
Design Space Pruning through Hybrid Analysis in
System-level Design Space Exploration

Roberta Piscitelli and Andy D. Pimentel
Computer Systems Architecture group, Informatics Institute, University of Amsterdam, The Netherlands

Email: {r.piscitelli,a.d.pimentel}@uva.nl

Abstract—System-level design space exploration (DSE), which
is performed early in the design process, is of eminent importance
to the design of complex multi-processor embedded system archi-
tectures. During system-level DSE, system parameters like, e.g.,
the number and type of processors, the type and size of memories,
or the mapping of application tasks to architectural resources,
are considered. Simulation-based DSE, in which different design
instances are evaluated using system-level simulations, typically
are computationally costly. Even using high-level simulations and
efficient exploration algorithms, the simulation time to evaluate
design points forms a real bottleneck in such DSE. Therefore,
the vast design space that needs to be searched requires effective
design space pruning techniques. This paper presents a technique
to reduce the number of simulations needed during system-level
DSE. More specifically, we propose an iterative design space
pruning methodology based on static throughput analysis of
different application mappings. By interleaving these analytical
throughput estimations with simulations, our hybrid approach
can significantly reduce the number of simulations that are
needed during the process of DSE. 1

I. INTRODUCTION

In recent years, platform based design has become the pre-
dominant design paradigm in the area of heterogeneous multi-
processor system-on-chip (MPSoC) design [20]. In contrast
to more traditional design paradigms, platform based design
shortens design time by eliminating the effort of the low-
level design and implementation of system components. A
platform based design environment typically consists of a
fixed, parameterizable platform or a set of (parameterizable)
components that can be combined in specific ways to compose
a platform. The parameters make it possible to adjust platforms
and individual components to the required application domain
and platform design requirements. However, as the number of
possible system candidates increases exponentially with the
number of parameters, traditional design space exploration
methods fall short. This has prompted increasing research
effort focusing on efficient exploration techniques to identify
those parameters that result in an optimal system.

System parameters are often considered by type: e.g., the
number and type of processors, the size of the main memory
or the mapping of application tasks to architectural resources.
A multi-dimensional design space can be constructed by
using each type as an axis of the design space (the so-
called parameter space). The design criteria for a system can
usually be translated to one or multiple objectives, e.g., power

1978-3-9810801-8-6/DATE12/ c©2012 EDAA

consumption, system performance or cost. The parameter
space maps onto the objective space by associating objective
values to each point in the parameter space. If the complete
objective space were given, then a designer could easily select
those system candidates that meet the design requirements or
that are optimal in some pre-defined way. In practice, however,
it is infeasible to obtain a representation of the objective space
that is both accurate and complete.

Methods for evaluating a single design point in the design
space roughly fall into one of three categories: 1) mea-
surements on a (prototype) implementation, 2) simulation
based measurements and 3) estimations based on some kind
of analytical model. Each of these methods has different
properties with regard to evaluation time and accuracy. Eva-
luation of prototype implementations provides the highest
accuracy, but long development times prohibit evaluation of
many design options. Analytical estimations are considered the
fastest, but accuracy is limited since they are typically unable
to sufficiently capture particular intricate system behavior.
Simulation-based evaluation fills up the range in between
these two extremes: both highly accurate (but slower) and fast
(but less accurate) simulation techniques are available. This
trade-off between accuracy and speed is very important, since
successful design space exploration (DSE) depends both on
the ability to evaluate a single design point as well as being
able to efficiently search the entire design space. Current DSE
efforts typically use simulation or analytical models to evaluate
single design points together with a heuristic search method
[6] or statistical techniques [8], [21], [23] to search the design
space. These DSE methods search the design space using only
a finite number of design-point evaluations, not guaranteeing
to find the absolute optimum in the design space, but they
reduce the design space to a set of design candidates that meet
certain requirements or are close to the optimum with respect
to certain objectives.

In this paper, we focus on mapping DSE, where mapping
involves two aspects: 1) allocation and 2) binding. Alloca-
tion deals with selecting the architectural components in the
MPSoC platform architecture that will be involved in the
execution of the application workload (i.e., not all platform
components need to be used). Subsequently, the binding spec-
ifies which application task or application communication is
performed by which MPSoC component. As mentioned above,
current state-of-the art in this particular domain is mostly
based on the use of either simulations or analytical models

to evaluate mappings, where simulative approaches typically
prohibit the evaluation of many design options due to the
higher evaluation performance costs and analytical approaches
suffer from accuracy issues. In this paper, we propose a hybrid
approach which combines simulation with an analytical model
to prune the design space in terms of application mappings
that need to be evaluated using simulation. To this end, we
study the analytical estimation of the expected throughput
of an application given a certain architectural configuration
and application-to-architecture mapping. In the majority of the
search iterations of the DSE process, the throughput estimation
avoids the use of simulations to evaluate the design points.
However, since the analytical estimations may in some case
be less accurate, we once in while interleave the analytical
estimations with simulative evaluations in order to ensure that
the DSE process is steered into the right direction. As we will
demonstrate, the resulting hybrid technique yields significant
efficiency improvements while still producing similar solutions
in terms of quality as compared to simulation-based DSE.

The remainder of the paper is organized as follows. The
next section briefly describes how the throughput analysis is
combined with simulation in the DSE process. Section 3 gives
an overview of the throughput analysis methodology. Section
4 presents a number of experiments in which we compare
our hybrid approach against DSE using only system-level
simulations or analytical estimations. In Section 5, we describe
related work, after which Section 6 concludes the paper.

II. COMBINING THROUGHPUT ANALYSIS AND SIMULATION

To evaluate design points during system-level DSE by
means of simulation, we deploy the Sesame simulation frame-
work [19]. Sesame allows for rapid performance evaluation
of different MPSoC architecture designs, application to archi-
tecture mappings, and hardware/software partitionings with a
typical accuracy of 5% compared to the real implementation
[19], [16]. It applies separate application and architecture
models, together with an explicit mapping step to map appli-
cation models onto an architecture model. This mapping step
has been implemented using trace-driven co-simulation of the
application and architecture models. In this approach, traces
with computational and communication events generated by
an application model and consumed by an architecture model
are an abstract representation of the workload imposed on the
architecture.

In Figure 1, the entire DSE framework is shown. We adopt
a hybrid approach where Sesame simulations are interleaved
with analytical throughput analysis. The throughput analysis is
based on the application graph, the individual task workloads
and the mapping. It is used to quickly predict the performance
consequences of different design points as represented by
the application mapping on the underlying architecture. As
these fast analytical evaluations are interleaved with the slower
simulative evaluations in a way such that most evaluations are
performed analytically, this approach significantly improves
the efficiency of the DSE process. Consequently, this would
allow for searching a much larger design space.

Design
Space

Throughput
analysis

SESAME simulation

KPN transformation

Optimal Pareto front

Application Application
Workloads

Wp

Fig. 1. Driving experiments with the expected throughput.

The application is represented as a Kahn Process Network
(KPN) [9]. As will described in the next section, before
performing the throughput analysis, we need to perform some
transformations to the application graph of the KPN in order to
take into account mapping decisions. The subsequent through-
put analysis – performed on the transformed KPN – should
be fast and capable of correctly capturing the throughput trend
for different mappings. The analysis requires the process work-
loads WPi

as a parameter for the throughput modeling. The
workload WPi

of an application process Pi denotes the number
of time units that are required to execute a single invocation of
the process, i.e., the pure computational workload, excluding
the communication. It should be provided by the designer who
can obtain it, for example, by executing the process once on
the target platform, or by using an instruction set simulator.

As will be shown later on, the analytical throughput model
may encounter accuracy problems when the application graph
is cyclic. To correct such errors during DSE, we interleave the
throughput estimation with real simulations, according to the
value of a function φ, which can be set to 1 if a cycle occurs
or every k generations in the DSE process.

In our DSE framework, we use the widely-used NSGAII
genetic algorithm [3] to actually search through the mapping
design space. This results in a hybrid DSE method with the
following steps, as shown in Figure 1:

1) Perform an initial model calibration and generate the
application workloads WPi

, as explained in [16]. This
is a one-time effort, and the same for both the simulation
model and analytical throughput model.

2) Generate an initial population of unique mappings.
3) Transform the application KPN according to the map-

pings in the population and build the corresponding
merged KPNs (as will be explained in the next section).

4) Perform the static throughput analysis for the merged
KPN graphs and identify the best mappings based on
the highest estimated throughput.

5) In case of φ = 1, we interleave the throughput analysis
with real simulation, in order to correct the ranking in
the NSGAII evolutionary algorithm.

6) Verify the stopping criterion. If the mapping population

node
0

node
1

node
2

node
3

node
4

node
5

node
0

node
1

node
2

node
3

node
4

node
5

node
0

node
1

node
2

node
3

node
4

node
5

node
6

node
6

node
6

node
7

node
7

node
7

(b)
node 0,1 merged

(c)
node 2,3 merged

(a)
Initial Kahn process

network

B

A

Fig. 2. Process merging in an example Kahn Process network.

within the NSGAII algorithm remains unchanged or
a maximum number of iterations has been performed,
the algorithm stops. Otherwise, change the mapping
population using NSGAII’s genetic operators, and restart
from the third step.

III. MODELING APPLICATION MAPPINGS AS MERGED
KAHN PROCESS NETWORKS

Applications in our DSE framework are modeled using
KPNs [9], in which parallel processes communicate with each
other via unbounded FIFO channels. In the Kahn paradigm,
reading from channels is done in a blocking manner, while
writing is non-blocking. Starting from a KPN, to perform
throughput analysis one needs to take into account the map-
ping since the performance is mapping dependent. As we want
to perform the throughput analysis only at the KPN level, we
have to represent the mapping inside the KPN itself. To this
end, we use merging transformations on the KPN to reflect
the mapping of the different processes. Consequently, if two
processes are mapped onto the same architectural component,
they are merged into a single process in the KPN, as is
illustrated in Figure 2. Figure 2(a) shows the initial example
KPN consisting of eight processes. Performing throughput
analysis on this KPN assumes that each process is mapped
onto a different processor and each KPN channel is mapped
onto a unique communication memory in the MPSoC (i.e.,
all the connections are point-to-point connections). The KPNs
in Figures 2(b) and 2(c) subsequently reflect the decisions
that, respectively, KPN processes 0,1 and 2,3 are mapped
onto a single processor. Mapping multiple KPN tasks onto
one processor allows for MPSoC implementations with less
processing and communication components, i.e. with reduced
implementation cost, but at the cost of potentially additional
execution overhead. For example, in case of a homogeneous
MPSoC and a KPN model in which processes exchange data
tokens of uniform size, the performance of such mapping in
terms of throughput can only be the same or lower (so never

node
0

node
1

node
2

node
3

node
4

node
5

node
6

node
0

node
1

node
2

node
4,6

node
5

node
7

node
3

cycle:{[4,6],[5]}

node
7

nodes mapped into
the same processor

(a) An example of mapping that generates one cycle

node
0

node
1

node
2

node
3

node
4

node
5

node
0,2,5

node
1

node
3

node
4

node
6

cycles:{[0,2,5],[1]} and
{[0,2,5],[1],[3],[4]}

node
6

nodes mapped into
the same processor

(b) An example of mapping that generates two cycles

Fig. 3. Transformation into a cyclic KPN.

higher) than the performance of a mapping in which each
task is mapped onto a different processor [13]. Subsequently,
to assess the performance of a mapping decision, we perform
throughput analysis on the transformed KPN.

A. Process Throughput and Throughput Propagation

Our throughput analysis is based on and extends the work
presented in [13], in which the solution approach for the
overall KPN throughput modeling relies on calculating the
throughput τPi

of a process (i.e., node) Pi for all KPN
processes and propagation of the lowest process throughput to
the sink process. Here, we use a depth first search to determine
the order of the processes for propagating throughputs. For
a process Pi, the propagation consists of selecting either the
aggregated incoming FIFO throughput τFaggr,Pi

or the isolated
process throughput τ isoPi

.
The isolated throughput τ isoPi

is the throughput of a process
Pi when it is considered to be completely isolated from its
environment. This means that the isolated process throughput
is determined only by the workload WPi

of a process and the
number of FIFO reads/writes per process execution provided
that no blocking occurs:

τ isoPi
=

1

WPi
+ x · CRd + y · CWr

(1)

where x and y denote how many FIFOs are read and written
per process execution and CRd and CWr the performance
costs for reading/writing a token from/to a FIFO channel.
The throughput of a FIFO-channel f is determined by the
throughput of the processes accessing it:

τf = min(τWr
f , τRd

f) (2)

Subsequently, the throughput τPi
of a process Pi is determined

by either the throughput of the FIFOs from which process
Pi receives its data or by the computational workload of
the process itself, i.e., τ isoPi

. For merged KPN processes, the
incoming FIFO throughput is the aggregated throughput of
the merged channels and the isolated throughput is calculated
using the aggregated computational workloads. Consequently,
the throughput associated to each process in an acyclic KPN
graph is computed as:

τPi
= min(τFaggr,Pi

, τ isoPi
) (3)

For example, for the merged processes 2,3 in Figure 2(c),
τFaggr,P2,3

= τfa+τfb and τ isoP2,3
= 1

WP2
+WP3

+2·CRd+2·CWr .

B. Handling cycles

It is possible that the aforementioned merging transforma-
tion to account for mapping decisions might introduce cycles
in the transformed KPN. As shown in Figure 3(a), if processes
4,6 are mapped onto the same processor, this results in a
cycle containing process 5 and the merged process 4, 6. In
Figure 3(b), processes 0, 2 and 5 are mapped to the same
processor, resulting in a KPN with two cycles. Cycles in a
KPN are responsible for sequential execution of some of the
processes involved in the cycle. The sequential execution can
vary from a single initial delay to a delay at each execution
of some of the processes. For accurate throughput modeling,
these cycles must be taken into account. To the best of our
knowledge, current research on throughput analysis of KPNs
has not addressed the handling of cycles. In [13], the authors
only consider acyclic KPN graphs. A preliminary process
throughput analysis in case of dataflow loops is suggested in
[15] in terms of mapping rules, but the proposed rules have
never been elaborated nor verified. Based on this approach,
we conservatively approximate the isolated throughput of a
process Pi that is member of a cycle by:

τ isocycPi
=

1∑
Pj∈Cycle τ

iso
Pj

(4)

From equation 4, it is clear that the isolated throughput of
a cycle is lower than the regular isolated throughput (τ isoPi

) of
any of the processes involved in the cycle. It also implies
that the isolated throughput of a cycle can be lower than
the isolated throughput of the bottleneck process. This is an
important observation because, in such a case, the throughput
of the cycle will determine the overall KPN performance. To
conclude, the throughput associated to each process Pi will be
computed as:

τPi
= min(τ isocycPi

, τFaggr,Pi
, τ isoPi

) (5)

For example, in Figure 3(b) two cycles are generated due to the
KPN transformation. In this case, we assume that the resulting
τ isocycPi

for a process Pi would be

τ isocycPi
= min(τ isocycPi

(1), . . . , τ isocycPi
(n)) (6)

where τ isocycPi
(1), . . . , τ isocycPi

(n) are all the throughputs of the
cycles involving process Pi.

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

1.20	

1	 1
	 1	
2	 2
	 2	

1	 1
	 2	
3	 3
	 3	

1	 2
	 3	
4	 4
	 4	

1	 2
	 1	
2	 1
	 2	

1	 2
	 3	
1	 2
	 3	

no
rm

al
iz
ed

	 ra
nk

in
g	

mapping	

sta-c	 analysis	

Sesame	 simula-on	

Fig. 4. Normalized mapping ranking for the MJPEG
application using static analysis and simulation.

C. A hybrid DSE approach

The analytical throughput analysis may present some inac-
curacies when there are cycles introduced in the transformed
KPN, especially when there are many and/or complex cycles.
To demonstrate this, please consider Figure 4. Assuming a
Motion-JPEG (MJPEG) encoder application and a 4-processor
target MPSoC platform, this figure shows the normalized
performance ranking of five mappings when evaluating the
mappings using Sesame simulations (in red) or using our
throughput model (in blue). Here, we apply the following
notation for the mappings as specified on the horizontal axis:
we have six application tasks and for each task we assign the
identifier of the processor to which the task is mapped. For
instance, the mapping {1, 1, 1, 2, 2, 2} indicates that tasks 0,1
and 2 are mapped to processor 1, while tasks 3,4 and 5 are
mapped to processor 2. Evidently, the normalized ranking of
the mappings for the MJPEG application is correct most of
the times. However, in correspondence to the transformations
to the KPNs to represent a certain mapping, which generates
cycles (i.e., mappings {1, 2, 1, 2, 1, 2} and {1, 2, 3, 1, 2, 3} in
Figure 4), the estimation is sometimes too pessimistic. This
could imply that these design points would be excluded during
the DSE phase, possibly leading to a sub-optimal solution. For
this reason, we introduce a hybrid simulation and analytical
approach to compensate for these estimation errors. However,
as the probability of getting a transformed KPN with a cycle
increases exponentially with the complexity of the topology of
the KPN and the number of processors in the target platform,
for efficiency reasons our DSE framework also allows for
interleaving simulations with a pre-defined frequency instead
of correcting the DSE every time a cycle occurs.

IV. EXPERIMENTAL RESULTS

Using analytical throughput estimation as fitness function
during DSE can yield significant efficiency improvements. Fig-
ure 5 shows the wall-clock times for a DSE experiment, using
a NSGAII genetic algorithm, for four multimedia applications:
an Mp3 decoder, a H264 decoder, a Motion JPEG (MJPEG)
encoder, and a Sobel filter for edge detection in images.
The underlying platform for the analysis is a heterogeneous
8-processor MPSoC, which can contain different flavors of
MIPS, ARM and StrongARM processors. The curves labeled
with an ”S ” prefix show the DSE times when only using

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

10000	

50	 100	 150	 200	 250	 300	 350	 400	 450	 500	

Ti
m
e	
un

its
	 (s
ec
on

ds
)	

	

genera2ons	 used	 in	 DSE	 	
	

S_mp3	
t_mp3	
S_mjpeg	
t_mjpeg	
S_h264	
t_h264	
S_sobel	
t_sobel	

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

50
	

10
0	

15
0	

20
0	

25
0	

30
0	

35
0	

40
0	

45
0	

50
0	

se
co
nd

s	

genera2ons	

Magnified	 view	 of	 the	 sta2c	 analysis	

t_mp3	

t_mjpeg	

t_h264	

t_sobel	

Fig. 5. DSE times using different methods.

0!

20!

40!

60!

80!

100!

120!

co
st
	

execu)on)me	

H264	

Pareto	 Front	

10%	 simula2on	

5%	 simula2on	 	

3%	 simula2on	

2%	 simula2on	

1%	 simula2on	

Sesame	

Fig. 6. H264 design space exploration.

Sesame simulations, as a function of the number of generations
used in NSGAII. The curves with a ”t ” prefix show the results
of exclusively using static throughput estimation during DSE.
Clearly, the DSE based on analytic throughput analysis can be
three orders of magnitude faster than simulation-based DSE.

In Figure 6, we present the resulting Pareto points from a
DSE experiment with the H264 application and 100 search
iterations by NSGAII, when using architecture cost and ex-
ecution time as optimization objectives. The graph shows
the reference Pareto front, which is obtained by unifying all
Pareto-optimal solutions from 10 runs of Sesame-only DSE.
Moreover, the graph depicts the Pareto optimal solutions found
by a single run of Sesame-only DSE (indicated as Sesame) and
our hybrid method using different frequencies of simulations.
The curves denoted by k% simulation show the Pareto points
produced by our hybrid method using simulation for k%
of the total generations (e.g., 2% simulation implies that
Sesame is used in 2 search generations out of the 100). In
this hybrid method, the final solution set is simulated with
Sesame to allow for comparison with the reference Pareto
front. In case of a low frequency of simulations, the solution
space is clustered in the lower side of the Pareto curve,
corresponding to those solutions in which the application is

TABLE I
THE AVERAGE RESULTS OF HYBRID METHOD FOR H264 DECODER, MJPEG

ENCODER, MP3 DECODER AND THE SOBEL FILTER.

H264 10% sim. 5% sim. 3% sim. 2% sim. 1% sim. Sesame
HV 0.914 0.777 0.817 0.767 0.906 0.903
∇ 0.692 0.312 0.338 0.283 0.242 0.956

σmst 0.180 0.227 0.337 0.116 0.049 0.136
Mp3 10% sim. 5% sim. 3% sim. 2% sim. 1% sim. Sesame
HV 0.643 0.552 0.643 0.694 0.430 0.672
∇ 0.349 0.245 0.139 0.088 0.037 0.554

σmst 0.344 0.554 0.425 0.469 0.475 0.276
MJPEG 10% sim. 5% sim. 3% sim. 2% sim. 1% sim. Sesame

HV 0.760 0.6103 0.6838 0.8744 0.6839 0.970
∇ 0.600 0.517 0.137 0.205 0.133 0.915

σmst 0.153 0.112 0.131 0.239 0.141 0.200
Sobel 10% sim. 5% sim. 3% sim. 2% sim. 1% sim. Sesame
HV 0.99 0.848 0.875 0.99 0.99 0.729
∇ 0.87 0.86 0.32 0.324 0.324 0.990

σmst 0.01 0.370 0.245 0.008 0.008 0.426

mapped to a few processors. This is due to the fact that
the probability of obtaining a transformed KPN with a cycle
increases exponentially with the complexity of the topology of
the KPN and the number of processors in the target platform.
As explained before, the static analysis may present some
inaccuracies when there are cycles in the transformed KPN,
possibly excluding them from the final solution set. However,
if we increase the simulation frequency in the DSE, the extent
(i.e., spread) of the solution space significantly improves.

To quantify the quality of the obtained Pareto fronts, Table
I shows, for each of the studied applications, how close the
found solutions are to the reference Pareto front, the spread
of the solutions along the Pareto front, and the distribution of
the solutions. To this end, we use three different metrics: the
hypervolume, ∇ metric and σMST metric. The hypervolume
(HV) [24] indicates the closeness of the solution set to the
reference Pareto front. The normalized ∇ metric [5] measures
the spread of solutions. It refers to the area of a rectangle
formed by the two extreme solutions in the objective space,
thus a bigger value spans a larger portion and therefore is
better. For measuring the distribution of solutions in a Pareto
optimal set, we use the σMST metric [22]. A smaller value
indicates that the distribution of the solutions is closer to the
uniform distribution and thus is better. The results in Table I
are averages, where every DSE experiment has been performed
five times. From Table I, it appears that the hypervolume is not
dependent on the frequency of simulations. That is, compared
to simulation-only DSE, our hybrid approach can yield similar
Pareto fronts in terms of closeness to the reference front.
The extent of solutions (∇) clearly can be improved by
increasing the simulation frequency, as explained above. The
distribution of solutions (σMST) often is close to uniform for
low simulation frequencies but this is due to the small number
of solutions in the corresponding Pareto fronts. For higher
simulation frequencies, the distribution of solutions does not
appear to be dependent on the frequency. The results from
Table I indicate that our hybrid DSE is a promising technique,
yielding solutions similar in terms of quality as compared to
simulation-based DSE but at a fraction of the execution time.

V. RELATED WORK

Current state-of-the-art in system-level DSE often deploys
population-based Monte Carlo-like optimization algorithms
like hill climbing, simulated annealing, ant colony optimiza-
tion, or genetic algorithms. By adjusting the parameters, or
by modifying the algorithm to include domain-specific knowl-
edge, these algorithms can be customized for different DSE
problems to increase the effectivity of the search [17], [2].
Another promising approach is based on meta-model assisted
optimizations, which combines simple and approximate mod-
els with more expensive simulation techniques [12], [18], [4],
[1], [11]. In [4], the authors use meta-models as a pre-selection
criterion to exclude the less promising configurations from the
exploration. In [11], meta-models are used to identify the best
set of experiments to be performed to improve the accuracy
of the model itself. In [12], an iterative DSE methodology
is proposed exploiting the statistical properties of the design
space to infer, by means of a correlation-based analytic model,
the design points to be analyzed with low-level simulations.
The knowledge of a few design points is used to predict the
expected improvement of unknown configurations. However,
these meta-models usually have design space parameters rel-
ative to the micro-architecture of design instances, while they
do not address the problem of e.g. topological mapping of
an application on the underlying MPSoC architecture. While
micro-architecture parameters like cache size typically affect
the system performance in a predictable, often linear, fashion,
the resource binding of the application graph to the architec-
tural platform presents a much less predictable performance.

A second class of design space pruning is based on hi-
erarchical DSE (e.g., [7], [14], [10], [5]). In this approach,
DSE is first performed using analytical or symbolic models
to quickly find the interesting parts in the design space, after
which simulation-based DSE is performed to more accurately
search for the optimal design points. The main drawback of
this method is that if the first step is not accurate enough, it
may not produce the best set of design points to simulate. In
our approach, the pruning and simulation phases are integrated
to avoid this problem.

VI. CONCLUSION

We proposed a technique to reduce the simulation overhead
in system-level design space exploration (DSE). To this end,
we have presented an iterative design space pruning methodol-
ogy based on static throughput analysis of different application
mappings. By interleaving these analytical throughput estima-
tions with simulations, our hybrid approach can significantly
reduce the number of simulations that are needed during the
process of DSE. Experimental results have demonstrated that
our hybrid DSE is a promising technique, yielding solutions
similar in terms of quality as compared to simulation-based
DSE but at a fraction of the execution time.

REFERENCES

[1] G. Ascia, V. Catania, A. G. Di Nuovo, M. Palesi, and D. Patti. Efficient
design space exploration for application specific systems-on-a-chip. J.
Syst. Archit., 53:733–750, October 2007.

[2] V. Catania and M. Palesi. A multi-objective genetic approach to mapping
problem on network-on-chip. JUCS, 22:2006.

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast elitist multi-
objective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary
Computation, 6:182–197, 2000.

[4] M. T. M. Emmerich, K. Giannakoglou, and B. Naujoks. Single- and
multiobjective evolutionary optimization assisted by gaussian random
field metamodels. IEEE Transactions on Evolutionary Computation,
10:421–439, 2006.

[5] C. Erbas, S. Cerav-erbas, and A. D. Pimentel. Multiobjective op-
timization and evolutionary algorithms for the application mapping
problem in multiprocessor system-on-chip design. IEEE Transactions
on Evolutionary Computation,vol.10,no.3, 10:358–374, 2006.

[6] M. Gries. Methods for evaluating and covering the design space during
early design development. Integr. VLSI J., 38:131–183, December 2004.

[7] Z. J. Jia, A.D. Pimentel, M. Thompson, T. Bautista, and A. Núñez.
Nasa: A generic infrastructure for system-level mp-soc design space
exploration, Proceedings of the IEEE Workshop on Embedded Systems
for Real-Time Multimedia (ESTIMedia) 2010.

[8] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. Construction and
use of linear regression models for processor performance analysis.
In In Proc. 12th IEEE Symposium on High Performance Computer
Architecture, pages 99–108, 2006.

[9] G. Kahn. The semantics of a simple language for parallel programming.
In Proc. of the IFIP Congress 74, 1974.

[10] J. Kim and M. Orshansky. Towards formal probabilistic power-
performance design space exploration. In Proceedings of the 16th ACM
Great Lakes symposium on VLSI. ACM, 2006.

[11] J. Knowles. Parego: A hybrid algorithm with on-line landscape ap-
proximation for expensive multiobjective optimization problems. IEEE
Transactions on Evolutionary Computation, 10(1), 2006.

[12] G. Mariani, A. Brankovic, G. Palermo, J. Jovic, V. Zaccaria, and
C. Silvano. A correlation-based design space exploration methodology
for multi-processor systems-on-chip. In Proceedings of the 47th Design
Automation Conference (DAC). ACM, 2010.

[13] S. Meijer, H. Nikolov, and T. Stefanov. Throughput modeling to evaluate
process merging transformations in polyhedral process networks. In
Proceedings of the Conference on Design, Automation and Test in
Europe, DATE ’10, pages 747–752, 3001 Leuven, Belgium, Belgium,
2010. European Design and Automation Association.

[14] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis. Rapid design
space exploration of heterogeneous embedded systems using symbolic
search and multi-granular simulation. SIGPLAN Not., 2002.

[15] H. Nikolov. System-level design methodology for streaming multi-
processor embedded systems. In Ph.D. Thesis, 2009.

[16] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose,
C. Zissulescu, and E. Deprettere. Daedalus: Toward composable mul-
timedia MPSoC design. In Proc. of the 45th ACM/IEEE Int. Design
Automation Conference (DAC ’08), 2008.

[17] H. Orsila, E. Salminen, and T. D. Hämäläinen. Parameterizing simulated
annealing for distributing kahn process networks on multiprocessor socs.
In Proc. of the Int. Conference on System-on-chip, pages 19–26, 2009.

[18] G. Palermo, C. Silvano, and V. Zaccaria. Respir: a response surface-
based pareto iterative refinement for application-specific design space
exploration. Trans. Comp.-Aided Des. Integ. Cir. Sys., 28, 2009.

[19] A. D. Pimentel, C. Erbas, and C. Polstra. A systematic approach to
exploring embedded system architectures at multiple abstraction levels.
IEEE Trans. Comput., 55(2):99–112, 2006.

[20] A. Sangiovanni-Vincentelli and G. Martin. Platform-based design and
software design methodology for embedded systems. IEEE Des. Test,
18, 2001.

[21] D. Sheldon, F. Vahid, and S. Lonardi. Soft-core processor customization
using the design of experiments paradigm. In In International Confer-
ence on Design and Test in, 2007.

[22] T. Taghavi and A.D. Pimentel. Design metrics and visualization
techniques for analyzing the performance of moeas in dse. In Proc. of
the 11th Int. Conference on Embedded Computer Systems: Architectures,
MOdeling and Simulation (SAMOS ’11), 2011.

[23] J. J. Yi, D. J. Lilja, and D. M. Hawkins. A statistically rigorous approach
for improving simulation methodology. In Proc. of the 9th International
Symposium on High-Performance Computer Architecture, 2003.

[24] E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary
algorithms - a comparative case study. In Proc. of the 5th International
Conference on Parallel Problem Solving from Nature, 1998.

