
A SAT-based Fitness Function for Evolutionary

Optimization of Polymorphic Circuits

Lukas Sekanina and Zdenek Vasicek
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Brno, Czech Republic

Email: {sekanina,vasicek}@fit.vutbr.cz

Abstract—Multifunctional (or polymorphic) gates have been
utilized as building blocks for multifunctional circuits that are
capable of performing various logic functions under different
settings of control signals. In order to effectively synthesize
polymorphic circuits, several methods have been developed in
the recent years. Unfortunately, the methods are applicable
for small circuits only. In this paper, we propose a SAT-
based functional equivalence checking algorithm to eliminate the
fitness evaluation time which is the most critical overhead for
genetic programming-based design and optimization of complex
polymorphic circuits. The proposed approach has led to a 20%-
40% reduction in gate count with respect to the solutions created
using the polymorphic multiplexing.

I. INTRODUCTION

Recent research has led to a new class of reconfigurable

components, so-called multifunctional or polymorphic gates,

where the multi-functionality is achieved by a unique physical

design of those components. While polymorphic gates were

described by the NASA JPL evolvable hardware group in

2001 [1], graphene reconfigurable logic devices, discovered

at IBM T. J. Watson Research Center, were presented in 2010

[2]. As this new technology does not utilize an expensive

reconfiguration infrastructure (such as switches, multiplexers,

configuration registers etc.), it enables to obtain reconfigurable

and thus potentially adaptive circuits for a very low cost.

Various external stimuli (such as standard Boolean signals,

(multiple) external voltages, Vdd or temperature) have been

investigated to control the behavior of multifunctional gates.

For example, Stoica’s polymorphic bifunctional NAND/NOR

gate controlled by Vdd operates as NOR for Vdd = 1.8 V and

NAND for Vdd = 3.3 V [3].

Fig. 1. A polymorphic circuit (a) and its equivalent scheme in the first mode
(b) and the second mode (c)

Figure 1a shows a polymorphic circuit containing two

polymorphic NAND/NOR gates and an ordinary XOR gate. Its

corresponding schemes are shown when the NAND function

978-3-9810801-8-6/DATE12/ c©2012 EDAA

is active (b) and the NOR function is active (c). Such circuit

has two modes of operations. In general, k (k > 1) modes

may be available. In this work, we assume that

• all polymorphic gates included in a circuit are controlled

using the same control signal and

• ordinary gates perform identically in all modes.

The goal of polymorphic circuit synthesis can be formulated

as a problem of finding such a circuit network which performs

required functions f1 . . . fk in modes 1 . . . k of polymorphic

gates [4], minimizes various criteria (area, delay, power con-

sumption etc.) and satisfies given constraints.

A straightforward approach to synthesis of polymorphic

circuits is polymorphic multiplexing (see Section II-A). This

method produces large and far-from-optimum solutions if the

number of gates is the optimization criterion. Evolutionary

design and evolutionary optimization methods have been em-

ployed to reduce the number of gates. However, they are not

scalable as they are capable of producing some results for

circuits with up to 8-15 inputs only (depending on a particular

instance) [5].

In this paper, we propose a SAT-based functional equiv-

alence checking algorithm to eliminate the main bottleneck

of evolutionary optimization of polymorphic circuits. The

algorithm has been embedded into the Cartesian genetic pro-

gramming (CGP) method. We will show that it is possible to

effectively optimize polymorphic circuits with tens of inputs.

For experiments we will utilize the LGSynth93 benchmark

set. A comparison will be performed against the polymorphic

multiplexing where the initial solutions are created using the

ABC tool.

The rest of the paper is organized as follows. Polymorphic

circuits are introduced in Section II. Section III presents CGP

as a method for evolution of ordinary as well as polymor-

phic circuits. The proposed SAT-based equivalence checking

algorithm for polymorphic circuits is described in Section IV.

The results of experiments are summarized and discussed in

Section V. Finally, conclusions are given in Section VI.

II. POLYMORPHIC CIRCUITS

The behavior of polymorphic gates can be controlled either

by a specialized signal (Boolean signal or voltage signal),

power supply voltage or environment (temperature). Descrip-

tion of particular polymorphic gates and their static and dy-

namic characteristics can be found in [3], [2], [6]. Applications

of polymorphic electronics fall to the areas of intelligent filters,

multifunctional counters, self-checking circuits and circuit

testing. In addition to a few works on theoretical foundations

of polymorphic circuits [7], [8], various methods have been

proposed to design polymorphic circuits at the gate level.

A. Polymorphic Multiplexing

Consider an m-input/n-output polymorphic circuit operating

in two modes only and implementing functions F1 and F2

(both with m-inputs and n-outputs). One can synthesize con-

ventional circuits for F1 and F2 using a conventional synthesis

tool, e.g. ABC [9]. In polymorphic multiplexing, we just con-

nect the corresponding outputs of F1 and F2 by polymorphic

multiplexers [5]. The structure of a polymorphic multiplexer

is shown in Figure 2. The given polymorphic multiplexer

propagates signal a in the first mode of polymorphic gates

and signal b in the second mode of polymorphic gates. In

order to reduce the number of gates, the goal of synthesis can

be to maximize the number of gates that are shared by both

circuits and minimize the number of outputs that have to be

equipped with polymorphic multiplexers.

'1'

'0'

a

b

Y

Fig. 2. A polymorphic multiplexer using NAND/NOR gates

B. Polymorphic BDDs

Polymorphic binary decision diagrams (PolyBDDs) were

introduced as an alternative to polymorphic multiplexing [5].

PolyBDDs extend ordinary binary decision diagrams in such

a way that terminal nodes can contain polymorphic logic

functions. Decision nodes are then implemented using standard

multiplexers.

C. Evolutionary Approaches

Evolutionary algorithms have been utilized in the phase of

design as well as optimization of combinational polymorphic

circuits. In the case of evolutionary design, Cartesian genetic

programming (see next section) allows producing of complete

polymorphic networks [4], [10]. However, the method is

applicable for small problem instances only. In the case of

optimization, CGP can be seeded by a circuit created using

polymorphic multiplexing or PolyBDDs and used to reduce the

number of gates. Again, a scalability limit is inherently present

and the optimization does not produce reasonable results for

circuits containing more than approx. 15 inputs [5].

III. DIRECT EVOLUTION OF POLYMORPHIC CIRCUITS

USING CGP

Cartesian Genetic Programming has been developed for

circuit evolution by Miller and Thompson [11], [12].

From the perspective of circuit design, a candidate circuit

is represented as an array of nc (columns) × nr (rows) of

programmable gates. The number of inputs, ni, and outputs,

no, is fixed. Each gate can be connected either to the output

of a gate placed in previous l columns or to one of the

circuit inputs. Setting of the l parameter allows to control the

maximum circuit delay. Feedback is not allowed. Each gate

has a constant number of inputs na and is programmed to

perform one of functions defined in the set Γ. The number of

inputs na is fixed, usually na = 2. If the arity a of a particular

function is lower than the number of inputs na, only the first

a inputs are involved in calculation.

75
30

1

2

4 6 8

Fig. 3. Example of a candidate circuit encoded using CGP with the following
parameters: nc = 6, nr = 1, ni = 3, no = 2, l = 2, na = 2, Γ = {BUF
(0), AND (1), OR (2), XOR (3), NOT (4), NAND/NOR (5)}. Chromosome:
0, 1, 4, 3, 1, 1, 4, 2, 3, 5, 2, 1, 4, 6, 5, 7, 2, 4, 7, 5. Function of each node is
typed in bold. The first 18 integers (i.e. six triplets) encode the interconnection
of the CGP nodes and logic function of each element. The last two integers
indicate the output of the circuit. Node 8 is not utilized. Note that node 3 and
8 use only first and last integer of the corresponding triplet.

Each gate is encoded using na + 1 integers where val-

ues 1 . . . na are the indexes of the input connections and

the last value is the function code. The primary inputs are

addressed by indexes 0, 1 . . . ni − 1 and programmable gates

by ni . . . nc.nr + ni − 1. Every circuit is encoded using

nc.nr.(na + 1) + no integers. The last no integers define the

primary outputs of the circuit. In the case of polymorphic

circuit evolution, Γ also contains polymorphic gates. Figure 3

shows an example of a candidate circuit and its chromosome.

CGP operates with a population of 1 + λ individuals

(typically, λ = 4 [13]). The initial population is constructed

either randomly or seeded by a conventional design. Every

new population consists of the best individual of the previous

population and its λ offspring individuals. The offspring

individuals are created using a point mutation operator which

modifies h randomly selected genes of the chromosome, where

h is a user-defined value. This search strategy has been found

as the most useful in literature [13].

In case of evolutionary design of ordinary combinational

circuits, the fitness value of a candidate circuit is defined as:

fit1 =

{

b when b < no2
ni ,

b + (ncnr − z) otherwise,
(1)

where b is the number of correct output bits obtained as

response for all possible assignments to the inputs, z denotes

the number of gates utilized in a particular candidate circuit

and nc.nr is the total number of available gates. It can be seen

that the last term ncnr − z is considered only if the circuit

behavior is perfect, i.e. b = bmax = no2
ni . Then, the number

of gates is optimized. Similarly, delay or power consumption

can be optimized. Unfortunately, the evaluation time grows

exponentially with respect to the number of primary inputs.

The extension of the fitness function for evaluation of poly-

morphic circuits is straightforward. Let us assume that k = 2

(i.e., polymorphic circuits have two modes of operations) and

the number of gates has to be minimized. A candidate circuit

is set to the first mode and the number of correct bits (b1) is

calculated with respect to the first target function F1. Then,

the circuit is set to the second mode and b2 is calculated for

F2. After reaching a perfect functionality in both modes, the

number of gates can be optimized:

fit2 =

{

b1 + b2 when b1 + b2 < 2no2
ni ,

b1 + b2 + (ncnr − z) otherwise,
(2)

It is evident again that this method is not scalable.

IV. PROPOSED FITNESS EVALUATION FOR POLYMORPHIC

CIRCUITS

In order to accelerate the evaluation of candidate circuits,

a SAT-based approach has been introduced [14], [15]. We

propose to extend this approach for polymorphic circuits. The

goal is to minimize the number of gates.

A. The SAT-based Equivalence Checking

It is assumed that CGP is seeded using a fully functional

polymorphic circuit which is obtained from polymorphic mul-

tiplexing. The seed is utilized as a reference solution for a

SAT-based equivalence checking algorithm, which works as

follows.

1) The reference circuit (A) as well as candidate circuit (B)

is set to the first mode.

2) A new auxiliary circuit C1 is composed of the reference

circuit in the first mode (circuit A1), the candidate circuit

in the first mode (circuit B1) and a miter (a set of

XOR gates followed by the OR detector). Circuit C1

is transformed into one Boolean formula in conjunctive

normal form (CNF) which is unsatisfiable if and only if

circuits A1 and B1 are functionally equivalent [16]. The

transformation to CNF is conducted gate by gate using

the Tseitin’s algorithm [17]. Table I contains the CNF

representation for selected gates. The resulting CNF is

submitted to the MiniSAT solver [18].

3) If A1 and B1 are not functionally equivalent then the

fitness evaluation is finished and CGP proceeds with

another candidate circuit. Go to step (8).

4) As the reference circuit and candidate circuit are func-

tionally equivalent in the first mode, the second mode

can be investigated. Circuits A and B are set to the

second mode.

TABLE I
CNF REPRESENTATION OF SOME COMMON GATES

Gate Corresponding CNF representation

y = NOT(x1) (¬y ∨ ¬x1) ∧ (y ∨ x1)
y = AND(x1, x2) (y ∨ ¬x1 ∨ ¬x2) ∧ (¬y ∨ x1) ∧ (¬y ∨ x2)
y = OR(x1, x2) (¬y ∨ x1 ∨ x2) ∧ (y ∨ ¬x1) ∧ (y ∨ ¬x2)
y = XOR(x1, x2) (¬y ∨ ¬x1 ∨ ¬x2) ∧ (¬y ∨ x1 ∨ x2)∧

(y ∨ ¬x1 ∨ x2) ∧ (y ∨ x1 ∨ ¬x2)
y = NAND(x1, x2) (¬y ∨ ¬x1 ∨ ¬x2) ∧ (y ∨ x1) ∧ (y ∨ x2)
y = NOR(x1, x2) (y ∨ x1 ∨ x2) ∧ (¬y ∨ ¬x1) ∧ (¬y ∨ ¬x2)

c) miter (mode NAND)

b) offspring

a) parental circuit

e) CNF (mode NAND)

d) miter (mode NOR)

Fig. 4. Example of reference circuit (a) and its offspring (b) before a
conversion to CNF is performed. A ’diference’ circuit for the first mode (c)
is constructed and transformed to CNF (e). If the CNF is unsatisfiable, a
difference circuit for the second mode (d) is created and transformed to CNF.
If the CNF is also unsatisfiable, the offspring is functionally equivalent to its
parental circuit.

5) A new auxiliary circuit C2 is composed of the reference

circuit in the second mode (circuit A2), the candidate

circuit in the second mode (circuit B2) and a miter.

Circuit C2 is transformed into one Boolean formula in

CNF using the same procedure as described in step (2)

and the obtained formula is submitted to the MiniSAT

solver.

TABLE II
BENCHMARK CIRCUITS

circuit circuit1 ni no Ng circuit2 ni no Ng seed1 seed2 Np

C01 apex7.blif 49 37 208 cht.blif 47 36 156 544 534 180
C02 c8.blif 28 18 145 lal.blif 26 19 88 323 291 90
C03 c8.blif 28 18 145 misex2.blif 25 18 114 349 311 90
C04 c8.blif 28 18 145 pcler8.blif 27 17 91 321 286 85
C05 count.blif 35 16 130 my adder.blif 33 17 131 341 306 80
C06 lal.blif 26 19 88 misex2.blif 25 18 114 292 267 90
C07 lal.blif 26 19 88 ttt2.blif 24 21 160 343 315 95
C08 misex2.blif 25 18 114 ttt2.blif 24 21 160 364 332 90
C09 pcler8.blif 27 17 91 lal.blif 26 19 88 264 249 85
C10 pcler8.blif 27 17 91 misex2.blif 25 18 114 290 272 85
C11 seq.blif 41 35 1927 C1355.blif 41 32 238 2325 2256 160
C12 seq.blif 41 35 1927 C499.blif 41 32 198 2285 2258 160
C13 unreg.blif 36 16 100 count.blif 35 16 130 310 310 80
C14 unreg.blif 36 16 100 my adder.blif 33 17 131 311 307 80
C15 vda.blif 17 39 749 pdc.blif 16 40 871 1815 1575 195

6) If A2 and B2 are not functionally equivalent then the

fitness evaluation is finished and CGP proceeds with

another candidate circuit. Go to step (8).

7) Circuits A and B are functionally equivalent in both

modes. The fitness value is given by the number of gates.

8) The end of fitness evaluation.

B. Further Acceleration

Additional acceleration can be obtained when the CNF is

constructed in a smart way. One can utilize knowledge of

genes which have been modified by the mutation operator

to calculate a ‘difference’ between the parent individual and

its offspring. Note that this ‘difference’ circuit is sufficient

for checking the functional equivalence of parent circuit and

its offspring and thus only the ‘difference’ is submitted to

the SAT solver. An example of a reference (parent) circuit

and modified circuit (offspring) is shown in Figure 4a,b. The

‘difference’ circuit for the first and second mode (Figure 4c,d)

consists of 8 gates (7 + 1 XOR). This is a significant reduction

with respect to the standard all-output approach which led to

17 gates (14 + 2 XOR + 1 OR). Resulting CNF for the first

mode is shown in Figure 4e [15].

V. RESULTS

A. Benchmark Set

In order to evaluate the proposed method, we established

a set of 15 polymorphic circuits C01-C15 (see Table II). A

benchmark circuit C is constructed as follows: Two circuits,

A (with nA
i inputs and nA

o outputs) and B (with nB
i inputs

and nB
o outputs), were chosen from the LGSynth91 set such

that they have a similar number of inputs and outputs. Then,

nC
i = max(nA

i , nB
i) and nC

o = max(nA
o , nB

o). The outputs

1 . . . min(nA
o , nB

o) of A and B are connected using polymor-

phic multiplexers. Remaining outputs are not polymorphic.

Similarly, the inputs 1 . . . min(nA
i , nB

i) are directly connected,

remaining inputs are not shared. The number of gates of

an initial ordinary circuit is Ng . The number of gates of a

polymorphic circuit is NA
g + NB

g + c.min(nA
o , nB

o) where

c = 5 is (according to Figure 2) the number of gates of a

polymorphic multiplexer (see the seed1 column in Table II).

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0 5.25
t [h]

360

380

400

420

440

460

480

500

#
 g

a
te

s

apex7 + cht (C01)
inputs: 49, outputs: 37, seed: 544, best: 369

0.25 1.5 2.75 4.0 5.25 6.5 7.75 9.0 10.2511.512.7514.015.2516.517.7519.020.2521.522.7524.0
t [h]

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

#
 g

a
te

s

seq + C1355 (C11)
inputs: 41, outputs: 35, seed: 2325, best: 1404

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0
t [h]

210

220

230

240

250

260

270

280

#
 g

a
te

s

unreg + count (C13)
inputs: 36, outputs: 16, seed: 310, best: 217

Fig. 5. The progress of optimization for selected circuits: Box plots from
25 independent runs of the CGP optimizer

Np is the total number of gates consumed by polymorphic

multiplexers. The seed2 column gives the number of gates

of an optimized polymorphic circuit which was created after

merging and optimizing A and B using the ABC tool. This

optimization has led to a small area reduction for most circuits.

TABLE III
THE RESULTING NUMBER OF GATES (Nb – TOTAL, Nn – POLYMORPHIC) FOR CGP SEEDED BY SEED1

seed 1h runtime 4h runtime best
circuit Nb Nn Nb Nn Nb Nn Nb Nn impr. pchg cmpeff

C01 544 72 391 43 373 48 369 44 32.2% -38.9% 7.7
C02 323 36 214 36 201 39 189 33 41.5% -8.3% 10.7
C03 349 36 234 51 218 56 210 52 39.8% 44.4% 7.5
C04 321 34 214 51 204 53 202 50 37.1% 47.1% 8.8
C05 341 32 258 37 235 41 227 43 33.4% 34.4% 3.1
C06 292 36 174 28 163 25 163 28 44.2% -22.2% 11.3
C07 343 38 193 26 183 29 183 30 46.6% -21.1% 9.0
C08 364 36 214 35 207 35 206 31 43.4% -13.9% 8.6
C09 264 34 160 34 153 37 151 32 42.8% -5.9% 11.3
C10 290 34 178 45 171 41 165 45 43.1% 32.4% 7.5
C11 2325 64 2093 141 1920 141 1404 118 39.6% 84.4% 0.3
C12 2285 64 2061 135 1853 115 1353 113 40.8% 76.6% 0.3
C13 310 32 223 40 217 36 217 36 30.0% 12.5% 8.2
C14 311 32 236 34 221 33 220 32 29.3% 0.0% 5.1
C15 1815 78 1470 148 1266 137 885 113 51.2% 44.9% 0.6

B. CGP Setup

We applied CGP to minimize the number of gates in the

benchmark circuits. Another goal was to observe the effect of

seeding the initial population by seed1 and seed2. The CGP

parameters were initialized according to suggestions given in

[14], [15]. The CGP array contains nc × 1 nodes, where nc

is the number of gates in the seed circuit, λ = 1, l = nc and

h = 2. The set of functions contains ordinary two-input logic

functions, buffer, inverter and the NAND/NOR gate, i.e. Γ =
{BUF,NOT,AND,OR,XOR,NAND,NOR,NAND/NOR,
ZERO,ONE}. Similarly to [5], we have used just one

polymorphic function. Note that the constant generators

(ZERO and ONE) have been utilized to create the polymorphic

multiplexers only, i.e. the mutation operator has not generated

any nodes having such a function. It is also assumed that the

implementation cost of all gates is identical.

Similarly to [14], the MiniSAT 2 (version 070721) has been

used as a SAT solver [18] because it can easily be embedded

into a custom application. The experiments were carried out on

a cluster consisting of Intel Xeon E5345 2.33 GHz processors

that enables to run several experiments in parallel.

C. Experiments

Table III shows the minimum number of gates (Nb) that

were obtained for CGP seeded by seed1. We have used 25

independent evolutionary optimizers running in parallel. The

best-current individual was identified every 15 minutes and

CGP was reseeded by it. In order to compare the convergence

speed, Table III contains the number of gates after 1 hour and

4 hours of the optimization running on a 2.4 GHz processor.

It also contains the best result (a minimum circuit) which has

been extracted when the progress of the optimization stagnated

for three consecutive 15-minute intervals. We can observe that

the number of gates was reduced by 35% in average with

respect to polymorphic multiplexing.

Nn denotes the number of polymorphic NAND/NOR gates

in resulting circuits. The pchg column gives how the number

of polymorphic gates increased/decreased in comparison to

the initial circuit. Intuitively, compact polymorphic circuits are

characterized by a high number of polymorphic gates. How-

ever, as it can be seen, some of the optimized circuits exhibit

significantly lower number of polymorphic gates compared to

initial seed (e.g. C01). These results indicate that the initial

solutions probably contain a certain degree of redundancy; i.e.,

these circuits can be represented in a more compact way.

Another set of experiments was performed for CGP seeded

using seed2. Table IV shows that although seed2 represents a

smaller circuit than seed1, we obtained more compact circuits

only in a few cases in comparison to CGP seeded by seed1.

The ‘cmpeff’ column gives the number of evaluations (in

millions) per hour.

Figures 5 shows statistical results collected during the

evolution for selected benchmark circuits. The box plots were

calculated using 25 independent runs.

VI. CONCLUSIONS

In this paper, we proposed a new CGP-based method

for evolutionary optimization of polymorphic circuits. The

method is capable of reducing the number of gates for circuits

containing tens of inputs which was unreachable using former

approaches.

The initial polymorphic circuits (the best results from

the ABC-based polymorphic multiplexing) were significantly

improved by CGP. This confirms the conclusion of papers

[14], [15] that CGP can reduce the number of gates by 20-

40% in comparison to conventional methods. One can also

observe that independent runs led to very similar results at

the end of evolution which indicates that CGP exhibits a

very stable behavior. We also showed that the role of the

seed in not crucial. It usually helps only insignificantly to

resynthesize and optimize the polymorphic circuit using ABC

before the polymorphic mutiplexers are introduced. Although

CGP quickly converges at the beginning of evolution, it may

take a considerable time to terminate the calculations. In

general, good results are obtained for the cost of runtime.

Our future work will be devoted to improving the SAT based

equivalence checking algorithm for polymorphic circuits as

well as the CGP optimizer.

TABLE IV
THE RESULTING NUMBER OF GATES (Nb – TOTAL, Nn – POLYMORPHIC) FOR CGP SEEDED BY SEED2

seed 1h runtime 4h runtime best
circuit Nb Nn Nb Nn Nb Nn Nb Nn impr. pchg cmpeff

C01 534 72 412 48 395 60 375 63 29.8% -12.5% 16.2
C02 291 36 203 46 189 51 189 47 35.1% 30.6% 5.5
C03 311 36 230 53 216 56 201 58 35.4% 61.1% 10.9
C04 286 34 201 52 194 53 190 51 33.6% 50.0% 11.6
C05 306 32 264 41 249 49 244 49 20.3% 53.1% 3.0
C06 267 36 172 34 163 34 159 31 40.4% -13.9% 12.2
C07 320 38 189 35 180 33 179 32 44.1% -15.8% 7.8
C08 337 36 222 33 215 32 215 36 36.2% 0.0% 7.2
C09 254 34 159 28 157 29 157 29 38.2% -14.7% 11.3
C10 272 34 176 36 174 34 174 34 36.0% 0.0% 8.5
C11 2261 64 2050 106 1844 103 1368 92 39.5% 43.8% 0.3
C12 2263 64 2052 111 1851 105 1399 100 38.2% 56.3% 0.3
C13 310 32 238 51 230 57 226 52 27.1% 62.5% 7.6
C14 307 32 252 45 240 49 236 44 23.1% 37.5% 4.8
C15 1575 78 1224 99 1092 91 888 71 43.6% -9.0% 0.5

VII. ACKNOWLEDGMENTS

This work was supported by the Czech science founda-

tion project P103/10/1517, the research programme MSM

0021630528 and the IT4Innovations Centre of Excellence

CZ.1.05/1.1.00/02.0070.

REFERENCES

[1] A. Stoica, R. S. Zebulum, and D. Keymeulen, “Polymorphic electronics,”
in Proc. of Evolvable Systems: From Biology to Hardware Conference,
ser. LNCS, vol. 2210. Springer, 2001, pp. 291–302.

[2] S. Tanachutiwat, J. U. Lee, W. Wang, and C. Y. Sung, “Reconfigurable
multi-function logic based on graphene p-n junctions,” in Design Au-

tomation Conference, DAC. ACM, 2010, pp. 883–888.
[3] A. Stoica, R. Zebulum, X. Guo, D. Keymeulen, I. Ferguson, and

V. Duong, “Taking Evolutionary Circuit Design From Experimentation
to Implementation: Some Useful Techniques and a Silicon Demonstra-
tion,” IEE Proc.-Comp. Digit. Tech., vol. 151, no. 4, pp. 295–300, 2004.

[4] L. Sekanina, “Evolutionary design of gate-level polymorphic digital
circuits,” in Applications of Evolutionary Computing, ser. LNCS, vol.
3449. Lausanne, Switzerland: Springer Verlag, 2005, pp. 185–194.

[5] Z. Gajda and L. Sekanina, “On evolutionary synthesis of compact
polymorphic combinational circuits,” Journal of Multiple-Valued Logic

and Soft Computing, vol. 17, no. 6, pp. 607–631, 2011.
[6] V. Simek, R. Ruzicka, and L. Sekanina, “On analysis of fabricated

polymorphic circuits,” in Proc. of the 13th Int. IEEE Symposium on

Design and Diagnostics of Electronic Circuits and Systems. IEEE
Computer Society, 2010, pp. 281–284.

[7] W. Luo, Z. Zhang, and X. Wang, “Designing polymorphic circuits with
polymorphic gates: a general design approach,” IET Circuits, Devices &

Systems, vol. 1, no. 6, pp. 470–476, 2007.
[8] Z. Li, W. Luo, L. Yue, and X. Wang, “On the completeness of the

polymorphic gate set,” ACM Transactions on Design Automation of

Electronic Systems, vol. 15, no. 4, p. 25, 2011.

[9] Berkley Logic Synthesis and Verification Group, ABC: A System

for Sequential Synthesis and verification. [Online]. Available:
http://www.eecs.berkeley.edu/˜ alanmi/abc/

[10] H. Liang, W. Luo, and X. Wang, “Designing polymorphic circuits with
evolutionary algorithm based on weighted sum method,” in Evolvable

Systems: From Biology to Hardware, ser. LNCS, vol. 4684. Springer,
2007, pp. 331–342.

[11] J. F. Miller and P. Thomson, “Cartesian Genetic Programming,” in Proc.

of the 3rd European Conference on Genetic Programming EuroGP2000,
ser. LNCS, vol. 1802. Springer, 2000, pp. 121–132.

[12] J. F. Miller, D. Job, and V. K. Vassilev, “Principles in the Evolutionary
Design of Digital Circuits – Part I,” Genetic Programming and Evolvable

Machines, vol. 1, no. 1, pp. 8–35, 2000.
[13] J. F. Miller and S. L. Smith, “Redundancy and Computational Efficiency

in Cartesian Genetic Programming,” IEEE Transactions on Evolutionary

Computation, vol. 10, no. 2, pp. 167–174, 2006.
[14] Z. Vasicek and L. Sekanina, “Formal verification of candidate solutions

for post-synthesis evolutionary optimization in evolvable hardware,”
Genetic Programming and Evolvable Machines, vol. 12, no. 3, pp. 305–
327, 2011.

[15] ——, “A global postsynthesis optimization method for combinational
circuits,” in Proc. of the Design, Automation and Test in Europe, DATE.
EDAA, 2011, pp. 1525–1528.

[16] E. Goldberg, M. Prasad, and R. Brayton, “Using SAT for combinational
equivalence checking,” in DATE ’01: Proceedings of the conference on

Design, automation and test in Europe. Piscataway, NJ, USA: IEEE
Press, 2001, pp. 114–121.

[17] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” in Studies in Constructive Mathematics and Mathematical Logic,

Part II, 1968, pp. 115–125.
[18] N. Een and N. Sorensson, “MiniSAT.” [Online]. Available:

http://minisat.se

