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Abstract—The paper discusses a technique to perform efficient
circuit reliability analysis of large analog and mixed-signal sys-
tems. The proposed method includes the impact of both process
variations and transistor aging effects. The complexity of large
systems is dealt with by partitioning the system into manageable
subblocks that are modeled separately. These models are then
evaluated to obtain the system specifications. However, highly
expensive reliability simulations, combined with nonlinear output
behavior and the high dimensionality of the problem is still a very
challenging task. Therefore the use of fast function extraction
symbolic regression (FFX) is proposed. This allows to capture
the high-dimensional nonlinear problem with good accuracy.
Also, an active learning sample selection algorithm is introduced
to minimize the amount of expensive aging simulations. The
algorithm trades of space exploration with function nonlinearity
detection and model uncertainty reduction to select optimal
model training samples. The simulation method is demonstrated
on a 6 bit Flash ADC, designed in a 32nm CMOS technology.
Experimental results show a speedup of 360x over existing
aging simulators to evaluate 100 Monte-Carlo samples with good
accuracy.

I. INTRODUCTION

For over three decades, scientists have been scaling CMOS
devices to increasingly smaller feature sizes to meet require-
ments on speed, complexity, circuit density and power con-
sumption demanded by many advanced applications. However,
going to these ultra-scaled CMOS devices also comes at a cost.
Guaranteeing circuit reliability over the entire lifetime of a
system is one of the major challenges designers are faced with
today [1], [2]. Circuit reliability issues can be categorized into
spatial and temporal unreliability effects [2]. The former are
related to process variability and are fixed in time and visible
right after production. These effects depend on circuit layout,
neighboring environment and process conditions, impact the
geometry and structure of the circuit and can lead to yield loss.
Temporal unreliability effects, on the other hand, are time-
varying and change depending on operating conditions such
as operating voltage, temperature, switching activity, presence
and activity of neighboring circuits.

All of these effects interact with each other and can have a
large impact on the performance of the entire system. At the
same time, a full system simulation with respect to reliability
is highly expensive to evaluate [3]. Therefore a hierarchi-

cal approach is mandatory, which in turn requires accurate
modeling of each subblock. However, the parameterization
of a subblock towards reliability analysis poses some tedious
problems. Stochastic process and aging parameters combined
with deterministic circuit inputs imply a high number of
dimensions (> 10). Also, strongly nonlinear circuit behavior
is expected because of large signal inputs. Above all, circuit
reliability simulations tend to be highly expensive, which
severely limits the amount of function evaluations. Standard
Response Surface Modeling (RSM) based on classic Design
of Experiments (DoE) can only direct one the abovementioned
problems at the same time [4]. Miranda et al. [5] proposed a
method to assess process variability in digital systems but they
did not cope with expensive simulations and strong nonlinear
dynamics. For analog circuits, reliability simulation including
transistor aging and variability is still limited to the analysis
of small blocks (< 100 transistors) [3].

This work tackles the problems described above and effi-
ciently builds accurate system subblocks based on simulation
results from an analog circuit reliability simulator that consid-
ers process variations, mismatch and ageing phenomena. The
method includes:

1) Use of fast function extraction symbolic regression
(FFX, [6]) allows to cope with the high number of
dimensions and the nonlinear circuit behavior.

2) Use of a new and innovative active learning sample
selection algorithm. This algorithm trades of space ex-
ploration with function nonlinearity detection and model
uncertainty reduction to select optimal model training
samples and to limit the amount of expensive aging
simulations.

The presented method is demonstrated on a 6-bit flash Analog-
to-Digital Converter (ADC) with over 1000 transistors, re-
sulting in a 360x speed-up when compared to conventional
analog circuit reliability simulators. Experimental results show
how the average effective number of bits (ENOB) of this
system reduces from 6.7 bits to 5.8 bits in 1 year time due to
asymmetric stress at the input of each comparator.

Section II discusses the hierarchical simulator in more de-
tail. Next, section III overviews different regression techniques
and proposes a set of suitable regressors. Section IV then
explains an active learning sampling algorithm to minimize the978-3-9810801-8-6/DATE12/ c©2012 EDAA



number of function evaluations and demonstrates its effective-
ness when compared to more traditional sampling techniques.
The hierarchical reliability simulator is demonstrated on a 6-
bit flash ADC circuit in section V. Finally, conclusions are
drawn in section VI.

II. HIERARCHICAL RELIABILITY SIMULATION

Process variability and transistor aging are emerging prob-
lems in ultra-scaled (< 90 nm) technologies. Ideally, one
would like to extract performance parameters at system level
(psys) as a function of reliability parameters. In this work
we consider deterministic input parameters u(t) (e.g. input
amplitude), stochastic process parameters σp (e.g. σ∆V TH,0)
as well as stochastic aging parameters σage (e.g. σ∆V TH,aged).
The bold notation denotes a vector of parameters or observa-
tions.

A. Computational Complexity

The computation of a single combination of input pa-
rameters (i.e. one sample) becomes highly expensive when
evaluating the circuit reliability due to the inherent complexity
of transistor aging prediction [3]. The simulation of a small
circuit subblock (e.g. 10 devices) for a certain combination
of aging- and process variability related parameters and input
waveform parameters easily takes a few minutes. The com-
putational complexity increases exponentially when doing a
full factorial analysis of large-scale systems with a rich set
of input stimuli. When looking at a commercial mixed-signal
design flow, this even becomes infeasible.

A DoE method for linear systems requires at least 2K + 1
samples, where K equals the number of explanatory parame-
ters. To model weakly nonlinear circuit behavior, more addi-
tional experiments are needed. Without prior knowledge, the
dimensionality of the problem therefore grows at least linearly
with the number of parameters. Dimensions of order 10 to
50 are commonly encountered in practice [3]. The strongly
nonlinear dynamics of the deterministic input parameters even
introduce an exponential growth in the number of samples.
When only considering the amplitude and frequency of Mi

single-tone input signals for the subblock models, a two-level
full factorial DoE would require in the order of (2Mi)2K+1

samples.

B. Hierarchical Simulator Setup

The problem associated with circuit reliability analysis of
large and complex systems can be dealt with as follows.
Firstly, the system is partitioned in local subblocks of man-
ageable size (10−30 devices) with only a few input terminals.
These subblocks are typically identified manually by the
designer according to the hierarchy in the design database (e.g.
opamp stages, comparators, filters, etc...), although automatic
subblock detection could also be included in the flow. The per-
formance parameters at system level psys are now a function
of the performance parameters of each subblock pblock (see
Fig. 1):

psys = f (pblock(u(t), σp, σage)) (1)

Fig. 1. Conceptual representation of a system with local subblocks. The
performance of each subblock pblock is determined by deterministic input
parameters u(t) and two sets of stochastic input parameters, σp and σage

respectively.

Fig. 2. The hierarchical system reliability simulation flow.

Typically, subblock performance measures (e.g. offset volt-
ages ∆V , gain-bandwidth, delay, etc.) can be modeled as a
weakly nonlinear function of the stochastic aging and process
parameters σage and σp [3]. The referenced experiments are
conducted and validated for a fixed set of input waveforms
defined in a circuit stress bench. However, to use such a
subblock model in a hierarchical system analysis flow, the
input parameter space also needs to be included in the model.
This increases the dimensionality of the problem even further
and a more strongly nonlinear behavior can be expected.

The solution, presented in this work, to hierarchically
simulate a large mixed-signal circuit or system is schemat-
ically represented in Fig. 2. First, the system is divided
into subblocks. Then, every subblock is modeled using a
stochastic aging simulator as described in [3]. The simulator
uses transistor aging models for hot carrier injection [7],
bias temperature instability [8], and soft breakdown [3] and
evaluates the performance of a system subblock instance over
time. One subblock instance corresponds to a sample, taken
from the parameter space with deterministic input parameters



and stochastic aging and variability parameters. The high-
dimensional parameter space and expensive circuit reliability
computation require the amount of experiments, needed to
model the subblock behavior, to be minimized. This is done
by implementing an efficient sample selection algorithm (see
Fig. 2 and section IV). The behavior of the circuit is modeled
with a fast function extraction (FFX) symbolic regressor (SR),
as explained in section III. After a new model has been
generated, a new sample is selected based on the spatial and
model uncertainty. Finally, the overall system performance
is evaluated using the models for each subblock. To reduce
simulation time, different circuit subblocks can be modeled in
parallel on different computer cores.

III. MULTIVARIATE NONLINEAR REGRESSION

The regression problem for each subblock can be written as
a least-squares minimization problem:

arg min
αi

|pblock(u(t), σp, σage) − p̂block(αi,u(t), σp, σage)|2

(2)
where pblock(.) is obtained from subblock level simulations,
p̂block(.) represents the regression model with the model
parameters αi. Following multidimensional regression ap-
proaches were considered for this work: multivariate adaptive
regression splines (MARS) [9], least-squares support vector
machines (SVM) [10] and a recently developed deterministic
SR technique, fast function extraction (FFX) [6]. Interpolation
algorithms are not considered due to their poor extrapolation
performance for high-dimensional problems.

A recent comparison between these multidimensional re-
gression techniques has been presented in [6]. Here, it was
shown that the evolutionary based SR CAFFEINE [11] and
modern feedforward neural networks (FFNN) [12] are less
suitable regressors for high-dimensional test cases due to
unreasonably long building times or by being too inaccurate
(i.e. test error > 100%).

The performance of the remaining regression techniques
(SVM, MARS and FFX) is compared for the 2-dimensional
test case shown on the left of Fig. 3. In this comparison,
samples are progressively added1 to the known set of samples
and a model is built for 75% training samples and 25% test
samples. The prediction ability of each regressor is tested by
plotting the sum of the test and training normalized mean
square error (NMSE) at each generation in the right part of Fig.
3. The error for MARS and FFX easily drops below 1% when
more than 10 samples are available, while the error of SVM
stays at approximately 10%. This is mainly due to the internal
regularization paths of MARS and FFX. Here, the regression
objective is biased toward cross-validation and minimization
of the error on the test samples, which prevents overfitting of
the data and ill-conditioned model parameters. Moreover, FFX
generates a Pareto-optimal set of models that trade off model
complexity with test error by ramping up the coefficients in
the elastic net formulation [6]. To avoid overfitting even more,
a weighted model evaluation can be used by selecting the

1Sample selection is done with the algorithm proposed in section IV.

Fig. 3. Left: Test function: 1.0
1.0+exp(2.0(x−1.5))

+ 1.0
1.0+exp(−1.0(y−2.2))

;
Right: Train + test error (NMSE) of SVM, MARS and FFX for a progressively
increasing amount of data points, selected by the active learning strategy
discussed in section IV.

weights inverse proportional to the test error. The weighted
and normalized model formulation fFFX(.) for K Pareto-
optimal models then becomes:

fFFX(.) =
K∑

k=1

wk · fFFX,k(.), (3)

with

wk =
(nmsek)−1∑K
j=1(nmsej)−1

. (4)

The experiments demonstrated further on in this paper are
implemented using the FFX regressor. Of course, a straightfor-
ward extension can be made by building multiple regressors of
a different class simultaneously and to vote or average between
them.

IV. ACTIVE LEARNING SAMPLE SELECTION

The expensive simulation times and high dimensionality of
reliability simulations render a sparse dataset. A full explo-
ration of the parameter space requires the selection of the next
sample that is added to the dataset to be chosen in such a way
that the density of the samples is uniformly distributed. This
is the philosophy behind space filling sampling algorithms
such as LHS, uniform random sampling, FF designs, etc.
[4]. Progressive sampling strategies such as Monte-Carlo ran-
dom sampling (MCS) do not necessarily consider previously
generated samples and thereby ignore any knowledge about
the global sample density and the correlation between the
samples. In addition, strongly nonlinear behavior is expected
for parameterized signal inputs in the circuit stress bench.
Sharp transitions or steep edges in the performance space
are preferably sampled more densely than flat or weakly
nonlinear regions. Active learning or co-evolution is a su-
pervised machine learning technique where the selection of
new inputs is controlled such that the added value of newly
gathered information is optimal [13]. In statistics literature this
is described as optimal experimental design [14].

The basic setup of active learning sample selection is to
predict, for every new generation, at which locations in the
input parameter space one would expect the model to have
the highest uncertainty. The uncertainty predictor D(.) is
estimated by a distance metric. Such a metric compares inputs



to inputs, outputs to outputs, and models to models. In this
work, the distance metric between two points is expressed as
the Euclidian distance or 2-norm ‖ . ‖2.

A distance measure for the input space is declared as
follows. Consider xL ∈ RN as the collection of L data
samples of the known N -dimensional dataset, i.e. the points
that already have been simulated. The distance of a newly
selected point x∗ ∈ RN to the nearest point in the known
dataset xL is then expressed as:

Dx(x∗) = min ‖ x∗ − xL ‖2 . (5)

Taking the minimum distance to the known samples forces the
algorithm only to look at the nearest neighbor xn ∈ xL. A
typical space filling sample selection algorithm maximizes the
distance function Dx(x∗) such that newly selected samples
are chosen as far as possible from previously visited places.
The nonlinear behavior of the performance measures as a
function of large-swing inputs is accounted for by defining
two additional distance functions Dy and Dvar(ŷ).

Abrupt changes in the L output performance values yL ∈
R are predicted by the relative distance of the model output
ŷL(x∗) to the known output of the nearest neighbor in the
parameter space yn = y(xn) ∈ yL:

Dy(x∗) =‖ yn − ŷ(x∗)
max(yL) − min(yL)

‖2 . (6)

When the distance between the model output and the nearest
known output is large, steep edges tend to occur. Adding
samples at those locations refines the model by extracting more
information at those places. Different output specifications are
combined into a single distance measure by taking the mean
value over all computed relative output distance measures. An
example of output distance active learning is illustrated on two
shifted 2-dimensional sinc functions in Fig. 4. It can be seen
that more samples are inserted where the peaks (indicated by
the contours in Fig. 4) occur.

Fig. 4. Output distance sampling for the test function: {f1(x) = 4 · 105 ·
sinc(1.7(x0 − 1.4)) · sinc(2(x1 + 1.5)); f2(x) = 3 · 10−4 · sinc(2(x0 +
1.3)) · sinc(1.4(x1 − 2.0))}

As a third predictor, the variance of the model is computed
by means of bootstrapping [15]. Bootstrapping provides a di-
rect computational method of assessing the model uncertainty.

Several models ŷm are built for different random permutations
of training and test samples. A point in the parameter space
where a large variance between the models occurs, corre-
sponds to a large disagreement between the models. This is
illustrated in Fig. 5. The model variance is normalized to the
variance of the median of all deviation models:

Dvar(ŷ)(x∗) =
σ2(ŷm(x∗))

σ2
[
µ1/2(ŷm(x∗))

] (7)

Fig. 5. Six bootstrap models for the same dataset. The maximal variance of
the models is also plotted.

Finally, the total distance function we used is a combination
of the distance functions (5), (6) and (7). Note how the total
distance function is forced to reach a minimum value when
the input distance function equals zero (i.e. when the sample
is already included in the known dataset):

Dtot(x∗) = Dx(x∗) · [1 + Dy(x∗)]α ·
[
1 + Dvar(ŷ)(x∗)

]β
(8)

The exponent parameters α and β skew the weight of the
distance function towards exploration (α = β = 0) or towards
nonlinearity sampling (α = β = 1).

Fig. 6. Active learning sample selection using the total distance function
Dtot(x∗) on the test function shown in Fig. 4.

The next best sample, given a known dataset xL, corre-
sponds to the point where the distance function reaches a
maximum:

arg max
x∗

Dtot(x∗) (9)



This optimum can be found with a common-purpose global
optimization engine such as the Multi-Objective Evolutionary
Algorithm (MOEA) or with Simulated Annealing approaches
[16], [17]. An example of sample selection using the total dis-
tance function Dtot(x∗) is plotted in Fig. 6. It can be seen that
the sample density is optimally distributed in space and that
more dense sampling is encountered at the function peaks. The
proposed active learning sample selection algorithm is also
compared to MCS for the test function depicted in Fig. 3. Fig.
7 shows the NMSE of the FFX regressor after each generation
using both sampling strategies. On average, the NMSE using
the active learning selection drops faster than the 75 percentile
of the random sample selection. This demonstrates that, of all
possible samples, the proposed algorithm selects one of the
best samples to further reduce the model error.

Fig. 7. Active learning sample selection versus Monte Carlo for the test case
of Fig.3 using FFX models as a function of sampling iteration.

The proposed active learning sample selection strategy finds
the next best sample based on information about samples that
are already present in the known dataset. To start the model
building algorithm, an initial dataset is needed. To build this
dataset a space filling DoE such as LHS can be used. Note
how the size of this initial dataset does not have to increase
with the number of dimensions N . It only needs to contain
sufficient samples to get the active learning algorithm started.

V. EXPERIMENTAL RESULTS

The proposed hierarchical simulation flow of Fig. 2 has
been applied to a 6-bit flash ADC test circuit, designed in a
predictive 32nm CMOS technology with a 1V supply voltage
[18] (see Fig. 8). The analog part of the circuit consists
of more than 1000 circuit elements. The ADC contains 63
clocked comparators, each comparing the input voltage to a
different reference voltage. The comparator is identified and
modeled as a one-system subblock, with the reference voltage
as a deterministic input that can vary between the ground and
supply voltage. As an input to the ADC, a full-scale sinewave
of fixed frequency and amplitude was applied. The hierarchical
model was then built as a function of the deterministic
input-reference voltage and the stochastic process and aging
parameters. Evaluation of this model within an aging simulator

Fig. 8. Schematic representation of the demonstrator 6-bit flash ADC.
The ADC is designed in a 32nm predictive technology and uses clocked
comparators to compare the reference voltages with the input.

returns a tuple of time-dependent input-referred offset voltages
between 0 and 1 year of operation. The accuracy of an ADC is
typically described by the effective number of bits (ENOB),
which is in turn determined by the integral and differential
linearity of the converter (INL and DNL respectively [19]):

ENOB = log2

[
Vin,min − Vin,max

max (2 · INL, DNL)

]
(10)

Both the INL and DNL are mainly determined by mismatch
between the resistors of the reference ladder and by the input-
referred offset of each comparator. Right after production,
both are only determined by process variations. Mismatch can
however change over time due to the NBTI effect [8]. Fig. 9
depicts the input-referred offset for each comparator after 1
year of stress and for 100 Monte-Carlo samples, all derived
from the comparator subblock model. Comparators at the top
and the bottom of the reference ladder are particularly sensitive
to transistor aging since they suffer from large asymmetric
voltage stress. The bottom comparator for example (i.e. com-
parator 1 in Fig. 8), is at one side stressed by a very low
reference voltage, while the other side sees the ADC input (i.e.
the sinewave signal). Since NBTI is exponentially dependent
on the magnitude of the gate voltage stress, this results in a
large threshold voltage mismatch between the input transistors
(on average ∆VTH = 17mV at 1 year for comparator 1). A
similar effect can be observed for comparators at the top of the
reference ladder (e.g. comparator 63 in Fig. 9). The input offset
increases over time and results in a reduction of the ENOB.
Fig. 10 shows a normal probability plot of the ENOB right
after production, after 1 month of operation and after 1 year.
The solid lines are the ENOB as computed by the hierarchical
models of the comparators, while the markers represent the
ENOB calculated from a full system aging simulation. From
Fig. 10 it can be seen how process variations cause a large
initial spread on the ENOB, while the graph shifts towards
lower values due to aging effects. It is clear how the results of
the hierarchical simulation method presented here (i.e. solid
lines) agree very well with results predicted by an existing
aging simulator not using models for each system subblock.
A good correspondence between the model and full system



simulations is observed at the time of interest (i.e. after 1 year
of operation). Moreover, the logarithmic time dependence of
the NBTI effect is observed [8]. The discrepancy at initial time
is assumed to originate from active learning sample selection
emphasis at long stress times.

Fig. 9. The input-referred offset voltage for each flash ADC comparator
after 1 year of stress and for 100 Monte-Carlo samples, all evaluated with the
comparator subblock model.

Fig. 10. A normal probability plot of the effective number of bits for 100
Monte-Carlo samples evaluated with the proposed hierarchical simulator (solid
lines) and 10 samples evaluated with full system aging simulations (markers).
The ENOB represents the static accuracy of the converter and decreases over
time due to transistor aging effects.

The demonstrator circuit has been simulated on a dual-quad
core 2.8GHz Intel Xeon processor with 8GB of RAM. Model
build time for the comparator subblock took 31 minutes, while
evaluation of the entire converter took 1 minute and 41 seconds
for 100 Monte-Carlo samples. Evaluation of just one Monte-
Carlo sample, using a traditional aging simulator took 1 hour
and 55 minutes. This results in a speedup of 360x when
evaluating 100 Monte-Carlo samples.

VI. CONCLUSION

A hierarchical bottom-up approach to perform efficient re-
liability simulations of large analog and mixed-signal systems
has been presented. The proposed method includes the impact
of both process variations and transistor aging effects. The
proposed method first models each system subblock with a

multivariate regression model, to capture the high-dimensional
nonlinear subblock behavior. Also, an active learning sample
selection algorithm has been proposed to minimize the amount
of expensive aging simulations. Next, the simulator combines
the regression models of the local system subblocks to analyze
the overall system performance over time. The simulation
method has been demonstrated on a 6-bit flash ADC. Exper-
imental results show a speedup of 360x over existing aging
simulators when evaluating 100 Monte-Carlo samples, while
keeping a similar accuracy.
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