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Abstract—Synchronous dataflow graphs (SDFGs) are used
extensively to model streaming applications. An SDFG can be
extended with scheduling decisions, allowing SDFG analysis to
obtain properties like throughput or buffer sizes for the scheduled
graphs. Analysis times depend strongly on the size of the SDFG.
SDFGs can be statically scheduled using static-order schedules.
The only generally applicable technique to model a static-
order schedule in an SDFG is to convert it to a homogeneous
SDFG (HSDFG). This conversion may lead to an exponential
increase in the size of the graph and to sub-optimal analysis
results (e.g., for buffer sizes in multi-processors). We present
a technique to model periodic static-order schedules directly
in an SDFG. Experiments show that our technique produces
more compact graphs compared to the technique that relies on a
conversion to an HSDFG. This results in reduced analysis times
for performance properties and tighter resource requirements.

I. INTRODUCTION

Synchronous dataflow graphs (SDFGs) are widely used
to model digital signal processing and multimedia applica-
tions [1]–[4]. Model-based design-flows (e.g., [1], [5]–[8])
model binding and scheduling decisions into the SDFG. This
enables analysis of performance properties (e.g, through-
put [9]) or resource requirements (e.g., buffer sizes [10])
under resource constraints. Fig. 1 shows an example of an
SDFG G(A,C) with four actors (A = {a0, a1, a2, a3}) and
three channels (C = {c0, c1, c2}). These actors communicate
with tokens sent from one actor to another over the channels.
Channels may contain tokens, depicted with a solid dot (and an
attached number in case of multiple tokens) (e.g., see Fig. 2).
An essential property of SDFGs is that every time an actor
fires (executes) it consumes the same amount of tokens from
its input edges and produces the same amount of tokens on
its output edges. These amounts are called the rates (indicated
next to the channel ends when the rates are larger than 1). The
fixed port rates make it possible to statically schedule SDFGs.

Many SDFG analysis algorithms, e.g., throughput calcu-
lation or buffer sizing, are straightforward when a single
processor platform is used. For instance, the buffer sizes
can be determined by executing the SDFG according to a
given schedule. However, in a multi-processor environment,
SDFG analysis algorithms are not trivial because of the inter-
processor communication amongst other reasons. For a multi-
processor, it is possible to construct per processor to which ac-
tors of the SDFG are bound, a finite schedule that sequentially
orders the actor firings and which is repeated indefinitely. Such
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Figure 1. An example SDFG

a schedule is called a periodic static-order schedule (PSOS).
PSOSs specify the order of actor firing which separates them
from fully static schedules, which determine absolute start
times of actors. A model-based design-flow usually uses
PSOSs for an application modeled with an SDFG. In this
way timing (throughput) and memory usage (buffers) can be
analyzed.

There is only one technique [11] known to model PSOSs in
an SDFG. This technique requires a conversion of an SDFG to
a so-called homogeneous SDFG (HSDFG) in which all rates
are equal to one [2]. Fig. 2 (without the blue edges) shows the
equivalent HSDFG of our example SDFG of Fig. 1. The PSOS
modeling technique of [11] sequentializes the actor firings by
inserting a channel between each pair of consecutive actors in
a processor schedule. At the end of each schedule, it adds a
channel with one initial token from the last to the first actor
in the schedule. All of these ensure an indefinite execution of
the graph according to the schedules. The technique from [11]
adds in total 15 channels to the HSDFG of our example graph
(the blue edges in Fig. 2) to model PSOSs s0 = 〈a0(a2)2〉∗
and s1 = 〈(a1)5(a3)3a1(a3)3〉∗.

The SDFG to HSDFG conversion can lead to an exponential
increase in the size of the graph. For example, converting the
SDFG of an H.263 decoder [10] to the equivalent HSDFG
increases the graph size from 4 actors to 200 actors. The run-
time of SDFG analysis algorithms depends amongst others on
the size of the graph. As a result, the run-time of many SDFG
analysis algorithms may increase drastically when modeling
PSOSs in the graph using the technique from [11]. For
example, the buffer sizing algorithm from [10] takes less than
1 ms on the SDFG of an H.263 decoder. Modeling a schedule
into this SDFG using the technique from [11], the run-time
of the same algorithm increases to 1330 ms. SDFG analysis
algorithms are usually repeated more than once in an iterative
design-flow. For example, the design-flow from [6] performs
8 throughput calculations to determine the right solution for
an H.263 decoder. Hence, it is vital to keep the size of the
schedule-extended graph as small as possible to provide a fast
and practical design trajectory. There is a second drawback
to the technique from [11]. The original graph structure is
lost due to the conversion to an HSDFG. A single channel in
an SDFG corresponds to a set of channels in the HSDFG.
As a result, common buffer sizing techniques cannot find



the minimal buffer size for the original SDFG. The H.263
decoder buffer sizes are for example overestimated by 43%
when applying the technique of [10] to the HSDFG. Note
that a conversion to an HSDFG may be required in a code
generation step. However, if this conversion can be delayed
until all analysis are carried out on the SDFG, then this can
save a significant amount of resources (e.g., buffer space) and
analysis time.

A novel technique is needed to model any PSOS in an
SDFG. This technique should limit the increase in the number
of actors such that analysis times do not increase too much
when analyzing the SDFG with its schedules. The technique
should also preserve the original graph structure as this enables
accurate analysis of graph properties such as buffer sizes. This
paper presents a technique that satisfies both requirements.
The technique can be used in any model-based design-flow
that models PSOSs into the SDFG (e.g., [1], [5]–[8]). The
proposed technique can also directly be used to model PSOSs
in scenario-aware dataflow graphs [12].

The remainder of the paper is structured as follows. The
next section discusses related work. Sec. III sketches basic
concepts. Sec. IV presents our technique to model PSOSs in
an SDFG. We evaluate our technique by applying it to several
realistic applications in Sec. V. Sec. VI concludes.

II. RELATED WORK

The technique from [11] is the only available technique
to model PSOSs in an SDFG. As already explained, this
technique may result in a long run-time for analysis algorithms
and/or inaccurate results from these algorithms. Our technique
alleviates both shortcomings of the technique from [11]. The
work in [13] models the effect of a budget scheduler or
preemptive TDMA on the temporal behavior of the SDFG,
either by computing an accurate worst-case response time, or
more precisely by introducing additional actors into a latency-
rate model. In contrast, for non-preemptive schedules, such
as PSOSs, we focus on the ordering of actor firings; their
execution time remains the same. We enforce an SDFG to
follow the PSOSs selected for each processor. This allows
SDFG analysis to obtain properties like throughput or buffer
sizes for the scheduled SDFG. Since we only use the basic
components of an SDFG (e.g., actors and channels) to model
schedules in an SDFG, our schedule-extended SDFG can be
directly used in any model-based design-flow (e.g., [1], [5]–
[8]). Ref [14] uses some new (custom) components, e.g.,
if − then − else, to model schedules in an SDFG. The
common model-based design-flows do not support these new
components and it is not possible to model these components
by using the basic components of an SDFG. Our technique
eliminates the need for any new (custom) component. As a
result, any analysis technique for SDFGs is directly applicable
on the schedule-extended SDFG.

III. PRELIMINARIES

The rates in an SDFG determine how often actors have
to fire with respect to each other such that the distribution
of tokens over all channels is not changed. This property is
captured in the repetition vector [1] of an SDFG (γ(a) refers
to the repetition vector value of actor a). The repetition vector
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Figure 2. PSOSs s0 and s1 modeled in the SDFG of Fig. 1 using the
technique from [11].

of the SDFG shown in Fig. 1 is equal to (a0, a1, a2, a3) →
(1, 6, 2, 6). A firing of actor a leads to the consumption of
tokens from its input channels and the production of tokens
on its output channels. Hence, channels can contain different
amounts of tokens according to the designated schedule. A
state of an SDFG (represented by ω) is determined by the
amount of tokens in all channels of the SDFG. We assume
that the initial state of an SDFG is given by some initial token
distribution ω0. An actor can only fire if sufficient tokens are
available on the channels from which it consumes. An actor
that satisfies this condition in a particular state is said to be
enabled in this state. Consistency (i.e., the existence of a repe-
tition vector) and absence of deadlock are practically necessary
conditions for SDFGs which can be verified efficiently [15],
[16]. Any SDFG which is not consistent requires unbounded
memory to execute or deadlocks. Therefore, we limit ourselves
to consistent and deadlock free SDFGs.

When a consistent and deadlock-free SDFG is executed
according to one or more PSOSs, the channels of the SDFG
need bounded memories (according to Theorem 1 from [17]).
The number of actor appearances in the PSOS is a fraction
of its repetition vector entry. Formally, each actor a in the
PSOS should appear r · γ(a) times in the PSOS (r = u

v
where u, v ∈ N) and the value r is identical for all actors
in the PSOS [9]. This follows from the SDFG property that
firing each actor as often as indicated in the repetition vector
results in a token distribution that is equal to the initial token
distribution. In the paper, the term normalized PSOS is used
to refer to a PSOS with r equal to 1. We limit ourselves in the
remainder to PSOSs in which r is a unit fraction (i.e., r = u

w
with u = 1 and w ∈ N), although our technique can also be
directly applied to model other PSOSs (i.e., in which u ∈ N).

IV. MODELING PERIODIC STATIC-ORDER SCHEDULES

In this section, we introduce a technique to model PSOSs
in an SDFG. Algorithm 1 encapsulates our technique, called
decision state modeling (DSM). Fig. 3 depicts the correspond-
ing SDFG of Fig. 1 which models the PSOSs s0 and s1
using DSM. The remainder of this section discusses different
parts of the algorithm in detail. There are several reasons why
an SDFG cannot model PSOSs naturally. The following sub-
sections discuss them and illustrate how we address them.

The description of some basic functions used in Algorithm
1 is as follows. The function AA(G, anew) is responsible
to include the actor anew in the SDFG G. The function
AC(G, cnew, asrc, adst, srcRate, dstRate, initTok) adds
the channel cnew from the source actor asrc to the destination
actor adst; the production (consumption) rate of asrc (adst)
on this channel is equal to srcRate (dstRate); this channel
is initialized with initTok tokens. The function BEF(ak,ωj ,si)
(AFT(ak,ωj ,si)) returns the number of times that ak appears
before (after) state ωj in one repetition of the PSOS si.
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Figure 3. PSOSs s0 and s1 modeled in the SDFG of Fig. 1 using DSM.

A. Auto-concurrency
An actor a ∈ A in an SDFG state ω can possibly be enabled

multiple times simultaneously in ω. This property is called
auto-concurrency. The firings related to actor a should occur
sequentially according to the PSOS to which actor a belongs.
This sequential execution can be enforced by adding a self-
edge with one initial token to actor a (Line 1 in Algorithm 1).
In Fig. 3, channels cSE−0 − cSE−3 (shown in red) are used
to prevent any auto-concurrency in the SDFG of Fig. 1.

B. Inter-iteration execution
Enabled actors in a PSOS belonging to the next PSOS

iteration prevent the execution of the SDFG from following
the given PSOS; lines 4-8 in Algorithm 1 are used to control
this undesirable actor enabling. This part of the algorithm adds
(per PSOS) one actor and two channels to create a dependency
between the last and first actor appearing in the PSOS. The
added components limit, within one PSOS iteration, the firing
of the first actor in the PSOS (i.e., aF ) to the count of actor
aF (i.e., CNT (aF , si)) in one iteration of the PSOS si. The
function CNT (aF , si) in DSM returns the count of the actor
aF in one iteration of the PSOS si. The next iteration of the
PSOS si can only commence if the last actor in PSOS si (i.e.,
aL) fires CNT (aL, si) times in one iteration of the PSOS
si. In other words, the next iteration of a PSOS can only
commence after the completion of the current iteration of this
PSOS. In Fig. 3, actor a0−end and channels c0−pre and c0−pro

are added to prevent any inter-iteration execution in PSOS s0.
Actor a1−end and channels c1−pre and c1−pro are added to
prevent any inter-iteration execution in schedule s1.

Algorithm 1: Decision State Modeling (DSM)

input : SDFG G(A,C), PSOSs {s0, · · · , sn}
output: G extended with schedules {s0, · · · , sn}
add a self edge with 1 initial token for each a ∈ A1
{s′0, μ0, · · · s′n, μn} ← normalize(G, {s0, · · · , sn})2
for i ← 0 to n do3
aL := last actor in si4
aF := first actor in si5
AA(G, ai−end)6
AC(G, ci−pre, aL, ai−end, 1,CNT(aL, si), 0)7
AC(G, ci−pro, ai−end, aF ,CNT(aF , si), 1,CNT(aF , si))8
Ω ← getDecisionStates(G, s′i, {s′0, · · · , s′n} \ s′i)9
Ω ← reduceDecisionStates(Ω)10
Ω ← foldDecisionStates(Ω, μi)11
foreach ωj ∈ Ω do12
AA(G, ai−ωj )13
foreach ak ∈ Δj do14

if ak is the actor of choice then15
AC(G, ci−akωj , ak, ai−ωj , 1,CNT(ak, si),AFT(ak, ωj , si))16

else17
AC(G, ci−akωj , ai−ωj , ak,CNT(ak, si), 1,BEF(ak, ωj , si))18
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Figure 4. The state space of the SDFG of Fig. 1 when PSOSs s0 =
〈a0(a2)2〉∗ and s1 = 〈(a1)5(a3)3a1(a3)3〉∗ are used.

C. Decision states
1) Concept: The state space when executing our example

SDFG using the PSOSs s0 and s1 is visualized in Fig. 4. In this
figure, the actors mapped on processor P0 (P1) are surrounded
by a square (circle). Auto-concurrency and inter-iteration
execution are excluded using the constructs introduced in
Sec. IV-A and Sec. IV-B respectively. The periodic behavior
of the PSOSs is obvious from the state space. There are some
states in which more than one actor is enabled (ω5 − ω9) on
one processor. In such a situation, the execution related to
those actors can deviate from the specified PSOS. We call
a state with more than one actor enabled in one processor a
decision state of this processor. The finite set Ω contains these
decision states of this processor. One of the enabled actors in
a decision state ωj , in line with the given PSOS si, should
be selected to get fired. We call all enabled actors of si in ωj

opponent actors; we call the actor that should be executed in
ωj the actor of choice of ωj . The finite set Δj represents the
opponent actors in the decision state ωj ∈ Ω. One member
of the set Δj is the actor of choice in ωj ; in the paper, we
denote that actor of choice with ac ∈ Δj .

Lines 9-18 in DSM show how we deal with uncertainty
due to decision states. In the algorithm n+1 (n ∈ N0) is the
number of the processors (or input PSOSs). DSM models the
given PSOSs one-by-one iteratively. The ordering of PSOSs in
DSM does not have any impact on the final outcome. In each
iteration of the for-loop in line 3, we enforce the execution
of the actors in the current schedule of interest (i.e., schedule
si) to follow schedule si. The next sub-section explains how
decision states of the schedule of interest are extracted. DSM
for each ωj ∈ Ω extracted from si adds an actor (ai−ωj

) and
one channel between the new actor ai−ωj

and each opponent
actor in the set Δj (lines 14-18 in Algorithm 1). In our
example, these elements are shown in green in Fig. 3. In
practice, the elements added in each decision state (e.g., ωj)
postpone the execution of the actors in Δj \ {ac} to the state
after decision state ωj . Hence, ac (i.e., the actor of choice) is
the only actor which can be fired in the state ωj .

2) Decision state identification: Algorithm 2 shows our
proposed technique to detect all decision states. In this al-
gorithm, sc is the PSOS for which we want to determine the
decision states. Assume sc is a PSOS for the actors mapped
on processor Pc. Schedules so1 · · · son are PSOSs for the
other actors of the SDFG mapped on the other processors
(with Po1 · · ·Pon as the other processors). In Algorithm 2,
the input schedules are normalized PSOSs. The function
normalize (in line 2 of Algorithm 1) normalizes the input
PSOSs. The function returns the normalized PSOSs along
with their normalization factors. The normalized PSOS s′x
can be achieved by repeating μx times the input PSOS sx
(i.e., s′x = (sx)

μx ). μx is the normalization factor of sx and



can be calculated by dividing the repetition vector entry of an
arbitrary actor in sx by the count of that actor in the PSOS
sx (in our example, μ0 and μ1 are equal to 1).

An actor in the schedule of interest sc could be affected
by the execution of an actor in the other schedules as well
as another actor in sc. Processors can run at different clock
rates; these differences and inter-processor dependencies cause
variation in the amount of tokens on the inter-processor
channels originating from the actors mapped on the other
processors to the actors mapped on the processor of interest
(i.e., Pc). The amount of tokens on the input channels of
an actor determines whether an actor is enabled or not. Our
technique can determine any possible actor enabling when
executing sc by considering the maximum amount of tokens
on all inter-processor channels. Each iteration of sc requires
that the actors mapped on the other processors are fired up-
to at most their repetition vector entry values. Hence, only
executing one iteration of the other schedules so1 · · · son is
enough to provide sufficient tokens on inter-processor channels
entering to the actors mapped on processor Pc. Subsequent
iterations of the other schedules so1 · · · son are possible; this
may enable an actor in sc to be enabled more than its
designated amount in one iteration of sc. The inter-iteration
prevention constructs introduced in Sec. IV-B are used to
control this undesired actor enabling. So, we only extract
decision states within one iteration of the normalized schedule.
Also, DSM does not impose any limitation between PSOSs;
PSOSs can independently be iterated if the dependencies in the
SDFG allow that. We allow the actors on the other processors
to be executed (according to their schedules) as much as
they can. The execution of the actors on the other processors
will stop at one point either due to their dependency on the
actors on the processor Pc or because one iteration of their
schedule is completed. The state of the SDFG needs to be
preserved to follow the subsequent execution of the actors.
This maximal execution of the actors on the other processors
is represented by the function maxExec in Algorithm 2. After
this maximal execution, the amount of tokens on the inter-
processor channels entering into the actors on the processor
Pc determines any possible enabled actor. The current state
(represented by ωj) will be added to the decision state set
(Ω) if more than one actor on the processor Pc is enabled
at this state (line 4 in Algorithm 2). All enabled actors will
be recorded as opponent actors of the state ωj (line 5 in
Algorithm 2). The execution of the actors on the processor
Pc is continued by executing the enabled actor in line with
sc in order to determine all possible decision states (line 6 in
Algorithm 2). The function fire(G, sc[i]) executes once the
ith actor in sc. The maximal execution followed by decision
state identification will be iterated to execute one iteration of
sc. In the end, the set Ω contains all possible decision states
when executing sc. In the SDFG of Fig. 1, five consecutive
decision states (Ω = {ω5 · · ·ω9}) exist for s1 and no decision
state exists for s0 (see Fig. 4).

3) Redundant decision states: It is possible to have several
consecutive decision states which are postponing the firing of
an actor to several states later. For example, three consecutive
decision states (ω7−ω9) exist in Fig. 4; the added components
in ω7 postpone the sixth firing of a1 to ω8; the added

components in ω8 postpone the sixth firing of a1 to ω9; and
so on. The latest decision state in the sequence of decision
states ω7 − ω9 is enough to postpone the firing of a1 to
ω10. Hence, the decision states ω7 − ω8 are redundant and
can be removed from the decision state set Ω. The function
reduceDecisionStates is responsible for removing redundant
decision states. Note that it would be possible to perform
this reduction during the decision state identification step.
This reduction can remove a significant amount of extra
components in the final SDFG. Decision state ω5 is also
redundant according to our optimization. So, only two decision
states ω6 and ω9 are necessary to model s1 in the SDFG of
Fig. 1.

Algorithm 2: Get Decision States

input : SDFG G, PSOS sc, PSOSs {so1, · · · , son}
output: Decision state set Ω

for i ← 1 to sizeof(sc) do1
maxExec(G, {so1, · · · , son})2
if sizeof(enabledActors(G, sc)) >1 then3
Ω ← Ω ∪ ωj /* ωj is the current state */4
Δj ← enabledActors(G, sc)5

fire(G, sc[i])6

4) Decision state folding: In Algorithm 1, the input PSOSs
are normalized to find all decision states. The normalization
of PSOSs is required to explore all (sufficient) states of an
SDFG. Consider PSOSs s2 = 〈a0〉∗ and s3 = 〈a2 a1〉∗ for
our second example SDFG in Fig. 5. To obtain normalized
PSOSs, μ2 and μ3 must be equal to 3 and 4 respectively. This
leads to the following normalized PSOSs: s′2 = 〈(a0)3〉∗ and
s′3 = 〈(a2 a1)

4〉∗.
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the corresponding execution of s′3. In construct
(
ax

ay

)
, ax is

the enabled actor in line with the PSOS and ay is the other
enabled actor if any at all. In this execution, the 1st, 3th, 5th

and 7th states are similar in behavior. In other words, the actor
a2 should be fired in all of those states.

Modeling a repetitive behavior for a PSOS si, also models
its normalized PSOS (i.e., s′i = (si)

μi ). By considering
this fact, we can merge decision states appearing in all μi

repetitions of si. We call this optimization decision state
folding (line 11 in Algorithm 1). Folding groups the similar
states. In our example, the 1st, 3th, 5th and 7th states are
grouped and represented with one state. Similar state grouping
can be performed for the 2th, 4th, 6th and 8th states. So, the
above execution shrinks to

(
a2

a1

)(
a1

a2

)
. If there is a decision

state in any of the similar states in the original execution, a
decision state will be placed in the substitution state of those
states. In practice, a decision state in a state of the new folded
execution will be considered as a decision state for each of the
equivalent states in the original execution. This cannot violate
the execution according to the input PSOS because DSM only
ensures the execution of the actor of choice in a decision state.
This optimization could reduce the number of decision states
up to μi times in a normalized PSOS s′i. The decision state in
the last state is ignored thanks to our inter-iteration execution
prevention (which is explained in Sec. IV-B). In our second
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example, decision state folding reduces the number of decision
states from 5 to 1 for s3.

5) Enforcing a schedule in decision states: In our first
example SDFG, only two actors are enabled in decision state
ω6 (i.e., Δ6 = {a1, a3}) (see Fig. 4). Actor a1 is the actor of
choice in decision state ω6 and actor a3 is the only opponent
actor whose execution should be postponed to the state after
state ω6. DSM adds actor a1−ω6 and channels c1−a1ω6 and
c1−a3ω6

to the graph in decision state ω6. DSM also adds
actor a1−ω9

and channels c1−a1ω9
and c1−a3ω9

to the graph
for the other decision state ω9.

The actor a1−ω9
is added to enforce the firing of a3 in

decision state ω9 and postpone the execution of a1 to the
subsequent state. The actor a1−ω9 is only responsible for
decision state ω9 and it fires only once in an iteration. This
means that its value in the repetition vector of the new graph
(i.e., Fig. 3) is one. The production and consumption rates of
the ports of the actor a1−ω9

should be set to a value to preserve
the consistency of the SDFG; for this purpose, the port rates
of actor a1−ω9

on its channels (i.e., c1−a1ω9
and c1−a3ω9

)
are set to 6. The added dependency channels from the newly
added actor in decision state ωj (e.g., a1−ω9 in decision state
ω9) to the opponent actors which are not the actor of choice
(e.g., a1 in decision state ω9) only provide enough tokens for
their execution in states ω0 − ωj−1 (e.g., 5 tokens for a1 in
states ω0−ω8); these actors cannot be enabled due to the lack
of tokens in the newly added channels in the corresponding
decision state (e.g., there will be no token in channel c1−a1ω9

in decision state ω9). Hence only the actor of choice amongst
the opponent actors of a decision state will be enabled in that
state (e.g., only a3 can fire in decision state ω9). The firing
of the postponed actors in a decision state (e.g., decision state
ωj) will not depend on the newly added actor in the decision
state (i.e., ai−ωj

) after firing of the actor of choice in ωj .
For example, there will be 6 tokens in channel c1−a3ω9 after
firing of actor a3 (i.e., the actor of choice) in decision state ω9;
hence, the actor a1−ω9

can immediately fire and its execution
will provide sufficient tokens for later firings of actor a1. So,
the postponed actor in decision state ω9 will not be dependent
on actor a1−ω9

for its later execution in the current iteration
of the PSOS s1.

The firing of actor a3 after decision state ω9 produces 3
tokens in channel c1−a3ω9

and the firing of actor a1 after
decision state ω9 consumes 1 token from channel c1−a3ω9 ; as
a result, the amount of tokens in the new channels are reset to
the initial values at the end of one iteration of the schedule s1.
Hence, the periodic behavior is also achievable for the added
components. The components added in decision state ω6 show
similar behavior as the components added in decision state ω9.

D. Correctness of DSM
The following theorems state the correctness of DSM in

modeling a single PSOS for a subset of the actors of the SDFG.
If we can model a single PSOS in the SDFG, then we can also
model multiple PSOSs by simply applying the result multiple
times. The proofs of the theorems are available through [18].
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Figure 6. Reduction in the size of the schedule-extended graphs when using
DSM in contrast to the HSDFG-based technique (Higher is better). Schedules
are generated by list forward priorities (Lfp) and list reverse priorities (Lrp).

Theorem 1. Any execution possible in the schedule-extended
SDFG should respect the PSOS.

Theorem 2. Any execution possible in the original SDFG that
already satisfies the PSOS, should also be a valid execution
for the schedule-extended SDFG.

V. EXPERIMENTAL RESULTS

We used a set of DSP and multimedia applications to assess
our DSM technique. The following SDFGs are extracted from
realistic applications: modem [1], sample-rate converter [1],
satellite receiver [19], mp3playback [20], channel equalizer
[21], H.263 decoder [10], H.263 encoder [22], and MP3
decoder [10]. We also consider the bipartite SDFG [19] which
is a commonly used artificial SDFG.

A PSOS determines the actor firing order and as such it
influences the enabled actors in a state; as a result, the number
of decision states can be different for different PSOSs. The
size of the schedule-extended graph using DSM depends on
the number of decision states in the given schedules. So,
the compactness of the schedule-extended graph depends on
the input schedule which should be modeled. We use the
common list scheduler [23] to determine the PSOSs for the
applications. We use two different variations of list scheduling
to verify DSM in different situations. The first list schedule
uses forward priorities (Lfp) and the second one uses reverse
priorities (Lrp). Actors closer to the inputs of the graph have
higher priority in the Lfp schedules compared to actors closer
to the outputs of the graph and vice-versa in Lrp schedules.

Fig. 6 shows the reduction percentage in the size of the
schedule-extended graph when using DSM in contrast to the
HSDFG-based technique. Using schedules generated by Lfp,
the number of decision states is less than when Lrp is used,
except in the channel equalizer and mp3playback applications.
By using Lfp scheduling, actors closer to inputs have higher
priority compared to actors closer to outputs. This leads to
consecutive execution of an actor followed by consecutive
execution of another actor with lower priority and so on.
Thanks to our optimization in DSM, considering only one
decision state before a context switch will be sufficient (e.g.,
decision state ω9 in Fig. 4) and the number of decision states
can be reduced significantly. Usually actors closer to outputs
are dependent on actor closer to inputs in an SDFG; this
dependency can prevent an actor from being executed consec-
utively in a graph scheduled by Lrp. As a result of that, the
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Figure 7. Pareto space of schedule-extended graphs modeled by DSM and
HSDFG-based techniques (the scales of two graphs are different).

number of context switches in a graph scheduled by Lrp will
typically be larger compared to Lfp. Hence, the effectiveness
of the decision state optimization in DSM reduces and extra
elements are required to model the schedules in the graph.
The exceptions in the channel equalizer and mp3playback
are due to the existence of a cycle in the SDFG; the cycle
can increase the number of context switches in the schedule
and as a result, Lfp could result in the same or a higher
amount of decision states in DSM compared to Lrp. Important,
however, is that in our experiments, DSM always outperforms
the HSDFG-based technique regardless of the input schedule.
The number of actors (channels) using DSM is 66% (71%)
lower compared to the HSDFG-based technique on average,
99% (99%) lower in the best-case and 28% (20%) lower
in the worst-case observed in our experiments. Besides the
compactness of the schedule-extended graph, DSM preserves
the original structure of an SDFG which is not guaranteed for
the state of the art technique.

To further analyze the effectiveness of DSM, we applied
a buffer sizing algorithm from [10] on the schedule-extended
SDFGs of the H.263 decoder and MP3 decoder applications.
The H.263 decoder is mapped on a platform with two proces-
sors. The actor vld and iq are mapped on the first processor
with a PSOS 〈vld(iq)99〉∗ and the actor idct and mc are
mapped on the second processor with a PSOS 〈(idct)99mc〉∗.
The analysis time for buffer sizing on the schedule-extended
H.263 decoder is less than 1 ms when using DSM to model
the schedules. The same analysis lasts for 1330 ms when
using the technique from [11] to model the same schedules
in the same graph. Fig. 7(a) shows the complete design space
(Pareto space) of throughput and buffer size when modeling
the schedule with DSM and the HSDFG-based technique
[11]. A single channel in an SDFG corresponds to a set of
channels in the equivalent HSDFG. As a result, the buffer
sizing technique cannot find the minimal buffer size when
applying it on the equivalent HSDFG. Our experiments show
these inaccuracies. Applying buffer sizing on the graph which
models the schedules using the technique from [11] results
in 43% overestimation in required buffer space compared to
applying the same buffer sizing technique on the graph which
models the same schedules when using our technique. Fig. 7(b)
shows results for the MP3 decoder. We used the mapping
and scheduling from [12] which maps the MP3 decoder on
a platform with 3 processors. The analysis time on the graph
which models the schedule using our technique is 594 ms
while 141610 ms is required to perform the same analysis on
the graph using the technique from [11]. Using the technique
from [11] results in 2.26 times overestimation in buffer size
compared to using our technique.

Modeling a PSOS in an SDFG using DSM requires exe-
cuting one complete SDFG iteration. The number of states

in one iteration could be exponential in the number of actors
in the graph. However, for all real-world SDFGs used in our
experiments, the execution time of the DSM is below 1 ms.

VI. CONCLUSION

We presented a technique, DSM, to model periodic static-
order schedules directly in an SDFG. The resulting graphs
are much smaller (often much less than half the size) than
graphs resulting from the state of the art technique that first
converts an SDFG to an HSDFG. This results in a speed-
up of performance analysis. Computing the trade-off between
buffering and throughput for multi-processor implementations,
for example, becomes several orders of magnitude faster.
Moreover properties like buffer sizes can be analyzed more
accurately. For future work, we would like to investigate
to further optimize the models for some specific scheduling
classes, e.g., single appearance schedules.
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