed.
Section IV describes Typical-Case Analysis which focuses on
systems where this hypothesis does not hold. Finally Section V
discusses challenges that still remain ahead of us.

II. STOCHASTIC ANALYSIS

In this section we present the state of the art in the domain
of monoprocessor probabilistic analysis initiated by [27]. This
is performed with an emphasis on the work developed by Dı́az
et al. for improving the efficiency of the method, which they
call stochastic analysis. Stochastic analysis aims at providing
a distribution of the response times of each task in a system
when the distributions of the execution times of tasks are
given — whereas in classical worst-case analysis only the best-
case and worst-case execution times (denoted by BCET and
WCET, respectively) are known. Section II-B discusses how
the execution time distributions are obtained in practice. As
each task is assigned a relative deadline which defines for each
of its instances (i.e., execution of the task) a date by which
this instance must be completed, the goal of the analysis is to
formally determine “how often” deadlines are missed.

Most existing methods based on probabilistic execution
times, except the one presented by Dı́az et al. in [7], introduce
worst-case assumptions to simplify their analysis. Some typi-
cal assumptions are: the critical instant assumption [27], [9],
restrictions on the load such as the heavy traffic condition [17],
or restrictions on the occurrence of preemptions [21]. For these
reasons we focus on the work of Dı́az et al. on the analysis
of periodic tasks as it does not assume any such worst-case
or restrictive conditions.

A. Principle of stochastic analysis

The technique presented in [7] is based on two basic
assumptions. First, the offset of each task (i.e., the time of
its first activation) is fixed and known a priori. Second, tasks
do not share any resource other than the one on which they
execute, such that execution is lockfree. The scheduler is
assumed to be Fixed Priority Preemptive (FPP) [19]. Note
that this technique has been extended in [8], [20] to handle
resource sharing, priority allocation and other schedulers such
as Earliest Deadline First (EDF). The execution time of each
instance τi,j of a task τi is modeled by a random variable Ci,j ,
and the random variables of all instances of a task are assumed
to follow the same distribution. Moreover all random variables
are supposed to be independent to simplify the computation
of their sums. Under this hypothesis, the sum of two random
variables can be obtained by convolution.

Based on these execution time distributions Dı́az et al.
compute, for each instance τi,j , the distribution of the random
variable Ri,j characterizing its response time. This method is



the adaptation of the deterministic analysis presented in [13]
to the stochastic case. Ri,j is obtained as follows.

Ri,j
def
= Bi,j + Ci,j + Ii,j

where Ii,j and Bi,j respectively denote the interference of
higher priority tasks and the backlog, i.e., the influence of the
instances of tasks with a priority higher than or equal to that
of τi that have not completed yet when τi,j is activated. Once
the distribution of Ri,j is known, the schedulability of τi,j
relies on the probability of Ri,j being less than or equal to its
deadline.

Since the execution of the system consists of an infinite
sequence of instances, it follows that an infinite number of
instances should be analyzed. However, it has been proven
in [7] that the analysis can be limited to a bounded time
interval in two cases. First, when the maximum processor
utilization is less than one, it is sufficient to compute the
backlog at the end of the first hyperperiod (i.e. the least
common multiple of the periods of all tasks) and perform the
analysis on all instances contained in the second hyperperiod.
Second, when the mean processor utilization is less than one,
the stochastic process defined as the sequence of backlogs
at the beginning of successive hyperperiods can be modeled
by using a Markov chain. In addition, it has been shown
that a stationary distribution of the backlog, called steady-
state backlog, exists. Based on this steady-state backlog, all
significant probabilities can be computed.

B. Challenges and current trends

In practice, computing the steady-state backlog for the
second case described in the previous section is a challenge
in terms of efficiency. Except for simple task sets, the only
existing method for computing this steady-state backlog is by
using a fixpoint algorithm in which one calculates the backlog
after each successive hyperperiod. However this method results
in a more pessimistic backlog at each new iteration step, so the
backlog obtained by a truncated iteration may be optimistic,
that is, unsafe. More details on this issue can be found in [8].

Furthermore, even if we use the approximation found after a
certain number of iterations, the number of points representing
the steady-state backlog might be too large to be stored in the
memory. One solution to circumvent this problem consists in
truncating the distributions and/or re-sampling them. These
operations can be achieved in a pessimistic manner as proved
in [8]. More precisely, it has been shown that clusters of
probabilities can be aggregated towards the worst (i.e. largest)
execution time of the cluster. Such transformation clearly
is pessimistic and reduces the number of points to store in
memory. Note that the complexity of the analysis significantly
depends on the number of non-zero points in the distributions.
Some experimental results in this direction are presented
in [15]. Other studies such as those presented in [25], [22]
apply pessimistic re-sampling not only to the input execution
time distributions but also during the backlog computation.

A second main challenge for stochastic analysis is to obtain
the distributions of execution times on which the model is

m
ea

su
re

d
 B

C
E
T

Pr
ob

ab
ili

ty

ex
ac

t BCET

saf
e BCET

measured W
CET

exact W
CET

safe W
CET

Execution time

Figure 1. Exact and measured distributions on execution times.

based. These distributions can be obtained by measurement, or
by using hybrid techniques [6]. However it is well known that
simulation cannot cover all cases as illustrated in Figure 1: the
black full line represents the exact probability distribution of
the execution time of a task while the blue dashed line shows
the distribution as it could be actually observed and mea-
sured. One can notice in particular that the measured WCET
(resp. BCET) differs from the exact WCET (resp. BCET), as
large execution times with a very low probability may never be
observed in a simulation. Besides, the exact WCET is usually
smaller than the safe bound for it (denoted safe WCET in the
figure) which can be obtained by static analysis [28].

Finally, we have mentioned that existing stochastic ap-
proaches rely on the assumption that the execution times of
task instances can be represented as independent random vari-
ables. If this is not ensured by construction [1], this assumption
must be justified, in particular when distributions are derived
from traces of system execution or simulation. First, one must
check that execution times can indeed by modeled by random
variables, then verify that the independence hypothesis cannot
be rejected, focusing for example on linear dependencies etc.
Note that the best result that can be obtained using statistical
testing is that the independence hypothesis cannot be rejected,
in contrast with a result that would validate it. A detailed case
study is presented in [14] where such tests are performed to
derive distributions on inter-arrival times from traces (instead
of execution times).

III. PROBABILISTIC REAL-TIME CALCULUS

Stochastic analysis as presented in the previous section is
monoprocessor and restricted to periodic tasks. The technique
presented in this section is based on Real-Time Calculus
(RTC) [5] which uses abstract and very expressive models for
representing activations and execution times (namely request
and service curves). As a result this approach does not suffer
from the restrictions imposed by stochastic analysis on the
activation pattern of tasks and on the number of resources (pro-
cessors) in the system. Moreover, it can handle probabilistic
information on the inter-arrival time of task activations.

A. Principle of RTC

Real-Time Calculus is based on the notion of event streams
which describe how tasks activate each other. An event stream
is represented by the upper bound αu(∆) and the lower bound
α`(∆) on the number of event occurrences (e.g. activations)



Figure 2. Basic principle of Real-Time Calculus: α(∆) and β(∆) are the
inputs whereas α′(∆) and β′(∆) are the outputs.

within any time interval of length ∆. Similarly, the service
offered by a resource is specified using the upper function
βu(∆) and the lower function β`(∆) which describe the max-
imum and minimum number of serviced (processed) events,
respectively, within any interval of length ∆. Hence, if IR(t)
stands for the number of input events from time 0 up to time t
in a resource R, and CR(t) stands for its processing capability
at time t, it holds that:{

α`(∆) ≤ IR(t)− IR(t−∆) ≤ αu(∆)

β`(∆) ≤ CR(t)− CR(t−∆) ≤ βu(∆)

Given functions αu and α` corresponding to an event
stream arriving at a resource R, and the service functions
βu and β` offered by R, the intuitive idea behind the RTC
paradigm (as illustrated by Figure 2) consists in computing the
timing properties of the processed stream and the remaining
processing capacity, i.e., functions α′u, α′`, β

′
u and β′`, as

well as the maximum backlog and the delay experienced by
the stream in R. These functions are obtained using kernel
formulas [16] whose efficient implementation is challenging.

The computed functions α′u and α′` are then used as
inputs to the next resource on which this stream is further
processed. By repeating this procedure until all resources in
the system have been considered, timing properties of the
fully-processed stream can be determined as well as its end-to-
end event delay and the global backlog. This forms the basis
for the composition of local analyzes of individual resources
to obtain formal timing information about the global system.

B. Principle of PRTC

Just like RTC was inspired by Network Calculus [16], Prob-
abilistic Real-Time Calculus (PRTC) [26], [24] was inspired
by Probabilistic Network Calculus [29]. The key idea is to
refine the classical model of RTC based on four functions αu,
α`, βu and β`, by replacing these four functions with a finite 1

1. Only discrete distributions of arrival and service curves are considered.

set of functions αi
u and αi

` for event streams (with 1 ≤ i ≤ ni
and ni ∈ N+), each of which is bounded from above by αu

and from below by α`, then a set of functions βk
u and βk

` for
resource service (with 1 ≤ k ≤ mk and mk ∈ N+), each of
which is bounded from above by βu and from below by β`. In
addition each function is associated with a parameter p ∈ [0, 1]
corresponding to the probability of the actual stream being
above (respectively below) the given function in the interval
domain. Using convolution, as was already the case for the
classical RTC, one can compute the distribution of the (output)
probabilistic processed and remaining functions based on the
(input) arrival and service functions. Finally, when all streams
have been processed, one can perform a schedulability analysis
as presented in Section II.

C. Challenges and current trends

It is unlikely that system designers will be able to provide
directly models for PRTC. Therefore one must explain how
such models can be derived from execution or simulation
traces. To do so, we consider a probabilistic model similar
to that of Section II where not only execution times are prob-
abilistic but also periods. Probabilistic periods model the inter-
arrival times of task activations. Note that this model is well
suited for describing sporadic activations. We have already
discussed how such a model of computation can be obtained
from a trace. How probabilistic arrival and service functions
can be computed from this model is a rather technical issue
and thus beyond the scope of this paper. A detailed explanation
is available in [26].

On a different level, despite all the benefits resulting in
the usage of PRTC, a challenge of this approach remains its
high computational complexity. Indeed, even though PRTC
provides useful information about the timing behavior of her
system, the efficiency of the method is obviously dependent
on that of RTC which is already problematic.

IV. TYPICAL WORST-CASE ANALYSIS

Before presenting Typical-Case Analysis [23], let us discuss
the specific challenges that it was designed to address. As
already mentioned, existing stochastic approaches as well as
Probabilistic Real-Time Calculus rely on the assumption that
the execution times of tasks (and inter-arrival times for PRTC)
can be represented as independent random variables. This
is in general not the case and ignoring these dependencies
is not safe as shown in [12]. So far there exists no usable
solution when the independence hypothesis does not hold.
A conservative approach using copulas was proposed in [4]
and [12] but in practice it yields pessimistic results that
are close to those produced by worst-case analysis. As a
consequence to this situation, a different perspective on the
problem is needed.

It is important to keep in mind that approaches based on
distributions do not provide information on the behavior of
the system in a bounded time window. For example, it is not
possible to distinguish, based only on the distribution of the
inter-arrival time of events, the two traces of Figure 3.



Figure 3. Limits of probabilistic information: in both traces the probability
of a small inter-arrival time is of 1

4
.

Typical-Case Analysis (TCA) addresses these two issues. As
already mentioned, it is not strictly speaking a probabilistic
approach because it provides firm guarantees on the behavior
of a system within a bounded time window but its outcome is
sufficiently similar to that of a probabilistic analysis to be of
interest to the same research community and industrial practi-
tioners. More precisely it comes up with timing information of
the form: “The response time of task τ cannot be larger than R
more than m times out of k consecutive executions.” This type
of properties is related to weakly-hard constraints [3] which
state in a similar way how many deadlines may be missed
out of a sequence of consecutive executions. Note however
that the outcome of Typical-Case Analysis can be used for
other purposes than schedulability analysis, such as getting
some quantitative timing information about critical tasks in a
mixed-critical system. Furthermore TCA is not restricted to
periodic tasks as in [3], but can use the same event stream
models as compositional analysis, i.e. arrival curves [5] or
PJD (periodic with jitter and minimal distance) models [11].
Let us also mention (m, k)-firm systems [10] which focus on
enforcing this type of properties by defining the appropriate
scheduling policy rather than analyzing it.

A. Principle of Typical-Case Analysis

Our approach is based on compositional performance anal-
ysis (CPA) [11]. We suppose that we are given:

1) a safe (worst-case) model M of the system;

2) an approximate (typical-case) model M ′ of the system
where unlikely behaviors of M are omitted — e.g. an
“almost periodic” task in the safe model is considered
periodic, or a worst-case execution time that rarely hap-
pens in practice is ignored;

3) a distance between both models which accurately de-
scribes the approximation made in M ′.

We then perform separately two CPAs, one on M and the
other one on M ′. In a second phase, we use the result of the
CPA of M and the distance between M and M ′ to formally
describe the accuracy of the obtained approximate worst-case
response time (WCRT) by providing for any k the smallest
safe value of m such that the response time of the task under
study cannot be larger than the approximate WCRT more often
than m times out of k consecutive executions.

Let us illustrate this abstract description of Typical-Case
Analysis on the first example of Figure 4, where a task is
activated periodically with some additional sporadic overload
activations. In this case the difference between the safe and the
typical-case models is formally represented using what we call

Figure 4. Two activation traces for which Typical-Case Analysis can be
efficiently applied, along with their typical-case model.

an overload model, which models the trace only consisting of
the red activations. An upper bound describing the accuracy
of the approximate WCRT can be obtained based on the
following observations related to a busy window analysis [18]
of the task:

– one overload activation is in at most one busy window;
– a busy window contains at most K activations where K

is the worst-case number of activations in a busy window;
– in absence of overload activations in a busy window, all

response times are smaller than the approximate WCRT.
One can then conclude that one overload activation cannot
impact more than K response times. The full description of
this example is available in [23].

The same approach can be followed in other cases, e.g.
to handle overjitter at the input of a task, as illustrated in
Figure 4, or to model efficiently execution times of tasks.

B. Challenges and current trends

One of the nice properties of this approach is that it is
extremely efficient in terms of computational complexity. As
regards usefulness of the result, we have performed experi-
ments with a realistic example where some tasks are activated
both periodically (time-triggered) and aperiodically (event-
triggered) thus leading to an activation model which is periodic
with a sporadic overload. Experiments show that TCA can
result in an approximate WCRT which is dramatically smaller
than the safe one, still giving guarantees that fit the important
class of weakly hard real-time systems. The interested reader
is again referred to [23].

Let us now discuss the issue of how to obtain the approx-
imate models on which TCA is based. These models can
be directly specified or derived from execution or simulation
traces. In the latter case it is assumed, as is the case for derived
worst-case analysis, that the trace provides good estimates
on the local behavior of tasks while it does not have to be
trusted with respect to the global behavior of the system.
More precisely, for every size of an “observation window”
we only suppose that the worst-case scenario within such a
window appears in the trace, as regards inter-arrival times and
execution times.

One then derives automatically a worst-case model of each
task and manually defines a typical-case model based on the
trace. The distance between safe and approximate models is



obtained by first formally identifying in the trace the “error”
events which induce a difference between safe and approxi-
mate WCRT and then following the principles of the δ and
η functions of [11] to represent how often these events may
appear. Again we only suppose that the worst-case scenario
with respect to error events appears in the trace for every
observation window.

V. CONCLUSION

We have presented an overview of the state of the art
in probabilistic timing analysis with a focus on the main
challenges that must be addressed, namely: efficiency of the
computation, usefulness of the results to the system designer,
possibility to obtain in practice the model on which the
analysis is based and to verify that the assumptions made
do indeed hold. We described in more detail emerging trends
that propose new answers to these problems including an
alternative model and analysis that can be applied where
randomness and stochastic independence of system variables
cannot be assumed or where the system behavior in a bounded
time window is of interest.

As should now be clear to the reader, more research is
needed in the domain of probabilistic timing analysis. However
the recent results obtained by Probabilistic Real-Time Calculus
(PRTC) and Typical-Case Analysis (TCA) show that current
limitations on the applicability of existing approaches could
be soon overcome. To conclude, let us note that an interesting
development in the future would be to combine PRTC and
TCA so as to benefit from the precision of PRTC for random
variables which are independent and still be able to handle the
remaining interdependent and non-random variables.

ACKNOWLEDGMENT

This work was funded by the ITEA2 project TIMMO-2-USE
(EUREKA cluster N◦ 3674) through the French Ministry for
Industry and Finances and the German Ministry of Education
and Research (BMBF) under the funding ID 01IS10034. The
responsibility for the content rests with the authors.

REFERENCES

[1] PROARTIS: PRObabilistically Analysable Real-TIme Systems.
[Online]. Available: http://www.proartis-project.eu/

[2] TIMMO-2-USE: TIMing MOdel - TOols, algorithms, languages,
methodology, and USE cases. [Online]. Available: http://timmo-2-
use.org/

[3] G. Bernat, A. Burns, and A. Llamosı́, “Weakly hard real-time systems,”
IEEE Trans. Computers, vol. 50, no. 4, pp. 308–321, 2001.

[4] G. Bernat, A. Burns, and M. Newby, “Probabilistic timing analysis: An
approach using copulas,” J. Embedded Computing, vol. 1, no. 2, pp.
179–194, 2005.

[5] S. Chakraborty, S. Künzli, and L. Thiele, “A general framework for
analysing system properties in platform-based embedded system de-
signs,” in Proceedings of DATE’03. IEEE Computer Society, 2003,
pp. 190–195.

[6] L. David and I. Puaut, “Static determination of probabilistic execution
times,” in Proceedings of ECRTS’04. IEEE Computer Society, 2004,
pp. 223 – 230.

[7] J. Dı́az, D. Garcı́a, K. Kim, C.-G. Lee, L. Lo Bello, J. López, S. L. Min,
and O. Mirabella, “Stochastic analysis of periodic real-time systems,” in
Proceedings of RTSS’02. IEEE Computer Society, 2002, pp. 289–300.

[8] J. Dı́az, J. López, M. Garcı́a, A. Campos, K. Kim, and L. Bello,
“Pessimism in the stochastic analysis of real-time systems: concept and
applications,” in Proceedings of RTSS’04. IEEE Computer Society,
2004, pp. 197 – 207.

[9] M. K. Gardner and J. W.-S. Liu, “Analyzing stochastic fixed-priority
real-time systems,” in Proceedings of TACAS’99, ser. LNCS, vol. 1579.
Springer, 1999, pp. 44–58.

[10] M. Hamdaoui and P. Ramanathan, “A dynamic priority assignement
technique for streams with (m, k)-firm deadlines,” IEEE Trans. Com-
puters, vol. 44, no. 12, pp. 1443–1451, 1995.

[11] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the SymTA/S approach,” in IEE
Proceedings Computers and Digital Techniques, 2005.

[12] M. Ivers and R. Ernst, “Probabilistic network loads with dependencies
and the effect on queue sojourn times,” in Proceedings of QSHINE’09,
ser. LNCS, vol. 22. Springer, 2009, pp. 280–296.

[13] M. Joseph and P. Pandya, “Finding response times in a real-time system,”
The Computer Journal, vol. 29, no. 5, pp. 390–395, 1986.

[14] D. Khan, N. Navet, B. Bavoux, and J. Migge, “Aperiodic traffic in
response time analyses with adjustable safety level,” in Proceedings of
ETFA’09. IEEE Computer Society, 2009, pp. 1–9.

[15] K. Kim, J. Dı́az, L. Bello, J. López, C.-G. Lee, and S. L. Min, “An exact
stochastic analysis of priority-driven periodic real-time systems and its
approximations,” IEEE Trans. Computers, vol. 54, no. 11, pp. 1460 –
1466, 2005.

[16] J.-Y. Le Boudec and P. Thiran, Network calculus: A theory of determin-
istic queuing systems for the Internet. Springer, 2001, vol. 2050 of
LNCS.

[17] J. P. Lehoczky, “Real-time queueing network theory,” in Proceedings of
RTSS’97. IEEE Computer Society, 1997, pp. 58 –67.

[18] ——, “Fixed priority scheduling of periodic task sets with arbitrary
deadlines,” in Proceedings of RTSS’90. IEEE Computer Society, 1990,
pp. 201–213.

[19] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[20] J. M. López, J. L. Dı́az, J. Entrialgo, and D. Garcı́a, “Stochastic analysis
of real-time systems under preemptive priority-driven scheduling,” Real-
Time Systems, vol. 40, no. 2, pp. 180–207, 2008.

[21] S. Manolache, P. Eles, and Z. Peng, Real-Time Applications with
Stochastic Task Execution Times: Analysis and Optimisation. Secaucus,
NJ, USA: Springer, 2007.

[22] D. Maxim, L. Santinelli, and L. Cucu-Grosjean, “Improved sampling
for statistical timing analysis of real-time systems,” in the 4th Junior
Researcher Workshop on Real-Time Computing, Toulouse, France, 2010.

[23] S. Quinton, M. Hanke, and R. Ernst, “Formal analysis of sporadic
overload in real-time systems,” 2012, to appear in the Proceedings of
DATE’12.

[24] B. Raman, G. Quintin, W. T. Ooi, D. Gangadharan, J. Milan, and
S. Chakraborty, “On buffering with stochastic guarantees in resource-
constrained media players,” in Proceedings of CODES+ISSS’11. ACM,
2011, pp. 169–178.

[25] K. S. Refaat and P.-E. Hladik, “Efficient stochastic analysis of real-time
systems via random sampling,” in Proceedings of ECRTS’10. IEEE
Computer Society, 2010, pp. 175–183.

[26] L. Santinelli, P. Meumeu Yomsi, D. Maxim, and L. Cucu-Grosjean, “A
component-based framework for modeling and analyzing probabilistic
real-time systems,” in Proceedings of ETFA’11. IEEE Computer
Society, 2011, pp. 1 –8.

[27] T.-S. Tia, Z. Deng, M. Shankar, M. F. Storch, J. S. 0002, L.-C. Wu, and
J. W.-S. Liu, “Probabilistic performance guarantee for real-time tasks
with varying computation times,” in Proceedings of RTAS’95. IEEE
Computer Society, 1995, pp. 164–173.

[28] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem - overview of methods and survey of tools,”
ACM Trans. Embedded Comput. Syst., vol. 7, no. 3, 2008.

[29] J. Xie and Y. Jiang, “Stochastic network calculus models under max-plus
algebra,” in Proceedings of GLOBECOM’09. IEEE Computer Society,
2009, pp. 1–6.


