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ABSTRACT 
Yield estimation for analog integrated circuits remains a time-

consuming operation in variation-aware sizing. State-of-the-art 

statistical methods such as ranking-integrated Quasi-Monte-Carlo 

(QMC), suffer from performance degradation if the number of 

effective variables is large (as typically is the case for realistic 

analog circuits). To address this problem, a new method, called 

AYLeSS, is proposed to estimate the yield of analog circuits by 

introducing Latin Supercube Sampling (LSS) technique from the 

computational statistics field. Firstly, a partitioning method is 

proposed for analog circuits, whose purpose is to appropriately 

partition the process variation variables into low-dimensional sub-

groups fitting for LSS sampling. Then, randomized QMC is used 

in each sub-group. In addition, the way to randomize the run order 

of samples in Latin Hypercube Sampling (LHS) is used for the 

QMC sub-groups. AYLeSS is tested on 4 designs of 2 example 

circuits in 0.35 m  and 90nm technologies with yield from about 

50% to 90%. Experimental results show that AYLeSS has 

approximately a 2 times speed enhancement compared with the 

best state-of-the-art method.  
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1. INTRODUCTION 
In modern technologies, random and systematic process variations 

have a large influence on the quality and yield of manufactured 

analog circuits. Currently, Monte-Carlo (MC) simulation-based 

yield estimation is the most popular method because of its 
advantages of generality and high accuracy [1]. For a single yield 

estimation of an analog cell with a reasonable accuracy 

requirement, even primitive MC (PMC) simulation often does not 

cost much computational effort, with a CPU time of several 

minutes. However, when it comes to variation-aware analog sizing 

or yield optimization [2-4], which requires many yield 

estimations, the inefficiency of MC-based yield estimation 

becomes the bottleneck. [2,4] present the first a few efficient 

variation-aware analog sizing methods based on MC simulation 

by introducing computational intelligence techniques to increase 

the efficiency, which makes the computation time practical. On 

the other hand, another possible way, compatible with the 

computational intelligence techniques is to contribute to the 

efficiency of variation-aware analog sizing by developing more 

efficient MC-based yield estimation techniques. Therefore, this 

paper focuses on a fast, accurate and general MC-based yield 

estimation technique for analog circuits with a reasonable 

accuracy requirement (high-sigma yield estimation is out of the 

scope of this work, as in variation-aware analog sizing we often 

require a reasonably good accuracy). This paper is organized as 

follows. Section 2 reviews the available methods and provides the 

motivations for the new method, AYLeSS (analog yield 

estimation using Latin Supercube Sampling). Section 3 introduces 

the AYLeSS method. Section 4 tests AYLeSS on practical 

examples and compares AYLeSS with the best state-of-the-art 

method. The concluding remarks are presented in Section 5.  

 

2. OVERVIEW OF THE STATE-OF-THE-ART  

The estimation of yield is an approximation of the integral of the 

function that determines if the design specifications are met with 

the statistical process parameters varying over the unit cube [3]. 

The integration error can be separated into the factor related to the 

function itself and the factor related to the generated random point 

set according to the Koksma-Hlawka theorem [5], which is shown 

as:   
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where Î  and I are the estimated value and the real value of the 

integration. 
n

D


 is the star discrepancy which measures the 

uniformity of the generated points: more uniformly distributed 

samples have lower 
n

D


.  ( )
HK

V f  is the total variation of f [6], 

which is determined by the problem itself. n is the number of 

samples (
i

x  is a d-dimensional vector). This separation (equation 

1) leads to 2 categories of advanced MC simulation methods and 

their usage in circuit yield estimation:  

 Variance-reduction methods (e.g. importance sampling (IS) 

[3,7], Latin Hypercube Sampling (LHS) [8]), which focus on 

decreasing ( )
HK

V f . In IS the good shifted distribution 

function is often circuit specific, which poses the challenge 

of generality. LHS [9,10] first creates equal slices in each 

dimension of the stochastic variable vector, and then selects 

random values within each slice for every coordinate. At last, 

by randomly matching up the coordinate values, a bunch of 

LHS samplings are constructed. Because of this stratification 

technique, the variance is reduced. LHS is a general method, 

but the performance is not always good enough, especially 

for some problems that are difficult to be decomposed into a 

sum of univariate functions [11]. LHS is shown to be worse 

than Quasi-Monte-Carlo (QMC) [1,12,13] in some circuit 

examples.  

 Low-discrepancy sequence-based methods (e.g. QMC 



 

[1,12,13]), which focus on decreasing 
n

D


. QMC uses low-

discrepancy sequences (LDS) to generate more uniformly 

distributed samples, which is a technique general to different 

circuits and showing good performance.  

However, its major drawback is that for high-dimensional 

problems, the asymptotic advantage of the QMC point set 

appears to require an impractically large number of samples 

to set [11]. For instance, a 50-stochastic-variables case is 

typical in yield estimation of analog circuits, but using the 

Sobol‟ set with base 2 (standard), the advantage on the 

asymptotic rate of convergence can be expected after 
127

2 samples with the available standard setting. If we use a 

lower number of samples, the first few dimensions are 

sampled uniformly, but higher dimensions are not, which 

degrades the performance. To relieve this problem, [1] 

presents a method, whose core idea is to sacrifice the non-

uniformity in higher dimensions, but making the loss as 

small as possible. The way is by first ranking the sensitivities 

of the process variation variables and by selecting the 

important variables that mainly dominate the variance. They 

are mapped to the first few dimensions of LDS, which are 

more uniformly distributed. The theoretical background of 

this method is ANOVA decomposition and the concept of 

effective dimensions [14]. Experiments show a significant 

progress compared with PMC and LHS for medium-scaled 

(i.e. tens of stochastic variables) yield estimation problems 

[1]. However, even with this method, some important 

variation variables also have to use non-uniformly distributed 

samples in many cases. The degradation will be shown by the 

examples in section 4. The reason is that the upper limit on 

dimensions for LDS to keep the uniformity is typically 10-12 

[15] if a reasonable number of samples can be used to 

maintain the efficiency in QMC. But the number of 

important stochastic variables (or effective dimensions) 

larger than this threshold can be frequently seen in analog 

circuits. Hence, a question still remains: What is the better 

solution when the number of effective dimensions (or 

important variables that dominate the variance) of the yield 

estimation is larger than the upper limit on dimensions for 

LDS (e.g. 12)?        

To address this problem, our goal is to propose a LDS-based 

method for analog circuit yield estimation, called AYLeSS, which 

aims to:  

 the method extends the limitation on the size of the yield 

estimation problems (i.e. large effective dimensions); 

 achieve a 2 times speedup compared with ranking-integrated 

QMC (the best state-of-the-art method) for analog circuits; 

 the method is easy to implement and is robust enough for 

different settings. 

 

3. THE AYLeSS METHOD 
3.1 Basics of QMC 

Because QMC is a part of the proposed AYLeSS method, QMC is 

briefly introduced first. QMC aims at generating more uniformly 

distributed samples, so as to decrease the estimation error of the 

yield integral. In PMC, the used uniformly distributed „random 

numbers‟ generated by the computer are not truly uniform, and 

the gaps arising among the samples adversely affect the 

uniformity. QMC, on the other hand, constructs a deterministic 

infinite sequence of d-dimensional points and selects a certain 

number of them when performing sampling. The goal of the 

constructed sequences is to fill the space as geometrically 

equidistant as possible. Such sequences are called low-

discrepancy sequences (LDS). If the integrand has a bounded 

variation in the sense of Hardy and Krause [11], it is possible to 

construct a LDS along with 
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which proves that one can achieve an asymptotic rate better than 

that of PMC which has a rate of 
1 / 2

n


 [1]. There are different 

methods to generate a LDS, e.g. Halton set, Sobol‟ set, etc. In 

AYLeSS, we use the Sobol‟ set with a skip of 
log / log 2

2
n

 points, 

because a LDS often has better performance when skipping the 

first few points [16]. The details of constructing the Sobol‟ set are 

in [6]. 

3.2 The partitioning method in AYLeSS 

To be able to handle high-dimensional problems, different from 

ranking-integrated QMC, our core idea is not to grant the 

degradation of QMC at high dimensions and minimize the loss, 

but to decrease the number of dimensions to avoid such loss. The 

method is partitioning the high dimensional problem into sub-

groups with lower dimensions. In this way, generating a high-

dimensional LDS is transformed to generate some groups of low-

dimensional LDS, and in each group the uniformity can be kept 

with a reasonable number of samplings if the dimensionality of 

each group is not large.  

However, the partition neglects the interactions between different 

sub-groups. Hence, the way of partitioning may affect the result. 

The best partitioning is to arrange variables that interact more 

strongly into a sub-group, and the interactions between different 

sub-groups should be as small as possible. The reason is that the 

interactions are considered within a sub-group, but not between 

separate sub-groups. This rule is quite intuitive. Suppose we 

divide the d dimensions into k groups, then each group has s 

dimensions, where d k s  . In the extreme case, different sub-

groups have no interaction to each other, then the error is the sum 

of the errors in each sub-group. Hence, we can expect that the 

variance converges at the rate of a s-dimensional problem. Now, 

the problem becomes how to construct a set of easy to implement 

rules to obtain a good partitioning. In AYLeSS, the rules are 

constructed based both on the aspects of analog circuit design and 

statistics. The following rules are recommended by us: 

(1) The dimension of each sub-group should not be larger than 12 

[15], because if the dimension of the sub-group is too large, the 

uniformity of LDS will also be sacrificed.  

(2) It is not wise to use too many sub-groups, because the fewer 

the number of sub-groups, the less interactions between different 

sub-groups need to be considered. 

(3) The number of dimensions of each sub-group is better as 

similar as possible, because the convergence rate is often 

determined by the sub-group with the highest dimension.  

(4) Devices whose widths and lengths have symmetry correlations 

(e.g. differential pairs) or have clear design relations interacting 

strongly (e.g. current mirror) when considering process variations 



 

should be clustered to one sub-group. 

 (5) The intra-die variables of one transistor interacting with each 

other should be clustered to one sub-group.  

According to these rules, the following partitioning method can be 

constructed:  

Algorithm 1: the partitioning method 

Step 0: Put the statistical inter-die variables into one sub-group. If 

the dimension of the sub-group is larger than 12 [15], partition 

them into 2 or more groups. The dimensions of each group should 

be as similar as possible. 

Step 1:  Find differential pairs and current mirrors in the circuit.  

Step 2: Put the intra-die variables of each differential pair and 

current mirror into one cluster.  

Step 3: Combine the clusters with small dimensions from Step 2 

to sub-groups, whose dimensions should not be larger than 12. If 

the dimension of any cluster is larger than 12, split it into 2 or 

more sub-groups with dimensions less than or equal to 12, 

maintaining the intra-die variables of one transistor in a new sub-

group. The dimensions of each group should be as similar as 

possible. 

Step 4:  For all other transistors that are not in differential pairs 

and current mirrors, partition them to different sub-groups. The 

dimensions should be as similar as the sub-groups in previous 

steps. The intra-die variables of one transistor should be in the 

same sub-group.  

 

We now provide an example using the circuit in section 4.3 (Fig. 

4). In this circuit, the differential pairs are: M1-M2, M3-M5, M7-

M8, M9-M10, and M11-M12. The current mirrors are Mbn-M4-

M11-M12 and Mbp-M5-M3. In the 0.35 m  CMOS technology 

we used, there are 15 inter-die variables, and each transistor has 4 

stochastic intra-die variables ( , , ,
th ox eff eff

V T W L , which are common 

to many technologies). According to Algorithm 1, the process 

variables can be divided as follows: group 1: inter-die variables (8 

variables); group 2: inter-die variables (7 variables); group 3: 

intra-die variables of M1-M2 (8 variables); group 4: intra-die 

variables of M3-M5-Mbp (12 variables); group 5: intra-die 

variables of M7-M8 (8 variables); …; group 8: intra-die variables 

of Mbn-M4 (8 variables). Through experiments, we found that if 

obeying these partitioning rules, AYLeSS performs up to 2 times 

speed up than ranking-integrated QMC.  

This partitioning method is often applicable because: (1) To the 

best of our knowledge, most technologies use 4 intra-die variables 

( , , ,
th ox eff eff

V T W L ). Even for a complex technology, the dimension 

of intra-die variables of a differential pair being larger than 12 can 

seldom been seen. Hence, the differential pairs, which have strong 

interaction, can often be clustered to one sub-group. (2) Even if 

the technology is very complex, we can still cluster the intra-die 

variables of one transistor in a sub-group. Experiments in section 

4 still show much better results than the ranking-integrated QMC 

method when neglecting the differential pairs and only clustering 

the intra-die variables of a transistor to a sub-group.  

In each sub-group, we use randomized QMC (RQMC) sets 

instead of QMC sets. QMC uses a determined LDS, and RQMC 

adds scrambling to the QMC set by using random permutations to 

the digits of each coordinate value. The scrambling method used 

in AYLeSS is described in [17]. The benefit is that the variance of 

the yield estimation can decrease with the number of independent 

replications (number of sub-groups). The details are in [11].  

3.3 Latin Supercube Sampling  

Besides the core idea of partitioning, there exists a sampling 

method in the computational statistical field, called Latin 

Supercube Sampling (LSS) [11], which is even stronger. Not only 

does it hold the idea of partitioning to solve the high-dimensional 

QMC sampling problem, LSS also integrates the LHS method to 

further enhance the performance. The method to randomize the 

run order of the stratified samples of LHS [15] is used to the 

QMC sub-groups. Hence, the points in each group are obtained by 

randomly permuting the run order of the QMC points (the 

permutations of different groups are independent). Suppose x is a 

d-dimensional input sample. x is divided into k groups, where 

d k s  (in real applications, the dimensions of the sub-groups 

are not necessarily equal). , 1, 2, ...
j

i
x i n  is an s-dimensional 

QMC point set (j=1,2,…,k). The ith LSS sample is: 

1 2

1( ) 2( ) ( )
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k

i i i k i
xlss x x x i n
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where πj are independent uniform random permutations of 

1,2,…n. The purpose of this random permutation is the same as in 

LHS, i.e. to make the projection of each coordinate of the samples 

more uniform so as to reduce the variance (now coordinate refers 

to the sub-group). It has been proven that even with no 

partitioning rules, a poor grouping can still be expected to do 

equally well as LHS [11]. Therefore, the convergence rate of the 

AYLeSS method can always be better than LHS for complex and 

high dimensional circuits.    

3.4 The framework of AYLeSS 

In summary, the AYLeSS method works as follows:  

Algorithm 2: the AYLeSS method 

Input: d-dimensions of the variation variables x, sample size n, 

joint probability of the variation variables ( )x .   

Step 0: Skip 
log / log 2

2
n

 points of the Sobol‟ sequence. 

Step 1: Partition the input variation variables into k groups with 

dimensions {
1 2
, , ...

k
s s s } according to algorithm 1.  

For EACH sub-group: 

Step 2: Scramble the Sobol‟ set according to the method in [17]. 

Step 3: Select the RQMC points according to the dimension of 

the sub-group. 

Step 4:  Perform a random permutation to the run order of the 

RQMC points according to eqn. (3) to obtain the LSS sample Xs. 

End 

 Step 5: Generate the required samples by 
1
( )sX


  for circuit 

simulation. 

4. EXPERIMENTAL RESULTS AND 

COMPARISONS 



 

4.1. Experimental Method 

In this section, four designs are shown as examples with yield 

from 50% to 90% for two typical analog circuits in different 

technologies. In each example, the comparisons to ranking-

integrated QMC, pure QMC, LHS and PMC are carried out. The 

same ranking method and the setting of 1000 initial MC 

samplings for ranking (counted in the total number of samples), 

are used as in [1]. For pure QMC, the LDS coordinates are 

assigned randomly. Experiments to verify the partitioning method 

are also performed. In data analysis, the confidence interval (e.g. 

1% error compared to the true yield value) under a certain 

confidence level (e.g. 2 ) is used to reflect the estimation error. 

Two properties, the standard deviation convergence rate and the 

necessary sample size to obtain a certain accuracy, are selected as 

the comparison criteria, which is the same as [1]. We perform 10 

runs to AYLeSS, QMC-based methods and LHS, 5 runs for the 

PMC method (because the computational cost is very large for 

PMC). From these data, the standard deviation for different 

numbers of samplings for each method can be obtained. The 

n





  relationship is used and by linear fitting, via least square 

error, the corresponding convergence exponent,  , can be 

estimated. By the same fitting method, the sample size needed for 

each method can also be estimated for a given level of accuracy 

(or estimation error) using the central limit theorem [18]:  
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where    is the standard normal cumulative distributed function, 

Y is the exact value of the yield (estimated by 500,000 PMC 

samples as substitute),   is the confidence interval and p is the 

confidence level. We use a 2  confidence level and a 1% 

confidence interval (the same as [1]) to compute the required   .  

With a derived   from eqn. (4), the required sample size, Nreq, 

can be estimated by the fitted function.  

 

4.2. Test Example 1 

The AYLeSS algorithm is first tested on a two-stage fully 

differential folded-cascode amplifier with common-mode 

feedback, shown in Fig. 1. The circuit is designed in a 90nm 

CMOS process with 1.2V power supply. The specifications are 

0
A 60dB , GBW 45MHz , PM 60 , output swing 1.9V , 

power 2.5mW  and 250 marea  . The number of design 

variables is 21 and the variation parameters can be extracted from 

52 standard normal-distributed random numbers for the selected 

circuit. Two designs with a yield of 84.29% and 90.39%, 

respectively, are shown as examples. Table 1 shows the results. 

The fitted lines in log10-log10 scale for different methods are 

shown in Fig. 2 and Fig. 3.  

From the necessary number of samples (Nreq) columns in Table 1, 

two conclusions can be drawn. (1) It can be seen that the AYLeSS 

result is the best one compared with the other 4 methods for both 

designs, and can achieve a 2 to 2.5 times speed enhancement 

compared with ranking-integrated QMC, which is the current best 

state-of-the-art method, and more than a 5 times speedup 

compared with PMC. (2) If we decrease the 1000 samples (used 

for ranking) for the ranking-integrated QMC method, we can see 

that the new Nreq numbers, 1767 and 1187, are still worse than the 

AYLeSS results. This shows that the large number of effective 

dimensions degrades the QMC sampling even with ranking. If the 

number of effective dimensions is larger than the threshold (e.g. 

12), some important dimensions cannot obtain uniformly 

distributed samples. In contrast, AYLeSS, does not have this 

problem and can often lower the scales by partitioning while 

receiving good results. From the convergence exponent (-α) 

column in Table 1, two more conclusions can be drawn. (1) The 

ranking is important for the QMC method, as the convergence rate 

considerably decreases if without ranking, which will further be 

shown by the next example. (2) Designs with 85%-99% yield are 

the most interesting ones to obtain an accurate estimation, because 

they may become a real product. However, designs with high 

yield need less MC samples, and the required number of samples 

for 50% yield is the largest [2,3]. From this relatively large-scale 

circuit, we can get a rough idea of the necessary number of 

samples for a yield larger than 85% for typical analog circuits 

when using LDS-based methods. Hence, the 1000 additional 

samples used for QMC ranking is expensive for these cases. In 

contrast, AYLeSS does not need ranking and the partitioning 

rules are easy to implement.  
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Fig. 1. Two-stage fully differential folded-cascode amplifier  

Table 1. Results obtained by different methods (example 1) 

Design 1 Nreq -α Design 2 Nreq -α 

AYLeSS 1265 -0.631 AYLeSS 807 -0.6236 

QMC 3681 -0.4842 QMC 2148 -0.5202 

Ranking 

QMC 

2767 -0.6816 Ranking 

QMC 

2187 -0.5729 

LHS 2448 -0.53 LHS 3687 -0.4963 

PMC 6831 -0.5189 PMC 4307 -0.4904 

           

In the following, we show the results obtained by LSS using a 

simplified partitioning method. In the five partitioning rules 

described in section 3.2, besides those related to the LSS 

sampling itself (e.g. requirements on dimension), there are two 

rules about analog circuits. In this example, we keep the intra-die 

variables of one transistor in a group (rule 5), but do not consider 

the symmetry (matching) devices (rule 4). The dimensions of all 

the sub-groups containing intra-die variables are 8. Three different 

groupings are used when combining the intra-die variables of 

transistors to form sub-groups. The results are shown in Table 2.   



 

 

Fig. 2. Fitting of the convergence rates for different methods  

(design 1 of example 1) 

 

Fig. 3. Fitting of the convergence rates for different methods  

(design 2 of example 1) 

 

Table 2. LSS results for different groupings 

Design 1 Nreq -α Design 2 Nreq -α 

LSS1 1317 -0.6596 LSS1 822 -0.4518 

LSS2 1313 -0.6280 LSS2 842 -0.6132 

LSS3 1450 -0.6232 LSS3 914 -0.5908 

 

From Table 2, we can see that: (1) The performances in Table 2 

are lower than that of AYLeSS in Table 1. Hence, the partitioning 

rule of clustering the symmetry devices in one sub-group can 

enhance the performance. (2) Even if only clustering the intra-die 

variables of one transistor in a group, the result is still better than 

ranking-integrated QMC and LHS. (3) Different ways of 

partitioning all provide good results if the rule of clustering the 

intra-die variables of one transistor in a group is satisfied. Hence, 

AYLeSS is robust with respect to the partitioning used.  

 

4.3 Test Example 2 

The AYLeSS method is now tested on a fully differential folded-

cascode amplifier, shown in Fig. 4, implemented in a 0.35 m  

CMOS process with 3.3V power supply. Although the circuit 

topology is simpler than example 1, the number of process 

variables is larger. The specifications are gain 
0

A 70dB , 

GBW 40MHz , phase margin PM 60 , differential output 

swing 4.6V  and  1power mW . The number of design 

variables is 13 and the number of variation parameters is 75 

uniformly-distributed random numbers in the normalized interval 

[0,1]. Two designs with a yield of 57.86% and 72.65%, 

respectively, are shown as examples. The results are shown in 

Table 3. The fitted lines in log10-log10 scale for the different 

methods are shown in Fig. 5 and Fig. 6.  

 

Table 3. Results obtained by different methods (example 2) 

Design 1 Nreq -α Design 2 Nreq -α 

AYLeSS 6251 -0.6053 AYLeSS 2884 -0.6332 

QMC 12033 -0.4738 QMC 7320 -0.4921 

Ranking 

QMC 

10052 -0.5246 Ranking 

QMC 

5710 -0.5457 

LHS 13210 -0.5117 LHS 5782 -0.5038 

PMC 33617 -0.5211 PMC 20873 -0.5147 
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Fig. 4. Fully differential folded-cascode amplifier 

 

Fig. 5. Fitting of the convergence rates for different methods  

(design 1 of example 2) 



 

 

Fig. 6. Fitting of the convergence rates for different methods  

(design 2 of example 2) 

 

From Table 3, it can be seen that the results of AYLeSS achieve 

the smallest number of necessary samples and also the highest 

convergence rate. A 1.5 to 2 times speed enhancement can be 

achieved compared with ranking-integrated QMC and a more than 

5 times speed-up compared with PMC.  

We now show the results obtained by LSS using two different 

partitioning methods. The first partitioning keeps the intra-die 

variables of one transistor in a group (rule 5), but does not 

consider the symmetry devices (rule 4), which is the same as the 

last example. The second partitioning does not consider both rule 

4 and rule 5. Only LSS is used, and the partitioning is assigned 

randomly.  

 

Table 4. LSS results for different partitioning rules 

Design 1 Nreq -α Design 2 Nreq -α 

LSS 1 6589 -0.6028 LSS 1 3004 -0.6102 

LSS rand 7654 -0.5540 LSS rand   3966 -0.4907 

 

From Table 4, besides the conclusions drawn from the last 

example, it can be seen that if we randomly partition the sub-

groups in LSS, the performance is clearly lower than LSS 1, 

which uses rule 5 but not rule 4. This shows the significance of 

clustering the intra-die variables of one transistor in a group.  

From Fig. 1 to Fig. 4, three of them show when the number of 

samples is small (the variance is large), the corresponding 

variance of QMC is better than that of AYLeSS. However, when 

more samples are used and the estimation variance is reduced for 

practical use, AYLeSS performs much better. This fact also shows 

the potential of AYLeSS in high-sigma yield estimation. 

 

5. CONCLUSIONS 
In this paper, a new method, called AYLeSS, has been proposed 

for the yield estimation of analog circuits. The method solves the 

limitation on the number of effective dimensions suffered by 

ranking-integrated QMC, which is the best state-of-the-art 

method. The key idea of AYLeSS is the partitioning of the 

process variation variables into sub-groups and using RQMC in 

each sub-group. The partitioning method for analog circuits has 

been proposed. It is effective, easy to implement and robust. Latin 

Supercube Sampling is used, which integrates the partitioning and 

the random permutation of LHS. Experimental results show that 

AYLeSS can achieve a 1.5 to 2.5 times speed enhancement 

compared with ranking-integrated QMC and can handle circuits 

with many process variation parameters.   
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