
Design of Streaming Applications on MPSoCs
using Abstract Clocks

Abdoulaye Gamatié
CNRS/LIFL - UMR 8022, Villeneuve D’Ascq, France. Email: abdoulaye.gamatie@lifl.fr

Abstract—This paper presents a cost-effective and formal
approach to model and analyze streaming applications on multi-
processor systems-on-chip (MPSoCs). This approach enables to
address time requirements, mapping of applications on MPSoCs
and system behavior correctness by using abstract clocks of
synchronous languages. Compared to usual prototyping and
simulation techniques, it is very fast and favors correctness-by-
construction. No coding is needed to run and analyze a system,
which avoids tedious debugging efforts. It is an ideal complement
to existing techniques to deal with large system design spaces.

I. INTRODUCTION

The increasing complexity and sophistication of stream-
ing embedded systems is observable in nowadays consumer
electronics, e.g., mobile phones, high-definition TV and other
video/audio devices. The development of these systems brings
challenges [1] such as time and energy requirements man-
agement, efficient application mapping on execution platforms
and correctness of designs, which must be addressed within
stringent time-to-market and low cost constraints. Multiproces-
sor system-on-chip (MPSoCs) provide high computing perfor-
mance and parallelism required for efficient implementation of
concerned applications. Prototyping and simulation techniques
have appeared as the mainstream design solutions.

Prototyping and simulation techniques at a glance.
Among low-level approaches, we mention on the one hand
hardware acceleration and emulation [2] that involve field-
programmable gate arrays (FPGAs) and require Register trans-
fer level (RTL) descriptions; and on the other hand physical
prototyping [3], which involves circuit board and SoC in the
form of working silicon. While the major advantage of these
approaches is the high accuracy, they require a long time or
provide a limited flexibility into systems for an efficient design
space exploration (DSE) of several architectures.

Several approaches, e.g. [4], adopt the transactional level
modeling (TLM) as an abstraction level for a fast simula-
tion. TLM abstracts away low-level communication protocol
details by considering bus read/write transaction level ones.
Approaches based on instruction set simulator (ISS) [3] for
pre-silicon verification and debugging, execute applications on
hosts equivalent to the processors of the target execution plat-
form. They offer a good functional behavior. However, their
simulation speed and timing accuracy are very limited. Virtual
system prototypes allowing cycle-accurate (CA) simulations
are often preferred to these approaches. Other approaches rely
on host-compiled model [5], which uses back-annotations of

timing estimates determined either statically or dynamically
for a rapid yet accurate simulation. While the simulation speed
is not affected by these notations, the accuracy of estimates
quite depends on the ability to avoid possible pessimistic
timing approximations obtained statically and unpredictable
effects on timing approximations obtained dynamically.

From the previous glance at prototyping and simulation
techniques, we observe that they are complementary regard-
ing the rapidity and accuracy of performance and energy
estimation. Concerning correctness, these techniques consider
debugging and testing, which are tedious tasks and, with the
ever increasing complexity of embedded systems they are even
a nightmare [1]. New approaches defined at higher abstraction
levels, adopting formal methods, offer a solution.

Contribution. This paper presents a modeling paradigm for
combined software, hardware and environment specifications
to overcome the design evaluation issues for streaming em-
bedded systems. A means for evaluating design choices, w.r.t.
correctness, execution time or energy consumption, typically
during early DSE, is proposed by using static analysis. It is
a useful cost-effective alternative to approaches that would
require actual implementation of every design choice and
then simulate/prototype it, even just for evaluation purposes.
Abstract clocks defined in synchronous languages [6] play a
key role here. They consist of discrete sets of logical instants
denoting when events are observed in a system. The advocated
approach benefits from the solid mathematical foundation of
synchronous languages and their ability to favor correct-by-
construction designs. It is an ideal complement to prototyping
and simulation to deal with complex systems design.

Outline. In the next, Section II discusses related works.
Section III introduces abstract clocks and application com-
ponent modeling. Section IV presents environment constraint
modeling and analysis on applications by using clocks. Section
V deals with the deployment of applications on execution
platform with clocks. Finally, Section VI gives the conclusion.

II. RELATED WORKS

Kahn process networks (KPNs) [7] have been used for the
design of streaming applications. They consist of processes
communicating via FIFO channels. Read requests are blocking
in empty channels while write requests are not, i.e., chan-
nels are unbounded. KPNs hold a mathematical semantics,
which favors a formal reasoning. They specify deterministic
functional behaviors. In [8], KPNs are used for DSE of
multimedia applications on multiprocessor SoCs (MPSoCs).978-3-9810801-8-6/DATE12/ c©2012 EDAA



While the unboundedness assumption of KPN channels has
been pointed out as a limitation, e.g. to deal with memory
dimensioning [9], a synchronous variant [10] based on periodic
abstract clocks, has been defined with N -bounded channels for
synchronizability analysis between processes.

Synchronous dataflows (SDFs) [11] are similar models
specifying nodes exchanging data tokens via oriented edges.
The token consumption and production rates are defined
statically. SDFs are statically analyzable and schedulable based
on balance equations on the produced/consumed token rates.
This is not the case of KPNs, which are scheduled dynamically
in general. The StreamIt language [12] shares several features
with SDFs. It proposes a compiler enabling optimizations
for streaming applications. In [13], SDFs are used as in
an optimization of streaming applications on heterogeneous
execution platforms, mixing FPGA and CPUs. In [14], they
are used in DSE for multimedia applications. SDFs are not
explicitly clocked, which is a limitation for expressing multi-
clock behaviors in combined software, hardware and environ-
ment specifications. For this reason in [9], authors consider a
translation from SDF models to synchronous models.

Synchronous languages [6], e.g. Esterel, Lustre and Signal,
enable the reliable development of safety critical embedded
systems by promoting correct-by-construction designs. The
“synchrony” hypothesis of these languages abstracts the quan-
titative time properties of embedded systems by considering
that a program is faster than its environment. While it is
very suitable for correctness analysis, it imposes in fine the
validation of quantitative time aspects by finding execution
platforms that guarantee the hypothesis. Our approach enriches
the synchronous model with quantitative time via abstract
clocks. The resulting model therefore provides a support for
design assessment w.r.t. quantitative properties.

III. ABSTRACT CLOCKS FOR APPLICATION MODELING

We define basic notions about abstract clocks and affine
clock relations. The definition of these notions is inspired by
[15]. The proposed clock model is advocated as an internal
model for the analysis of specifications defined, e.g. in SDFs,
synchronous languages or the recent clock constraint specifi-
cation language (CCSL) [16]. The translation from SDFs can
be defined based on periodic behavior traces corresponding
to their self-time scheduling as illustrated in [9], while this
is quite straightforward from the other formalisms since they
manipulate very similar concepts.

A. Abstract clocks (component activations)

Let us consider the following sets: X is a countable set of
variables; V is a value domain; and T is a dense set equipped
with a partial order ≤, with a lower bound. The elements of
T are called tags or logical instants.

Definition 1 (Observation points): The tags of a set T ⊂ T
are observation points if: i) T is countable; ii) T holds a lower
bound for the ≤ relation; iii) ≤ is well-founded on T , i.e.,
there exists no infinite series (tn) s. t. ∀n ∈ N, tn+1 ≤ tn. 2

The set T provides a discrete time dimension that corre-
sponds to logical instants according to which the presence and
absence of events can be observed during a system execution.

A chain C ⊆ T is a totally ordered set admitting a lower
bound. The set of all chains is denoted by C and the set of all
possible chains in a set of observation points T is noted CT .

Definition 2 (Events, Signals): Given a set of observation
points T , an event e is a pair (t, v) ∈ T ×V. A signal s is a
partial function C ⇀ V that associates values with observation
points belonging to a chain C ∈ CT . 2

We denote by tags(s) the set of tags associated with a signal
s, i.e. the domain of the signal s.

Definition 3 (Clocks): Given a signal s, its corresponding
abstract clock is the totally ordered set tags(s). 2

Clocks can be combined by considering the usual set opera-
tions: intersection, union and difference. In order to determine
the relative distance from any tag to its neighbors, a reference
time, such as N the set of natural numbers, is required. We
define affine clocks as ordered sets of instants with positions
identified by an affine enumeration w. r. t. a reference time.

Definition 4 (Affine clocks w. r. t. N): An abstract clock c
is said to be affine if its associated tags can be characterized
with an affine function according to a reference time N: c =
{πτ + φ | π ∈ N\{0}, φ ∈ Z, τ ∈ N}. 2

Horizontal
Filter

Reorder Vertical
Filter

Fig. 1. Image downscaling process.

Let us consider a model of image downscaling process [10]
as shown in Fig. 1. It re-sizes images by reducing the size first
horizontally, then reordering the result, and finally reducing the
size vertically. The three components that achieve the global
functionality are assumed to be associated with abstract clocks
c1, c2 and c3. For the sake of simplicity, we will consider this
very simple model as an illustrative example along the paper.

Fig. 2 shows an example of trace w.r.t. a reference time,
characterizing c1, c2 and c3 defined by the sets: c1 = {τ | τ ∈
N}, c2 = {2τ + 1 | τ ∈ N} and c3 = {6τ + 3 | τ ∈ N}.

ref. time 0 1 2 3 4 5 6 7 8 9 10 ...
c1 • • • • • • • • • • • ...
c2 • • • • • ...
c3 • • ...

Fig. 2. Trace of affine clocks c1, c2 and c3.

Affine clocks are particularly suitable for expressing stream-
ing algorithms, which are often defined in a regular and syn-
chronized manner. For specification convenience, an abstract
clock can be represented by a binary word [16] [10]. Given a
clock c and a chain C ∈ CT s. t. c ⊆ C, the binary encoding
of c is defined by a function b : C → {0, 1} as follows:

∀t ∈ C, b(t) =
{

1 if t ∈ C ∩ c (i.e., event presence)
0 if t ∈ C\c (i.e., event absence).

For instance, compact binary representations of c1, c2 and
c3 in Fig. 2 are respectively (1)ω, 0(10)ω and 000(100000)ω



where ω ∈ N. E.g., in 0(10)ω , the first 0 is the phase and (10)
is the period. Fig. 3 illustrates a corresponding trace.

ref. time 0 1 2 3 4 5 6 7 8 9 10 ...
c1 1 1 1 1 1 1 1 1 1 1 1 ...
c2 0 1 0 1 0 1 0 1 0 1 0 ...
c3 0 0 0 1 0 0 0 0 0 1 0 ...

Fig. 3. Binary trace of affine clocks c1, c2 and c3.

The multi-clock feature of the above clock modeling is an
important ingredient to capture the combinatorics of com-
ponents interaction in complex streaming applications. Such
interactions are quite easily specified with clock relations.

B. Abstract clock relations (components interaction)

Since abstract clocks are sets of instants, the usual sets
comparison naturally applies to them: equality, inclusion and
exclusion. Further relations such as alternation of instants
belonging to different clocks can be also specified [16]. In
the following, we mainly focus on the (n, φ, π)-affine clock
relation (n, π ∈ N\{0}, φ ∈ Z) between two clocks c1 and c2.

Definition 5 (Affine clock relation): Two abstract clocks c1
and c2 are said to be in (n, φ, π)-affine relation, noted

c1
(n,φ,π)→ c2, if they satisfy the following: by inserting

(n − 1) tags between any two successive tags of c1, then c2
is composed of each πth tag in the extended c1, starting from
the (φ+ 1)th tag, where n, π ∈ N\{0} and φ ∈ Z. 2

In this paper, we only consider affine (n, φ, π)-relations where
n = 1. Such relations hold for the clocks of shown in Fig. 2:

c1
(1,φ1,π1)→ c2 and c2

(1,φ2,π2)→ c3 (1)

where (φ1, π1) = (1, 2) and (φ2, π2) = (1, 3).
Such affine clock relations are composable [17]. The fol-

lowing property characterizes this composition.
Property 1 (Affine relation composition): Given three ab-

stract clocks c, c′ and c′′ s. t. c
(1,φ,π)→ c′ and c′

(1,φ′,π′)→ c′′

(where φ′ ∈ N), the composition of the two affine relations is

an affine relation between c and c′′: c
(1,φ+πφ′,ππ′)→ c′′. 2

Another useful notion is synchronizability, which allows to
guarantee the existence of a dataflow-preserving way to make
two affine clocks synchronous. In other words, a finite-size
buffer protocol can be defined to synchronize such clocks.

Property 2 (Affine clock synchronizability): Given four
clocks c, c′, c′′ and cσ related by relations s. t. c

(1,φ,π)→ c′,

c′
(1,φ′,π′)→ c′′ and c

(1,φσ,πσ)→ cσ , the clocks c′′ and cσ are
synchronizable iff: i) φ+ πφ′ = φσ and ii) ππ′ = πσ . 2

In the sequel, we show how to reason about application
timing behavior w. r. t. environment constraints.

IV. MODELING OF APPLICATION ENVIRONMENT

We use abstract clocks to capture the way an application
interacts with its environment. Typically for the downscaler,
let us assume a pixel sensor that gathers images and sends
them to the downscaler in the form of pixel flows. Then, the
downscaler transforms the received pixels in order to present
re-sized images to a display screen at some rate. Here, the

sensor and the display play the role of the environment for
the downscaler application. Let us denote by cs and cd the
respective logical clocks of the above pixel sensor and display
screen. They respectively represent pixel arrival rate in the
sensor and image display rate on the screen. The whole model
works as follows: the sensor produces pixel by pixel; the
downscaler periodically performs an operation whenever it
receives from the sensor a given number of pixels; and the
screen periodically displays images whenever a certain number
of transformed pixel blocs is received from the downscaler.
As a result, there are affine clock relations on the one hand
between the sensor and the downscaler, and on the other hand
between the downscaler and the display screen as follows:

cs
(1,φs,πs)→ c1 (2)

c3
(1,φ3,π3)→ cd (3)

where (1, φs, πs) and (1, φ3, π3) are the affine relation pa-
rameters. An affine clock relation can therefore be inferred
directly between the sensor and the vertical filter via the
horizontal filter and the reorder component. This is achieved
by composing all intermediate clock relations, i.e. (2) and (1):

cs
(1,φs+πsφ1+πsπ1φ2,πsπ1π2)→ c3. (4)

The above clock relations (3) and (4) define the resulting
property of the application under design. Now, some expected
quality of service (QoS) requirements can be addressed in
order to check whether or not the clock rates considered for
the different components meet them. Typically, for given rate
values in the design, a specific image display rate may be
required to comply with a product characteristics for user
convenience. Let us specify such a QoS requirement as a new
affine relation between the clock cs of the sensor component
and a clock cQoS denoting the required rate for image display:

cs
(1,φq,πq)→ cQoS . (5)

Checking whether or not relation (5) is achievable with
chosen rate values in the design amounts to show the syn-
chronizability of the clocks cd and cQoS . Hence, by applying
Property 2, one has to ensure that the parameters of involved
affine clock relations satisfy the specified properties, i.e.:{

(φs + πsφ1 + πsπ1φ2) + (πsπ1π2)φ3 = φq

(πsπ1π2)π3 = πq
(6)

Thanks to this clock based reasoning, a designer can get
useful insights about the synchronizability of application com-
ponents w.r.t. its environment constraints. Another important
design issue concerns the execution platform, which must be
configured so as to provide the performance level required by
an application. This is addressed in the next section.

V. MODELING OF EXECUTION PLATFORMS

We show how abstract clocks allow one to model and reason
about the execution of applications on hardware platforms
[18]. We only assume abstract clocks with finite size. This is
implemented in a prototype tool, called Clock Analysis System.



A. Clock model of platform behavior

a) Execution platform: We consider a generic parallel
architecture model composed of processors operating syn-
chronously according to a global clock and communicating via
a shared memory. For instance, let us consider an architecture
with three processors P1, P2 and P3 with the initial frequencies
f1 = 100MHz, f2 = 50MHz and f3 = 40MHz respec-
tively. We use the periods 1/fi of processes to define their
activation instants. For synchronization purpose, we also con-
sider a reference clock κ with a period of 1/LCM(f1, f2, f3),
where LCM denotes the Least Common Multiple.

0 1 2 3 4 5 6 7 8 9 10 ...
κ • • • • • • • • • • • ...
κ1 • • • • • • ...
κ2 • • • ...
κ3 • • • ...

Fig. 4. Clock trace of processors.

Fig. 4 depicts the periodic activation rates of processors
P1, P2 and P3 according to their periods. We refer to these
activations as processor clocks κj .

b) Clock projection: To capture mapping and scheduling
choices with abstract clocks, we define a projection of appli-
cation clocks ci on processor clocks κj (see Algorithm 1).
We use this projection to describe the scheduling of tasks on
processors. Two parameters δ and ρ represent respectively the
number of processor cycles corresponding to a task activation
(i.e., value 1 in associated clock ci) and the synchronization
delay corresponding to each logical instant where a task is
waiting and is not active (i.e., value 0 in its clock ci). These
values can be determined statically according to the target
processors. Worst-case estimations may also be considered.

The projection of application clocks on processor clocks is
central. It is a refinement of the synchrony hypothesis assumed
in application clocks, where each activation instant denotes an
“instantaneous” execution of a function. The projection splits
such an instant into corresponding processor cycles. The result
captures a temporal behavior of a task, which is closer to its
actual execution. In order to preserve the ordering of events
characterized by an application clock, a projection must be
monotonic (increasing) [19]. The same must be guaranteed
for events from different application clocks.

In Algorithm 1, the occurrence of 1 at an instant in a clock
c′i indicates that the processor corresponding to κi is active at
that instant. The value 0 indicates that the processor is in the
Nop state. The meaning of -1 is contextual: when a sequence
of such a value is immediately preceded by 1, then it denotes
potentially active at those instants; otherwise, it denotes idle.

Fig. 5 illustrates projections of application clocks c1, c2 and
c3 shown in Fig. 3 on processor clocks κ1, κ2 and κ3 shown
in Fig. 4, where a task activation consists of δ1 = 3, δ2 = 2
and δ3 = 1 processor cycles respectively and ρ = 1. We can
observe the monotonicity of the projection as follows:
• c1[0] 7→ c′1[0], c1[1] 7→ c′1[6], c1[2] 7→ c′1[12], ...
• c2[0] 7→ c′2[0], c2[1] 7→ c′2[4], c2[2] 7→ c′2[12], ...
• c3[0] 7→ c′3[0], c3[1] 7→ c′3[5], c3[2] 7→ c′3[10], ...

Algorithm 1 Clock projection
Inputs: let ci and κj be two clocks with sizes (i.e., number of
instants) s. t.: |κj | ≥ |ci| ≥ 1. Parameters δ and ρ are given.
Local: pos stores positions of ci’s tags on κj after projection.
Output: the result of the projection is a clock c′i
c′i := κj ;
for all α ∈ [1..|c′i|] do
c′i[α] := −1;

end for
pos[0] := 0;
for all α ∈ [1..|ci|] do

if ci[α− 1] = 1 then
pos[α] := pos[α− 1] + δ;

else if ci[α− 1] = 0 then
pos[α] := pos[α− 1] + ρ;

end if
end for
for all α ∈ [1..|ci|] do
c′i[pos[α]] := ci[α];

end for
return c′i;

c) Scheduling of tasks on processors: We distinguish
several task schedulings on an execution platform:
• Mono-task scheduling on a processor. Each processor

executes one task (itself executed only on this processor).
For each task associated with application clock ci, its
scheduling on a processor associated with clock κj is
defined by a projection of ci on κj (given δ and ρ).

• Multi-task scheduling on a processor. To schedule several
tasks on a single processor, we consider two alternatives:

– Non-preemptive static scheduling: tasks are sched-
uled according to the data dependency specified in
an application. When a task is scheduled, it runs until
completion before another task gets scheduled. E.g.,
if the horizontal filter and reorder components of the
downscaler are scheduled on the same processor, the
clock c1 associated with the former component is
first projected on the considered processor clock κj ,
then the clock c2 of the latter is projected on κj .

– Time division multiple access (TDMA): tasks are
allocated time slots during which they can execute
on the processor. A time slicing is applied to the
application clocks of all tasks mapped onto the
processor. For each clock ci, this yields a set of sub-
sequences of ci, referred to as slices ski . Then, we
alternate the projections of these slices from a task
to another on the considered processor clock κj . Fig.
6 illustrates such a scheduling where two tasks are
executed on a processor associated with clock κ1.

Beyond the above two schedulings, one may also need to
schedule either multiple tasks on multiple processors, or one
task on several processors (useful for a parallel execution of
a task). These last cases are solved in a similar way as above.

B. Architecture choice assessment

We assess the design choices resulting from the previous
section, w.r.t. the correctness of application clock properties,



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ...
κ • • • • • • • • • • • • • • • • • • • • • • ...
κ1 • • • • • • • • • • • ...
c′1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 ...
κ2 • • • • • • ...
c′2 0 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 1 -1 -1 -1 -1 -1 ...
κ3 • • • • • ...
c′3 0 -1 -1 -1 -1 0 -1 -1 -1 -1 0 -1 -1 -1 -1 1 -1 -1 -1 -1 0 -1 ...

Fig. 5. Trace after a projection of clocks c1, c2 and c3 of Fig. 2 on κ1, κ2 and κ3 respectively (δc1 = 3, δc2 = 2 and δc3 = 1 and ρc1 = ρc2 = ρc3 = 1).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ...
κ1 • • • • • • • • • • • • ...
c′1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 ...
c′2 0 -1 1 -1 -1 -1 -1 -1 ...

Fig. 6. TDMA-scheduling of clocks c1 and c2 of Fig. 2 on κ1 (δc1 = 3, δc2 = 2 and ρc1 = ρc2 = 1). Slices are s1 = (11) for c1 and s2 = (01) for c2.

performance and energy consumption.
d) Application clock properties (i.e., causality): It is

important to preserve application properties after the mapping
and scheduling on processors. In other words, the global
causality relations between application clocks ci must be
guaranteed after their projection on processor clocks κj . This
is achieved according to the following parameters:
• the synchronization delay ρ: its value approximation

should be defined such that the number of processor
cycles corresponding to each 0 value preceding activa-
tions, i.e. value 1 in ci, is high enough to meet all
synchronization requirements before any activation;

• processor frequency values: a global causality problem
(between different projected clocks) also arises when a
processor P2 executing a data consuming task, is active
very often before the required activations of a processor
P1 executing a data producing task. Thus, the choice of
processor frequencies must satisfy the global causality.

Notice that the modification of processor frequency values
can be used to correct a pessimistic estimate of the synchro-
nization delay ρ that does not ensure the causality property.

e) Temporal performance: To evaluate the performance
of a system, we compute the workload of each processor as the
total number of executed processor cycles after mapping and
scheduling. It corresponds to the length of the clocks resulting
from projections, e.g., c′1, c′2 and c′3 in Fig. 5. If a processor
has a frequency f and performs ∆ cycles during application
execution, then its corresponding execution time is: ∆

f . For
instance, in Fig. 5, the execution of the first two activations in
c1 takes 6

100 = 0.06µs when P1 runs at 100MHz.
Fig. 7 shows a comparison of our abstract clock based

approach with a SystemC cycle-accurate simulation for a
JPEG decoder in the SoClib simulation environment [20].
The considered execution architecture includes a network-
on-chip (NoC) connecting five MIPS processors with shared
(multibank) memory. The JPEG decoder is composed of five
pipelined tasks activated thirty six times. We first measured
with SoClib, for each task T , an average number of processor
cycles corresponding to a single activation. Then, we used
this number as δT during the associated clock projection. The
value of ρ parameter has been determined manually in such a
way that all causality relations are satisfied.

We applied our clock based approach and compared it
with equivalent simulations in SoClib. We observe that both
approaches lead to the same tendency regarding the number of
cycles corresponding to different mapping scenarios (see Fig.
7). Note that in the TDMA scheduling, the assignment of slices
has an impact on the run-time of an application. Here, we
consider a particular TDMA scheduling settings that associate
with each task, a slice corresponding to the processing of 8×8

pixels, equivalent to ( 1
36 )

th of considered images.
Of course, the SoClib simulation is unsurprisingly more

precise. But, the important thing to notice here is that the same
conclusions about the relative comparison between the differ-
ent mapping scenarios can be obtained coherently with both
approaches. To achieve the whole experiment (i.e., configure,
execute and report), our approach requires a few minutes while
SoClib necessitates a few hours. Since it is faster and more
flexible due to its high abstraction level, it can be considered
for an early rapid exploration to reduce a design space, before
applying simulation and prototyping.

f) Energy consumption: During an execution, the slack
time of a task is the difference between its completion time and
its associated deadline. By modifying processor frequencies,
this completion time can be either shortened or stretched. In
particular, by reducing the frequency value in order to keep
the slack time the shorter possible, the energy consumption
is reduced, while the functional properties are still verified.
Furthermore, such a frequency reduction can benefit to data
storage optimization since processors executing faster than
required may produce a high number of data, which necessitate
large storage buffers [1]. Another way to deal with energy E in
our framework is to consider the execution time T calculated
previously, together with pre-determined power consumption
W of every task by using tools such as Sim-Panalyzer [21],
as follows: E = T ×W .

From a global point of view, the clock-based approach
advocated in this work is a cost-effective and relevant means to
facilitate the early analysis of complex design choices. It scales
well for periodic clocks, which adequately abstract the com-
putation regularity inherent to streaming applications. More
generally, it is well-suited for time-triggered applications. Our
approach is suitable for environments such as those adopting
platform-based design [22], where high-level specifications of



1 2 3 4 5
0

200000

400000

600000

800000

1000000

1200000

Abstract clocks
SystemC

number of processors

n
u

m
b

e
r 

o
f c

yc
l e

s

(a) Non-preemptive static scheduling

1 2 3 4 5
0

200000

400000

600000

800000

1000000

1200000

Abstract clocks
SystemC

number of processors

n
u

m
b

e
r 

o
f c

yc
l e

s

(b) TDMA scheduling

Fig. 7. Execution time estimation for JPEG decoder of one image: abstract clocks vs SystemC simulation.

application functionality and hardware architecture are refined
with well-characterized intellectual properties (IPs) and ana-
lyzed so as to rapidly converge towards design requirements.

VI. CONCLUSIONS

In this paper, we proposed a high-level formal modeling
paradigm for combined software, hardware and environment
specifications to overcome the design validation issues for
streaming embedded systems, based on abstract clocks defined
in synchronous languages. We showed how to check time
requirements imposed by an environment on an streaming
application. We also addressed the assessment of architecture
choice for application the execution. Beyond the possibility to
deal with design correctness while avoiding the usual tedious
debugging and testing tasks, our solution offers a simple and
fast alternative to explore and reduce complex design spaces
before applying simulation and prototyping. It does not aim
to replace completely these techniques since its accuracy is
limited due to the high abstraction; instead, it is an ideal
complement to them.

ACKNOWLEDGMENT

The author would like to thank the anonymous reviewers
for their interesting feedback on this work. He also would
like to thank his colleagues A. Abdallah, J.-L. Dekeyser, R.
Ben Atitallah and S. Boumedien who contributed to the vision
exposed here via several insightful discussions.

REFERENCES

[1] M. Duranton, “The challenges for high performance embedded systems,”
in DSD’06. IEEE Computer Society, 2006, pp. 3–7.

[2] D. Hedde, P.-H. Horrein, F. Petrot, R. Rolland, and F. Rousseau, “A mp-
soc prototyping platform for flexible radio applications,” in Euromicro
DSD’09. IEEE Computer Society, 2009, pp. 559–566.

[3] B. Bailey and G. Martin, ESL Models and their Application: Electronic
System Level Design and Verification in Practice. Springer Publishing
Company, Incorporated, 2010.

[4] S. Abdi, Y. Hwang, L. Yu, G. Schirner, and D. D. Gajski, “Automatic
TLM Generation for Early Validation of Multicore Systems,” IEEE
Design and Test of Computers, vol. 28, pp. 10–19, 2011.

[5] A. Gerstlauer, “Host-compiled simulation of multi-core platforms,” in
Proceedings of the 21st IEEE International Symposium on Rapid System
Prototyping, RSP 2010, Fairfax, VA, USA,, 2010, pp. 1–6.

[6] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone, “The synchronous languages twelve years later,”
Proceedings of the IEEE, vol. 91, no. 1, pp. 64–83, January 2003.

[7] G. Kahn, “The semantics of simple language for parallel programming,”
in IFIP Congress, 1974, pp. 471–475.

[8] M. Thompson, H. Nikolov, T. Stefanov, A. D. Pimentel, C. Erbas,
S. Polstra, and E. F. Deprettere, “A framework for rapid system-level
exploration, synthesis, and programming of multimedia MP-SoCs,” in
CODES+ISSS’07. New York, NY, USA: ACM, 2007, pp. 9–14.

[9] J. Zhu, I. Sander, and A. Jantsch, “Energy efficient streaming applica-
tions with guaranteed throughput on mpsocs,” in EMSOFT’08, Atlanta,
GA, USA, 2008, pp. 119–128.

[10] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and
M. Pouzet, “N-sychronous Kahn networks,” in ACM Symp. on Principles
of Programming Languages (PoPL’06), Charleston, South Carolina,
USA, January 2006.

[11] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow: Describing
signal processing algorithm for parallel computation.” in COMPCON,
1987, pp. 310–315.

[12] W. Thies, M. Karczmarek, M. Gordon, D. Maze, J. Wong, H. Hoffman,
M. Brown, and S. Amarasinghe, “Streamit: A compiler for streaming
applications,” MIT, Cambridge, MA, Tech. Memo LCS-TM-622,
December 2001. [Online]. Available: http://cag.lcs.mit.edu/commit/
papers/01/StreamIt-TM-622.pdf

[13] J. Zhu, I. Sander, and A. Jantsch, “Pareto efficient design for reconfig-
urable streaming applications on cpu/fpgas,” in DATE’2010, 2010, pp.
1035–1040.

[14] Y. Yang, M. Geilen, T. Basten, S. Stuijk, and H. Corporaal, “Auto-
mated bottleneck-driven design-space exploration of media processing
systems,” in DATE’2010, 2010, pp. 1041–1046.

[15] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann, “Polychrony for system
design,” Journal for Circuits, Systems and Computers, vol. 12, pp. 261–
304, 2002.

[16] C. André and F. Mallet, “Clock Constraints in UML/MARTE
CCSL,” INRIA, Research Report RR-6540, 2008. [Online]. Available:
http://hal.inria.fr/inria-00280941/PDF/rr-6540.pdf

[17] I. Smarandache, T. Gautier, and P. Le Guernic, “Validation of Mixed
Signal-Alpha Real-Time Systems through Affine Calculus on Clock
Synchronisation Constraints,” in World Congress on Formal Methods
(2), 1999, pp. 1364–1383.

[18] A. Abdallah, A. Gamatié, and J.-L. Dekeyser, “Correct and Energy-
Efficient Design of SoCs: the H.264 Encoder Case Study,” in Proceed-
ings of the International Symposium on System-on-Chip (SoC’10), 2010.

[19] T. Melham, VLSI Specification, Verification and Synthesis. Kluwer
Academic Publishers, 1987, ch. Abstraction Mechanisms for Hardware
Verification, pp. 129–157.

[20] “The SoClib Project,” 2011, http://www.soclib.fr.
[21] “The SimpleScalar-ARM Power Modeling Project,” 2011, http://www.

eecs.umich.edu/∼panalyzer.
[22] A. Sangiovanni-Vincentelli, L. Carloni, F. De Bernardinis, and M. Sgroi,

“Benefits and challenges for platform-based design,” in Proceedings of
the 41st annual Design Automation Conference, ser. DAC’04, 2004, pp.
409–414.


