
Power-Efficient Error-Resiliency for H.264/AVC
Context-Adaptive Variable Length Coding

Muhammad Shafique, Bruno Zatt, Semeen Rehman, Florian Kriebel, Jörg Henkel
Karlsruhe Institute of Technology (KIT), Chair for Embedded Systems, Karlsruhe, Germany

muhammad.shafique@kit.edu

Abstract—Technology scaling has led to unreliable computing
hardware due to high susceptibility against soft errors. In this
paper, we propose an error-resilient architecture for Context-
Adaptive Variable Length Coding (CAVLC) in H.264/AVC. Due to
its context-adaptive nature and intricate control flow CAVLC is
very sensitive to soft errors. An error during the CAVLC process
(especially during the context adaptation or in VLC tables) may
result in severe mismatch between encoder and decoder. The
primary goal in our error-resilient CAVLC architecture is to
protect codeword/codelength tables and context adaptation in a
reliable yet power efficient manner. For reducing the power over-
head, the tables are partitioned in various sub-tables each protected
with variable-sized parity. Moreover, for further power reduction,
our approach incorporates state-retentive power-gating of different
sub-tables at run time depending upon the statistical distribution of
syntax elements. Compared to the unprotected case, our scheme
provides a video quality improvement of 18dB (averaged over
various fault injection cases and video sequences) at the cost of a
35% area overhead and 45% performance overhead due to the
error-detection logic. However, partitioned sub-tables increase the
potential for power-gating, thus bring a leakage energy saving of
58%. Compared to state-of-the-art table protection, our scheme
provides 2x reduced area and performance overhead. For function-
al verification and area comparison, the architecture is prototyped
on a Xilinx Virtex-5 FPGA, though not limited to it. For the soft
errors experiments, evaluation of error-resiliency and power
efficiency, we have developed a fault injection and simulation setup.

I. INTRODUCTION AND RELATED WORK
The H.264/AVC coding standard [1] enables a wide-range of video
recording applications (from high-end cinema to low-end mobile
devices) as it provides double compression at the same visual quality
compared to earlier coding standards [2]. However, the H.264 encoder
has an approximately 10× higher computational complexity compared
to the MPEG-4 advanced simple profile [2]. This increased complexi-
ty has been well countered by the advanced multimedia computing
platforms (or coprocessors [29][30]) fabricated using modern process
technologies. However, a serious side-effect of these smaller transis-
tors is their increased vulnerability to soft errors due to (i) lower-
threshold and operating voltages, (ii) particle strikes1 on the transis-
tors, and (iii) tight noise margins [3][4]. These soft errors manifest
themselves as bit flips in the hardware and jeopardize a correct
program execution. This gives rise to the need of considering the
computational reliability as a critical design parameter [4][5], which is
not only crucial for the current H.264/AVC video coding standard but
also for the upcoming video coding standards like H.265/HEVC [20].

State-of-the-art error-resilient techniques in image and video
processing have primarily exploited the inherent resilience of different
parts of the image and video codecs. The works in [13] and [14] target
fault tolerant JPEG2000, where in [14] aggressive voltage scaling is
applied at the encoder side to save power at the cost of errors and
error-concealment methods are applied at the decoder side. Authors in
[15] explore the decoded picture buffer of an H.264 decoder for
memory failures under very low operational voltages. The approach in

1 High-energy neutron/proton from the cosmic rays or low-energy alpha

particles from the packing materials [3].

[16] performs error classification based on application annotation and
uses conventional correction methods like copying the neighboring
pixel/block data in case an error is being detected. Authors in [5]
propose a technique for H.264 encoder that computes the block
checksum of the original and residual data of Macroblocks in order to
protect the prediction path. The soft error tolerance of motion estima-
tion is investigated in [3][10]. These state-of-the-art techniques
tolerate errors in either (a) main frame/picture buffer [13]-[16], which
has inherent resilience as a bit flip in a pixel value of a frame is less
visible; or (ii) motion estimation which is inherently resilient, as an
error during the matching process may lead to a sub-optimal motion
vector2 (i.e. more residual data), but not the wrong prediction.

In contrast, due to its context adaptive nature, complex bitstream
structure, and multiple VLC tables, the Context-Adaptive Variable
Length Coding (CAVLC) is highly susceptible to soft errors on
advanced multimedia computing platforms: A soft error during the
CAVLC may lead to significant visual artifacts due to encoder-
decoder mismatches. For instance bit flips in a codeword or part of the
bitstream or a wrong table selection during CAVLC may result in
wrong residual data (thus wrong reconstructed pixels) that may affect
a complete Macroblock (MB, 16x16 pixel block) and propagate to the
subsequent frames. Moreover, faults in certain syntax elements during
the CAVLC may lead to decoder and/or encoder crashes (e.g., an
abort due to an unrecognized codeword). Note: traditional error-
concealment methods from communication reliability domain may not
efficiently cope with these artifacts, as they model data corruption as
packet losses over a noisy channel [11]. Contrarily, in case of compu-
tational reliability for soft errors, the data is available but it has an
incorrect value which might still be decodable but leads to visual
artifacts [5][6] that propagate to other parts of the video frame or even
the subsequent frames, i.e. an encoder-decoder mismatch (see Fig. 1).
Furthermore, these soft errors may occur in all profiles (like High or
Main profiles) which do not exhibit the error concealment algorithms.

Conventional computational reliability techniques like dual or triple
modular redundancy [4][5][7], pipeline protection [8], software level
fault-tolerance [9] incur significant (≥2x) area, performance, and/or
power overhead as they ignore the application-specific knowledge, e.g.,
the effect of quantization parameter on the vulnerability of CAVLC. The
work of [17] provides error-tolerance for the header coding process in
CAVLC. However, it does not provide comprehensive methods for
reliable coefficient coding. Moreover, the work of [17] provides limited
power-efficiency. In multimedia systems with advanced video codecs
(like H.264), area and power are critical design parameters. Therefore,
power-efficient error-resilience for H.264 CAVLC is desirable,
especially for coding the transformed quantized coefficients which
occupy the major portion of the coded bitstream data.
A. Motivational Case Study: Soft Error Analysis of CAVLC
We have performed a fault injection case study to analyze the effects
of soft errors on the subjective video quality of various sequences (see
details of the experimental setup in Section V). Faults are injected in
the memory (storing VLC codeword and codelength tables) during the
encoding of different syntax elements, i.e. level or quantized coeffi-

2 The probability of soft errors in the best motion vector is very low due to small

amount of data. The work of [17] provides protection mechanisms for this.

978-3-9810801-8-6/DATE12/©2012 EDAA

cients, run, number of total non-zero coefficients, trailing ones, and
total zeros (see an overview of the H.264 CAVLC in Section II). Our
experiments unveiled that some syntax elements (like trailing ones,
total zeros) and variables for context switching are highly sensitive to
soft errors and may result in decoder crash, because a wrong context
switch leads to an incorrect codeword and disturbs the decoding of the
subsequent syntax elements. Therefore, protection of these syntax
elements and context switch information is of paramount importance.

Akiyo Susie Rafting

Fig. 1 Excerpts from different video sequences showing the effect of soft errors

on the subjective video quality (white lines encircle the corrupted regions)

Soft errors in the VLC codeword and codelength tables during the
coding of level and run values result in visual artifacts (see Fig. 1,
encircled by the white lines) that may even propagate to the subse-
quent frames as the decoded data is used for prediction of subsequent
frames. These artifacts are visually unpleasant to the end-user/viewer.

Our analysis illustrates that computational reliability needs to be
considered for advanced video codecs targeting future unreliable
multimedia platforms. Especially, for an error-resilient CAVLC
hardware, the protection of VLC codeword and codelength tables is of
key importance, as they are highly sensitive to soft errors and may
even become more vulnerable as they reside for a long time on the on-
chip memory3. The goal of our work is to provide power-efficient
error-resilience in H.264 CAVLC with protected VLC tables, while
exploiting the application-specific knowledge, like inherent properties
of the CAVLC algorithm and the input video data.

B. Challenges and Our Novel Contributions
Since the VLC codeword and codelength tables are accessed frequent-
ly during the CAVLC computation, performing row-based or column-
based or combined row-column-based block-wise parity (like in [12])
on a certain complete VLC table incurs significant delay, area, and/or
power overhead due to parity computations and memory accesses as a
result of large amount of data (see power savings in Section VI).
Furthermore, this leads to a higher probability of parity mismatch as
the soft error probability is higher in a large table due to an increased
area and a soft error in a single value will always result in a mismatch.
If only rows or columns are protected with parity, this might even
lead to frequent reloading of data from the main memory which is
power inefficient.

Our analysis of the statistical distribution of different syntax ele-
ments (see details in Section III) shows that not all entries in the
codeword and codelength tables are accessed with the same frequency
during the CAVLC of a given video frame. The number of times a
certain value from the table is accessed highly depends upon the
texture and motion properties of the video data and the quantization
parameter. Therefore, the challenge is to provide power-efficient
reliability/error-resilience by partitioning the tables into multiple sub-
tables that can be protected using low-overhead row- or column-
based block-wise parity. Moreover, the unused tables can be predicted
and power-gated in the state-retentive sleep mode4 (i.e. the contents of
the tables are preserved while incurring low leakage) independently to
obtain further power reduction. To guide such a partitioning scheme

3 the probability of soft errors in memory elements is much higher compared to

the combinatorial circuits due to the logical masking effects in the later [3].
4 Sleep transistors with multiple sleep modes provide the necessary physical

infrastructure means for state-retentive power-gating [21][22].

and power-gating algorithm, knowledge of statistical distribution of
syntax elements is the key.
Our Novel Contributions: We propose a novel error-resilient
CAVLC hardware for H.264/AVC that employs:
1). parity-protected partitioned VLC codeword & codelength sub-tables

(Section IV.A) for reduced delay/power overhead, obtained by,
2). a design-time partitioning algorithm (Section IV.A) that exploits

the design-time analysis of error probabilities and statistical dis-
tribution of different syntax elements coded using CAVLC (for
various test video sequences and quantization parameters; Section
III) to partition large VLC tables into multiple sub-tables.

3). a run-time manager for error-resilience and power management
(Section IV.B) that accesses the data from the partitioned sub-
tables, performs error detection using a reduced-sized block-wise
parity, and reloads the data in case of a parity mismatch. Further-
more, it determines the power-gating decision for the unused VLC
codeword & codelength sub-tables in the state-retentive sleep
mode using the design-time analysis of statistical distribution and
a run-time classification of Macroblocks.

Our experimental results demonstrate that compared to the unpro-
tected case, our scheme provides on average 18 dB better PSNR at the
cost of a 35% area and 45% performance overhead. However, parti-
tioned sub-tables and state-retentive power gating provide 58%
reduced leakage energy. Compared to state-of-the-art table protection
[12], our scheme incurs 2x reduced area and performance overhead.

This is the first approach towards power-efficient reliability/error-
resilience in the H.264 CAVLC against soft errors that exploits inherent
properties of the CAVLC algorithm and input video sequence.

II. OVERVIEW OF THE H.264 CAVLC
The main CAVLC process works on a 4x4 sub-block level. The input
is the transformed quantized coefficients of a 4x4 block in a zigzag
scanning order, see Fig. 2. Different syntax elements (SE) for a 4x4
block are shown in Fig. 2. In CAVLC, values of syntax elements are
replaced by codewords of a certain codelength. Shorter codes are used
for frequently occurring values and longer codes are used for infre-
quently occurring values. CAVLC exploits the following properties:
(i) the non-zero coefficients at the end of a zigzag scan are often
patterns of +/-1, i.e. trailing ones, (ii) 4x4 blocks contain several
zeros, (iii) there is a correlation in the number of total non-zero
coefficients for the neighboring blocks.

0 4 0 1
0 0 ‐1 0
‐2 0 0 0
1 0 0 0

0 4 0 ‐2 0 0 1 ‐1 0 1 0 0 0 0 0 0
Total Non‐Zero Coefficient (TC) = 5
TrailingOnes (T1) = 3
Total Zeros (TZ) = 5
Levels = 4, ‐1
Run = 1 (not coded, infered from TZ), 1, 2, 0, 1

Fig. 2: An example showing syntax elements for a 4x4 block

The following syntax elements are coded using CAVLC (details in [1]):
• Total non-zero coefficients (TC) and trailing ones (T1) are jointly

coded. The values of TC and T1 range from 0 to 16 and 0 to 3
(additional '1's are represented as levels), respectively. The para-
meter N denotes the context switch used to select a row in the
code/length tables and its value depends upon the TC in the upper
(TCTop) and left (TCLeft) coded 4x4 blocks. N=(TCLeft+TCTop+1)/2
if both blocks are available. N=TCTop or N=TCLeft if only the up-
per or left block is available, respectively. Otherwise: N=0.

• Sign of Trailing ones: The sign of each trailing one is coded as
one bit: '0' = positive and '1' = negative.

• Levels: The sign and magnitude of the remaining non-zero
coefficients (i.e. TC–T1) are encoded in reverse order (i.e. high
frequency coefficients first). A large table with seven contexts
(VLC0, …, VLC6) is used for encoding. The context switch de-
pends upon the value of the previously coded levels.

• Total zeros: The number of zeros before the last highest-
frequency non-zero coefficient is encoded.

• Runs: Finally, starting with the highest-frequency coefficient, the
number of zeros before each (except the lowest-frequency) non-
zero coefficient is encoded as a Run value.

III. ANALYSIS OF ERROR PROBABILITIES AND STATISTICAL
DISTRIBUTION OF DIFFERENT SYNTAX ELEMENTS

Now, we discuss the error probabilities for the CAVLC process to
analyze its relationship with the number of total coefficients (TC).
Since different syntax elements are statistically dependent, for a 4x4
sub-block, we can represent the error probability (PE) of the coded
data (cData) as the summation of the error probabilities of different
syntax elements.

PE(cData) = PE(TC) + PE(T1) + PE(Levels) + PE(TZ) + PE(Runs)

TC and T1 are coded in one codeword (TC1) which depends upon TCLeft
and TCTop. Therefore, the error probability of the TC1 codeword is given
as the joint conditional probability: PE(TC1|TCLeft)+PE(TC1|TCTop). Since
the number of levels and runs depends upon TC, the PE(Levels) and
PE(Runs) error probabilities can be represented as:

PE(Levels) = ∑i=1 to (TC-T1) PE(Leveli); PE(Runs) = ∑i=1 to (TC-T1) PE(Runi)
Moreover, the context adaptation during the level coding (i.e. switching
of VLC tables) results in a conditional probability for levels, since an
error in a certain level value affects the coding of the subsequent levels.

PE(Levels) = PE(Level1|TC,T1) + ∑i=2 to (TC-T1) PE(Leveli|Leveli-1)

The total error probability of the coded data can be represented as:
PE(cData) = {PE(TC1|TCLeft)+PE(TC1|TCTop)} (1)

+ {PE(Level1|TC,T1) + ∑i=2 to (TC-T1) PE(Leveli|Leveli-1)}
+ PE(TZ) + ∑i=1 to (TC-1) PE(Runi)

From this equation, we can draw the conclusion that a higher value
of TC leads to a higher probability of soft errors, thus leading to a
greater degradation. The value of TC mainly depends upon the
quantization parameter (QP) and the spatial/temporal properties of a
given video. To demonstrate this fact, we have performed a statistical
analysis of the distribution of different syntax elements for homoge-
neous (like in background objects) and textured MBs for several test
video sequences (ranging from QCIF to HD1080p with slow to fast
motion, e.g., Foreman, Tractor). A block is categorized using Eq. 2.
TLV is the threshold for low variance and it is obtained using regres-
sion analysis [18]. µ denotes the average brightness of a given MB.

2
0 15 0 15

, ()
,

((,)) 8

M B L V

i to j toM B M B

H om ogeneous if V ariance T
M B

T extured E lse

V ariance P i j μ= =

≤⎧
= ⎨
⎩

= −∑ ∑ >>

 (2)

If MB properties are known, knowledge of the highly-probable and less-
probable values of syntax elements can be obtained from the probability
density function (PDF) plots; see Fig. 3. Assuming these PDFs follow a
Gaussian distribution, the zone of highly-probable values (with a
probability of 0.975) is given as F(µ+3σ; µ, σ2) - F(0; µ, σ2), such that µ
denotes the mean of distribution and σ denotes the standard deviation.
For instance, the value of TC does not exceed '3' for a homogeneous
MB. Correspondingly, it can be predicted which parts of the VLC tables
for a given syntax element are more likely to be used. This prediction is
helpful for table partitioning and power-gating of the unused tables. For

instance, the less-probable values are stored in a separate sub-table that
can be power-gated. The unused tables can then be predicted by
analyzing the MB properties, which are typically obtained in a video
preprocessing stage. Note, such an MB characterization and preprocess-
ing stage is also required for fast mode decision and adaptive motion
estimation in an H.264 encoder [18][19]. Therefore, in this work, we
assume MB properties are already available to the run-time manager and
do not introduce any additional power overhead for CAVLC. The goal
of partitioning is to provide a sub-table organization, such that sub-tables
not accessed in a certain time window can be power-gated for a long
time; see Section IV.

Level ValueN (Context Value) Run ValueTrailing Ones (T1)Total Coefficients (TC) Total Zeros (TZ)

2 4 6 8 10 2 4 6 8 10 1 3 5 71 2 3 2 6 10 14 1 3 5 7

2000

1500

1000

500

3000

2000

1000

2000

1000

500

3000

2000

1000

2500

1500

500

3000

2000

1000

2500

1500

500

3000

2000

1000

800

600

400

200

800

600

400

200

1200

800

400

1200

800

400

O
cc
ur
re
nc
es

Te
xt
ur
ed

 M
Bs

O
cc
ur
re
nc
es

Pl
ai
n
M
Bs

Fig. 3 Statistical distribution of different syntax elements in CAVLC for various test video sequences (QCIF–HD1080p resolutions)

Since the values of syntax elements also depend upon the QP, a
highly-probable value of a given syntax element for homogeneous (H)
and textured (T) MB can be predicted using Eqs. 3–8. These equations
are obtained by computing the zone of highly-probable values (consider-
ing a Gaussian distribution) from various distributions obtained using
various QPs and then applying a polynomial curve fitting.
NH =0.18QP2–6.16QP+69.34; NT =0.24QP2–0.21QP+94.47 (3)
TCH =0.22QP2–7.33QP+81.98; TCT =0.28QP2–9.61QP+109.6 (4)
T1H =0.11QP2–3.60QP+38.57; T1T =0.14QP2–4.57QP+49.23 (5)
LH =0.18QP2–5.93QP+64.17; LT =0.23QP2–7.55QP+82.36 (6)
TZH =0.28QP2–9.24QP+101.6; TZT =0.35QP2–11.9QP+132.8 (7)
RH =0.17QP2–5.70QP+62.87; RT =0.20QP2–6.84QP+76.92 (8)

IV. ERROR-RESILIENT CAVLC ARCHITECTURE
Our error-resilient CAVLC architecture receives the transformed
quantized coefficients after the quantization process in H.264 encoder
and outputs the codeword and codelength of different syntax elements
to the bitstream writing module. It consists of three main parts: (i)
core CAVLC modules, (ii) a run-time manager for error-resilience and
power management, and (iii) partitioned VLC sub-tables; see Fig. 4.

H.264/AVC
Encoder

M
B
Ca
te
go
riz
at
io
n

(c
om

pu
te

sp
at
ia
l

pr
op

er
tie

sl
ik
e
va
ria

nc
e)Video

Sequences

CAVLC Modules

TC/T1 Coding

Level Coding

Run Coding

TZ Coding

Main Memory

Partitioned
VLC

Sub‐Tables

Our Power‐Efficient Error‐Resilient CAVLC Architecture
Run‐Time Manager

Sub‐Table Address
Error‐Detection
using Variable‐Size
Parity Modules

Address Generation
and Data

Reloading Unit
Power‐Gating

Control

Memory Controller

Bitstream
Writing Module

Fig. 4 Overview of our error-resilient CAVLC architecture

The core CAVLC modules compute the syntax values and their
corresponding context. For instance, the TC/T1 coding module
computes the number of total coefficients and trailing ones along with
the context information N based on the values of TCLeft and TCTop (see
Section II). The syntax value and the context information are then
forwarded to the run-time manager that computes the address for the
appropriate codeword and codelength sub-tables. The values from the
partitioned sub-tables along with the pre-computed parity values are
then extracted and forwarded to the parity modules. The computed
parity is compared with the stored parity. In case of a mismatch, an
error is detected, and the corresponding entries of the sub-tables are

reloaded from the main memory5. Furthermore, based on the know-
ledge of MB categorization, the run-time manager predicts the unused
sub-tables and puts them in the state-retentive sleep mode. In the
following, we explain the table partitioning algorithm and the opera-
tional flow of the run-time manager for error-detection and power-
management. The core CAVLC modules are simple state-machines
implementing the standard compliant functionality [1].
A. Table Partitioning and Zero Value Elimination
The VLC codeword and codelength tables are partitioned into sub-
tables using a partitioning algorithm (see Fig. 5) that employs the
knowledge of the statistical distribution of different syntax elements
(SE). The loop iterates over all syntax elements, i.e. TC1, Levels, TZ,
and Runs. First, highly-probable values of the context switching
parameters and syntax values are estimated using equations 3–8 for
homogeneous and textured MBs (see lines 3–4). The average values
are computed (line 5), which are then used to determine the number of
horizontal and vertical table partitions (lines 6, 8). Symmetric parti-
tioning is required in order to enable a simple design of block-based
parity hardware and to maximize the potential of power-gating. The
codeword and codelength tables of a given syntax element 'se' are
partitioned horizontally (i.e. row-wise) using the average highly-
probable value of the context switching parameter, like N in case of
tables for coding TC/T1 and VLCnum (VLC0-VLC6) in case of level
coding (lines 6–7). Afterwards, tables are partitioned vertically (i.e.
column-wise) using the average highly-probable value of the syntax
element (lines 8–9). Since the entries of codeword and codelength
tables for a given syntax element are accessed from the same index,
both tables of the given syntax element are merged (line 10).

1. PartitionTable (Syntax Elements SE, Quantization Parameter QP)
2. se SE | SE={TC1,Levels,TZ,Runs} {∀ ∈

 // Estimate highly-probable values of context switch and syntax values
3. (csH,csT) := est imateContextSwitch(QP, se); // Eq.3,4,7
4. (svH,svT) := est imateSyntaxValue(QP, se); // Eq.4–8
5. cs=(csH+csT)/2; sv=(svH+svT)/2;
 // Horizontal Partitioning
6. numPartHz := numRows/cs ; ⎢ ⎥⎣ ⎦
7. {THzCod, THzLen} := part it ion(se.get(TCod, TLen), numPartHz);
 // Vertical Partitioning
8. numPartVt := numCols/sv⎢ ⎥⎣ ⎦ ;
9. {TVtCod, TVtLen} := part it ion({THzCod, THzLen}, numPartVt);
10. Tse := merge(TVtCod, TVtLen); // Merge codeword & codelength tables
 // Eliminate sub-tables with all Zero values
11. T’ := Ø;
12. set T∀ ∈
13. numZE := 0;
14. c 1 t getNumCols() numZE+=isAllZeros(t.getCols(c));∀ ∈ , ..., .
15. numZeroTablePart it ions := numZE/4⎢ ⎥⎣ ⎦ ;
16. {t’} := part it ion(t, numZeroTablePart it ions); // only, the sub-

tables with non-zero entries are returned
17. T’ := T’ U {t’};
18. se.store(T’);
19. }

Fig. 5 Pseudo-code of the table partitioning algorithm

Our analysis shows that there are several zero values in the sub-tables
that can be eliminated by intelligent partitioning (see an example in
Fig. 7). Therefore, for each partitioned sub-table, columns of all zero
entries are determined (line 14). In case all columns of a sub-table are
all-zero-entry columns, the complete sub-table is eliminated. Other-
wise, the sub-tables are further partitioned in such a way that the

5 Note, main memory is ECC protected, which is a well-established practice in

various research and industrial projects (IBM [23], AMD [24]).

number of sub-tables with all zero entries is maximized while preserv-
ing the symmetry and parity format used by other sub-tables (line 15–
17), thus leading to a reduced leakage. To enable a fast access by the
parity hardware, the sub-tables are rotated and a dedicated 50-bit wide
port to the on-chip memory is provided to fetch 4 values of codeword
and codelength each. Different sub-tables contain values of different
bit widths. Therefore, variable-sized parity modules are provided to
reduce the dynamic power overhead of parity computation. Moreover,
a small block-size in the parity computation due to less number of
table values (like, 4 values in Fig. 6) also results in low power for
parity computation and a low probability of parity mismatch.

On overall, our proposed scheme reduces power by (i) reduced-sized
parity computations, (ii) lesser number of table row/column values used
for parity computations, (iii) reduced memory requirements and leakage
energy due to zero value elimination, and (iv) power-gating the unused
VLC sub-tables in a state-retentive sleep mode.

An Example: We discuss an example of partitioning the VLC table for
coding the Total Coefficients (TC) and Trailing Ones (T1). This table
consists of 2x204 values (as specified in the standard [1]) with the
largest value represented with 5 bits (Fig. 6). The access to this table is
controlled by three parameters. The choice of a horizontal line is
controlled by the parameters N and T1 (see Section II). Referring to Fig.
3, in case of homogeneous and textured MBs, the values of N are 3 and
6, respectively, with a probability of 0.975. This leads to a horizontal
partition of size '4' (see line 6 of Fig. 5). The access to a column is
controlled by the value of TC. Fig. 3 shows that the TC values for
homogeneous and textured MBs are 2 and 7, respectively, with a
probability of 0.975. It gives a vertical partition of size '4' (see line 8 of
Fig. 5). This leads to a partitioned sub-table organization of Fig. 6 (the
last horizontal partition contains only two sub-tables as its access
probability is low). Each partitioned sub-table is stored in a small
memory. Each memory entry has (i) 4x5-bit codelength information plus
parity and (ii) 4x5-bit codeword information plus parity. Similarly, the
sub-tables for total zeros (Fig. 7), level values6, and run values are
partitioned. In case of total zeros six sub-tables with all-zero values (see
grey boxes in Fig. 7) are eliminated to save the storage requirements.

Codeword Codelength

Fig. 6 Tables for coding Total Coefficients and Trailing Ones

Codeword Codelength

Fig. 7 Tables for coding Total Zeros

B. Run-time manager for error-resilience & power management
Our error-resilient CAVLC architecture is equipped with a run-time
manager (Fig. 8) that performs the following tasks:
i) Loading the codeword and codelength values: The context informa-

tion and the values of syntax elements from the CAVLC core modules

6 Although the maximum value of level can be represented in 16-bits, for

embedded video applications, our statistical analysis for various sequences
shows that the value of level ranges from -14 to +14 due to the quantization
effects for QP values ≥20. Note QP=20 is a typical for high-quality encoding.

are forwarded to the run-time manager for computing the address
parameters: sub-table identifier IDsubTable, line identifier IDLine, specific
value IDValue. These address parameters are used to fetch the appropriate
codeword & codelength values from the respective sub-tables.
ii) Error-detection and data reloading: four data entries and one parity
value are extracted for each of the codeword and codelength parts.
Afterwards, respective parity values are computed using variable-sized
parity modules and are compared to the stored parity values. In case of a
parity match, the requested codeword and codelength values are ex-
tracted and output. In case of a mismatch, the address of the sub-table
entry in the external memory is calculated (using the address generation
unit) and the data values are reloaded.
iii) Power-gating the temporarily unused VLC sub-tables: in the last
step, the run-time manager employs a power-gating algorithm (see
Fig. 9). First the MB is characterized as homogeneous or textured
(line 2). Afterwards, for all syntax elements, a prediction of the VLC
sub-tables is performed by exploiting the statistical distribution of the
syntax element and properties of the current MB (lines 4–6). After-
wards, the unused sub-tables are set into the state-retentive sleep
mode, while evaluating the energy benefit to amortize the wakeup
cost (line 7–9). Alternatively, the tables are kept in the power-on state.

Fig. 8 Operational flow of the run-time manager

1. PowerGateSubTables(SE, QP, MB)
2. CMB := evaluateMBCategory(MB); // Eq.2
3. se SE | SE={TC1,Levels,TZ,Runs} {∀ ∈
4. csMB := predictContextSwitch(CMB, QP, se); // Eq.3,4,7
5. svMB := predictSyntaxValue(CMB, QP, se); // Eq.4–8
6. TID := getUsedTableID(se.get(T’), csMB, svMB);
7. t se.get(T')∀ ∈
8. If ((t.ID!=TID)&((t.PLeakxLCAVLC4x4)>EWakeup)) powerGate(t);
9. else powerON(t);
10. }

Fig. 9 Pseudo-code of the power-gating algorithm

V. FAULT INJECTION AND SIMULATION SETUP
Though not limited to FPGAs, we have prototyped our error-resilient
CAVLC architecture on a Xilinx Virtex-5 FPGA. Since, commercial
FPGAs do not support power-gating features; the prototype is only
used for area comparison and functional verification. For the final
product, the whole system is envisaged to be implemented using an
ASIC flow. For soft error analysis, fault injection, and power compar-
ison, we have developed a fault injection and simulation method, see
Fig. 10 (see further details in [28]). The inputs are: (i) transformed
quantized coefficient data from the H.264 encoder, (ii) hardware
footprint, power, and frequency information obtained after implemen-
tation and place & route for FPGA fabric (see TABLE I for hardware
results) or from the ASIC flow, (iii) fault configuration in terms of
fault rate (in #faults/MB). The fault rate is computed from the neutron
flux (N in particles/mm2/sec, [25]; it provides the flux information
based on the coordinates of a city/location), fault probability (PFault),
hardware area (ACAVLC in mm2), MB rate (MBR in MBs/sec):

NFaultsCAVLC = (N × PFault × ACAVLC) / MBR
For a given city’s coordinates and three different altitude values
(covering Terrestrial and Ariel use cases, also used by prominent
related work [26]), three different fault rates are computed as R=1fault
per 'N' MBs with N=5, 10, 20. Single bit-flip faults are randomly
injected in hardware during the processing of syntax elements. The
outputs of the simulator are the fault-free bitstream and faulty bit-
stream, which are then decoded using the H.264 decoder [27] to

obtain the decoded videos. The error logs maintain the point of
mismatches and the decoded videos are used for the objective and
subjective video quality experiments, see Section VI. CIF (Akiyo,
Rafting) and HD1080p (Tractor, Pedestrian) sequences are used for
the experiments as they exhibit slow-high motion content. Other test
conditions are GOP=IPPP…, QP={20,25,30,35,40}. For the on-chip
memory, we deploy the model of a 65nm SRAM with multiple sleep
states [22] due to its reduced wakeup latency (3 cycles for a transition
from the state-retentive sleep to the power-on mode).

H.264
Encoder

Error-Resilient CAVLC
HW Simulator

Fault
Injection

Subjective & Objective Quality Comparison

Fault-Free Bitstream

Mode: Error-
Tolerance
ON/OFF

Hardware Area Power-Gate Model [24]

Quantized
Coefficients in Zigzag

Scaning Order

Fault
Configuration

Error Logs &
Analysis

Faulty Bitstream

Fig. 10 Fault Injection and Simulation Environment

VI. RESULTS AND DISCUSSION
Fig. 11 and Fig. 12 illustrate the objective and subjective quality
comparisons between the fault-free case (Original), our error-resilient
CAVLC at N=20, and unprotected cases with different faults rates
(N=5, 10, 20). The rate-distortion (RD) curves in Fig. 11 show that
our error-resilient CAVLC provides video quality results closer to the
fault-free case. Since only tables are protected in the case (which
occupy a major part of the hardware footprint), slight quality degrada-
tion are due to the faults during the computational hardware modules.
Fig. 11 shows that our scheme provides a significant PSNR improve-
ment (up to 10dB at N=20, 18 dB at N=5) over the faulty cases. The
effect is also visible in the subjective quality results, Fig. 12.

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350 400 450

25

Akiyo

PS
NR

 [d
B]

35

45

100 200 300 400

Bitrate [Kbps]

1 3 5
20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000

Rafting

2 4

10

15

20

25

30

35

40

45

50

0 5000 10000 15000 20000 25000 30000 35000 40000

20

Pedestrian

PS
NR

 [d
B]

30
40

1000 2000 3000 20 40 80
20

25

30

35

40

45

50

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Tractor

60

50

10

Bitrate [Mbps]

Original Our Error‐Resilient CAVLC N=20 N=10 N=5

Fig. 11 Comparing RD-Curves with Original & Unprotected Cases

Fig. 12 Subjective quality comparison of various excerpts in the Pedestrian test
sequence: PSNR of Our with red border= 40.22 vs. PSNR of Unprotected case

with red dotted border=26.40)

Fig. 13 shows the leakage power savings of our partitioned VLC sub-
tables with power-gating compared to the un-partitioned tables for
various video sequences using different QP values. On average, our
partitioned table scheme provides 58% leakage savings. High-textured
sequences (Mobile, Tractor) provide lower leakage savings compared
to the slow motion sequences, as more sub-tables are used frequently

ACKNOWLEDGEMENT due to relatively larger values of syntax elements. When comparing
for different QPs, higher leakage savings are obtained on bigger QP
values, because for bigger QPs, the values of syntax elements are
smaller and there are fewer context switches.

This work is supported in parts by the German Research Foundation
(DFG) as part of the priority program "Dependable Embedded
Systems" (SPP 1500 - spp1500.itec.kit.edu).

57

57,2

57,4

57,6

57,8

58

58,2

58,4

58,6

58,8

59 QP20 QP25 QP30 QP35 QP40

Akiyo
CIF

Le
ak
ag
e
Po

w
er
 S
av
in
gs
 [%

]

57.0

57.5

58.0

58.5

Mobile
CIF

Rush
HD1080p

59.0

Foreman
CIF

Pedestrian
HD1080p

Tractor
HD1080p

REFERENCES
[1] ITU-T Rec. H.264 and ISO/IEC 14496-10:2005 (E) (MPEG-4 AVC),

“Advanced video coding for generic audiovisual services”, 2005.
[2] J. Ostermann et. al., “Video coding with H.264/AVC: Tools, Performance, and

Complexity”, IEEE Circuits and System Magazine, vol. 4, no. 1, pp. 7-28, 2004.
[3] R. Baumann, “Radiation-induced soft errors in advanced semiconductor

technologies”, IEEE TDMR, vol. 5, no. 3, pp. 305-316, 2005.
[4] S.Borkar, T. Karnik, V. De, “Design and Reliability Challenges in

Nanometer Technologies”, IEEE DAC, pp. 75-75, 2004.
[5] J. W. Wells, J. Natarajan, A. Chatterjee, “Error resilient video encoding

using Block-Frame Checksums”, IEEE IOLTS, pp. 289-294, 2010.
[6] H.-Y. Cheong, I. S. Chong, A. Ortega, “Computation Error Tolerance in

Motion Estimation Algorithms”, IEEE ICIP, pp.3289-3292, 2006. Fig. 13 Leakage power savings compared to un-partitioned tables
[7] R. Vadlamani et al.,”Multicore soft error rate stabilization using adaptive

dual modular redundancy”, IEEE DATE, pp. 27-32, 2010.
For a comparison of memory requirements, area, and performance, we
prototyped our error-resilient CAVLC architecture, an unprotected
CAVLC architecture, and CAVLC with state-of-the-art double-parity
table protected [12] (i.e., combined row- and column-based parity of
the complete table) on a Xilinx Virtex-5-vlx110 FPGA. The on-chip
memories for the partitioned VLC sub-tables are implemented with
LUTs. Table I shows that compared to an unprotected scheme, our
approach incurs a 7% memory overhead, 34.8% area overhead, and
45% performance overhead due to parity calculation, parity storing,
and an additional run-time manager module. However, this overhead
is justified by the significant (up to 18 dB) PSNR improvements and
58% leakage energy reduction of our scheme. Still compared to state-
of-the-art table protection scheme [12], our scheme provides a 12%
reduced memory overhead, which is primarily due to elimination of
all-zero value sub-tables and sub-tables with redundant values.
However, it complicates the controller design. Moreover, Table I
shows that compared to [12], our scheme provides 2x reduced area
and performance overhead due to the reduced-complexity parity
hardware and control logic.

[8] D. Ernst et al., “Razor: circuit-level correction of timing errors for low-
power operation”, IEEE MICRO, vol. 24, no. 3, pp. 10-20, 2004.

[9] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, S. S. Mukherjee,
“Software controlled fault tolerance”, ACM TACO, vol. 2, pp. 366-396, 2005.

[10] G. V. Varatkar, N. R. Shanbhag, “Energy-efficient motion estimation
using error-tolerance”, IEEE ISLPED, pp. 113-118, 2006.

[11] Y. Wang, S. Wenger, J. Wen, A. Katsaggelos, “Review of error resilient
coding techniques for real-time video communications”, IEEE Signal
Processing Magazine, vol. 17, no. 4, pp. 61–82, 2000.

[12] C. Nguyen, “Fault Tolerant Huffman Coding for JPEG Image Coding
System”, Technical Report, http://www.ece.ucdavis.edu/cerl/ReliableJPEG

[13] C. Nguyen, G. R. Redinbo, “Fault tolerance design in JPEG 2000 image
compression system”, IEEE Transactions on Dependable and Scure
Computing, vol. 2, no. 1, pp. 57-75, 2005.

[14] M. A. Makhzan, A. Khajeh, A. Eltawil, F. J. Kurdahi, “A low power
JPEG2000 encoder with iterative and fault tolerant error concealment”,
IEEE TVLSI, vol. 17, no. 6, pp. 827-837, 2009.

[15] A. K. Djahromi, A. Eltawil, F. J. Kurdahi, “Exploiting fault tolerance
towards power efficient wireless multimedia applications”, IEEE Con-
sumer communications and networking conference, pp. 400-404, 2007.

TABLE I. COMPARING THE HARDWARE RESULTS WITH STATE-OF-THE-ART
(L=NUMBER OF LEVELS, R= NUMBER RUNS TO BE ENCODED)

[16] A. Heinig, M. Engel, F. Schmoll, P. Marwedel, “Improving transient memory
fault resilience of an H.264 decoder”, IEEE ESTIMedia, pp. 121-130, 2010.

[17] S. Rehman, M. Shafique, F. Kriebel, J. Henkel, “ReVC: Computationally Reliable
Video Coding on Unreliable Hardware Platforms: A Case Study on Error-Tolerant
H.264/AVC CAVLC Entropy Coding”, IEEE ICIP, pp.405-408, 2011.

 Virtex-5-vlx110
FF1153

Memory Latency Area
[bit] [Cycles] Slices LUT

Unprotected [5] 6400 8 + 4∗L + 5∗R 560 1,460
Double Parity [12] 7672 24 + 10∗L + 11∗R 1,739 4,924
Our scheme 6850 12 + 6∗L + 7∗R 755 2,217

[18] M. Shafique, B. Molkenthin, J. Henkel, “An HVS-based Adaptive Computa-
tional Complexity Reduction Scheme for H.264/AVC Video Encoder using
Prognostic Early Mode Exclusion”, IEEE DATE, pp.1713-1718, 2010.

[19] M. Shafique, L. Bauer, J. Henkel, “enBudget: A Run-Time Adaptive
Predictive Energy-Budgeting Scheme for Energy-Aware Motion Estimation
in H.264/MPEG-4 AVC Video Encoder”, IEEE DATE, pp.1725-1730, 2010.

[20] H.265/HEVC, High Efficiency Video Coding: http://www.h265.net/.
VII. CONCLUSIONS [21] S. Roy, N. Ranganathan, S. Katkoori, “State-Retentive Power Gating of

Register Files in Multi-core Processors featuring Multithreaded In-Order
Cores”, IEEE Transaction on Computers, 2010.

We presented an error-resilient architecture for H.264 CAVLC with
improved power-efficiency. It employs partitioned VLC codeword
and codelength tables with state-retentive power-gating support. The
table partitioning and power-gating algorithms consider the statistical
distribution of different syntax elements to achieve high power-
efficiency. Our experimental results demonstrate an up to 18 dB
improved PSNR compared to the unprotected case at the cost of 35%
increased area, while table partitioning with power-gating brings 58%
leakage energy savings. Compared to state-of-the-art [12], our
architecture provides 2x reduced area and performance overhead.

[22] H. Singh, K. Agarwal, D. Sylvester, K. J. Nowka, “Enhanced leakage
reduction techniques using intermediate strength power gating”, IEEE TVLSI,
vol. 15, no. 11, pp. 1215-1224, 2007.

[23] IBM® XIV®: http://publib.boulder.ibm.com/infocenter/ibmxiv/r2/index.jsp.
[24] AMD PhenomTM II Processor Product Data Sheet 2010.
[25] Flux calculator: www.seutest.com/cgi-bin/FluxCalculator.cgi.
[26] J. Hu, S. Wang, S. G. Ziavras, “In-Register Duplication: Exploiting Narrow-

Width Value for Improving Register File Reliability”, DSN, pp. 281-290, 2006.
[27] H.264 Codec JM 13.2: http://iphome.hhi.de/suehring/tml/index.htm. This paper instantiates the need to investigate solutions for power-

efficient error-resiliency for computationally reliable video coding in
order to address the upcoming industrial challenges related to soft-
error issues in the advanced/modern unreliable multimedia computing
platforms. This is not only crucial for the current H.264 standard but
also for the upcoming video coding standards like H.265/HEVC. This
work illustrates that, for increased power-efficiency, reliability
methods need to exploit the inherent algorithmic and data properties
of video codecs.

[28] S. Rehman, M. Shafique, F. Kriebel, J. Henkel, “Reliable Software for
Unreliable Hardware: Embedded Code Generation aiming at Reliability”,
IEEE CODES+ISSS, pp. 237-246, 2011.

[29] S. Saponara, M. Martina, M. Casula, L. Fanucci, G. Masera, “Motion estimation
and CABAC VLSI co-processors for real-time high-quality H.264/AVC video
coding”, Microprocessors & Microsystems, vol. 34, no. 7-8, pp. 316-328, 2010.

[30] S. Saponara, L. Fanucci, S. Marsi, G. Ramponi, “Algorithmic and architectur-
al design for real-time and power-efficient Retinex image/video processing”,
Journal of real-time image processing, vol. 1, no. 4, pp. 267-283, 2007.

