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Abstract—SDRAM is a popular off-chip memory that provides
large data storage, high data rates, and is in general significantly
cheaper than SRAM. There is a growing interest in using
SDRAMs in safety critical application domains like aerospace,
automotive and industrial automation. Some of these applications
have hard real-time requirements where missing a deadline can
have devastating consequence. Before integrating any hardware
or software in this type of system it needs to be proven that
deadlines will always be met. In practice, this is done by
analyzing application’s timing behavior and calculating its Worst
Case Execution Time (WCET). SDRAMs have variable access
latencies depending on the refresh operation and the previous
accesses. This paper builds on hardware techniques such as
bank interleaving and applying Priority Based Budget Scheduling
(PBS) to share the SDRAM among multiple masters. Its main
contribution is a technique to bound the WCET of an application
accessing a shared SDRAM of a multicore architecture using the
worst case access pattern. We implemented and tested an overall
memory system on an Altera Cyclone III FPGA and applied the
proposed WCET estimation technique. The results show that our
technique produces safe and low WCET bounds.

I. INTRODUCTION

Nowadays, many embedded applications are running on
multi-core architectures because of their superior performance
per energy ratio. In these architectures, resources are shared
among multiple masters to reduce cost. An off-chip memory
(slave) is one of the most common resources which is shared
between multiple cores (masters). For obvious reasons the off-
chip memory should be large to accommodate code and data of
multiple applications running concurrently on different cores.
It should also provide high data rates to be able to service
multiple masters in a reasonable time and it should be cost ef-
ficient. The SRAM is an ideal off-chip memory considering its
specification, but it is very expensive. The SDRAM provides
reasonable speed, price and size. The drawback of SDRAM
is that it has variable access latency which depends upon the
refresh operation and the previous access.

Safety critical embedded systems need to be certified
(e.g. according to DO178B in the avionics domain). In such
applications, tasks have to satisfy Hard Real Time require-
ments to adhere to their specification. This property needs
to be proven to enable certification. To guarantee that the
deadline will be always achieved, timing analysis of the system
needs to be performed considering the worst possible behavior
of the system’s hardware and software components. This con-
servative approach for the WCET analysis yields safe upper

bounds on execution times, but sacrifices resources and/or
power since it requires over dimensioning of the hardware.

This paper introduces an approach to bound the WCET of
an application using its memory trace pattern. The WCET is
calculated in isolation considering the worst behavior of the
co-executing tasks. Moreover, we also provide the Observed
Execution Time (OET) and the Best Case Execution Time
(BCET) of the application running on the proposed architec-
ture. Our method was tested by running 6 hardware tasks on an
Altera Cyclone III FPGA and the obtained WCET was 1.003
to 3.4 times the OET depending upon master’s priority. In
Sec. V, we briefly explain a technique to achieve a predictable
behavior from a commercial SDRAM controller. In this paper,
we are assuming absence of timing anomalies in the processor
architecture. Nevertheless, in Sec. IV-A we highlight a solution
to calculate the WCET using our method in their presence.

II. RELATED WORK

There has been a number of attempts to provide the WCET
of an application on a particular multicore architecture due
to the growing importance of static execution time analysis.
PRET [1] is a cycle accurate repeatable time machine. Tremen-
dous effort has been spent in making a core with repeatable
execution time. The off-chip memory access latency is as-
sumed to be constant: 50ns. PREDATOR [2] is an EU funded
project that applies a holistic approach investigating the entire
spectrum (architecture, compiler, operating system, software
development, tooling etc) of the system design to come up
with a predictable and an efficient system solution. Both these
projects do not analyze SDRAM for WCET analysis.

MERASA [3] is another EU funded project that targets to
build a predictable and an efficient multi-core architecture for
mixed critical applications. Predictability on the core side is
achieved by giving the highest priority to the Hard Real-time
Task (HRT) while on the shared bus side access latency is
bounded by a Round Robin (RR) arbiter. The SDRAM is
accessed through Analyzable Memory Controller (AMC) [4].
The AMC uses Bank Interleaving (BI) to access the SDRAM.
Through theoretical analysis, latency parameters are extracted
to calculate the WCET of an application. The AMC assumes
the maximum of Read/Write and Write/Read switching laten-
cies as a constant worst case latency of every access. Such
assumption, while making analysis simple, cannot produce
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precise bounds as we will show later. Moreover, the RR policy
with one request per master cannot satisfy the need of different
bandwidth requirements. If more than one request per master
is assigned, the WCET is severely degraded [5].

In [6], authors propose a periodic software task that re-
freshes the SDRAM in burst fashion and thus removes the
asynchronism related to the hardware controlled refresh. This
technique will be helpful only for single core architectures. In
multi-core architectures, except the core which is running the
refresh task, other cores will see it as an asynchronous refresh.

Heithecker et al [7] proposes BI with two level arbitration
using the RR scheme to bound the maximum latency of
requesters. To provide a low latency and bandwidth guarantee
to each requester, requesters are assigned high and standard
priorities. High priority requesters are scheduled out of order
in the RR queue. After each high priority request, one standard
priority request is scheduled to avoid starvation. The approach
excludes SDRAM latency analysis and inherits drawbacks of
RR scheme as mentioned before.

Akesson et al [8] propose a predictable shared memory
controller that uses BI to access the SDRAM. High priority
is assigned to masters executing latency sensitive applications
while masters requiring high bandwidth are assigned higher
budget. Thus, the coupling between latency and rate is re-
moved using Credit Controlled Static Priority [9] - CCSP
arbiter. CCSP is a class of Priority Based Budget Scheduler
(PBS) [10]. We extend this work by providing WCET analysis
technique for the PBS arbiter. Moreover, we provide the OET
and the BCET to evaluate the precision of our results and the
variability [11] of the PBS arbitration scheme.

III. BACKGROUND

Before we begin with our approach, some fundamentals are
explained in this section.

A. Application Execution
Fig. 1a abstracts general behavior of an application execu-

tion. At first, application code/data is read or written. If the
accessed data is on-chip (cache, registers etc) it is processed
immediately. Otherwise, the data is fetched from the off-chip
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memory (SDRAM) and then processed. The off-chip memory
is accessed via a cache. The Cache is organized in the form of
cache lines as shown in Fig. 1b. When a cache miss/write-back
occurs, entire cache line (here 32 bytes) is read from or written
to the SDRAM. The SDRAM is accessed only when a cache
miss or a cache write-back occurs. It stays idle during on-
chip operations. These idle times are denoted in clock cycles
as OnChipProcTime[i] ∈ Z+, i ∈ [0, T otalAccesses).
TotalAccesses is the total number of off-chip memory
accesses during the execution in the worst case.
B. SDRAM Fundamentals

SDRAMs have a bank architecture where each bank stores
data in a 2D array of rows and columns as shown in Fig. 1b.
Cache lines are mapped to the rows of the banks. Each row
contains multiple cache lines. Before reading or writing a
cache line, the entire row containing that cache line is copied
into the row buffer. This operation is called Row Activation
(ACT). Data is now read or written from the row buffer in a
burst fashion with low latency. When the data from another
row is requested, the content of the buffer is copied back to the
bank. This operation is called Precharge (PCH). Subsequently,
the new row is activated. At compile time, it is unknown which
row is in the row buffer at a certain point of the execution.
Being conservative, an absence of currently accessed row in
the buffer is assumed for the worst case latency calculation.
This assumption increases the WCET bound of the application.
Moreover, SDRAMs have to be refreshed periodically. During
a refresh operation the SDRAM cannot be accessed. Since the
refresh operation is controlled by a hardware its occurrence
time is unknown to the application. This uncertainty about the
refresh further degrades WCET bounds.
C. Bank Interleaving

To mitigate the penalty associated with row activa-
tion/precharge command bank interleaving (BI) can be ap-
plied. BI splits all off-chip accesses into smaller chunks such
that their total number equals the number of banks of the
SDRAM device. Each of these chunks is executed on unique
bank and the bank is precharged at earliest possible time.
While data is provided from one bank, another bank can be
activated in the background. The resulting cache mapping to
the SDRAM is depicted in Fig. 2a.

To facilitate BI, Additive Latency (AL) and Auto Precharge
(Auto PCH) commands are included in the standard. When
AL is non zero, Read/Write command can follow ACT com-
mand without waiting for tRCD time. SDRAM device holds
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Fig. 3: (a) Continuous Read (b) Continuous Write (c) Alter-
nating Read/Write. BI Timing

Read/Write command for AL clock cycles before applying it
internally. Thus, command bus utilization can be maximized.
Auto PCH command has to be signaled when applying read-
/write command. When Auto PCH is signaled, the device
starts prechare operation at earliest possible time automati-
cally. Thus, explicit Precharge command is not required and
command bus utilization is maximized further.

Fig. 3 explains access timing of the SDRAM for three cases:
continuous read, continuous write and alternating read/write.
In the figure the numbers associated with Activate (ACT),
Auto Precharge (Auto PCH), Read (Rd) and Write (Wr) denote
the number of the bank on which these commands are applied.
For data bus ’r’ and ’w’ denote read and write data. The most
significant bit of data denotes the number of the bank and the
least significant bit denotes the number of data element.

In Fig. 3(a) Bank0 is activated and immediately read com-
mand is issued (2nd clock). After the Rd command is issued
data is available on the data bus after AL+CL clock cycles
(7th clock). The prechage operation begins automatically at
AL+BL/2 clock cycles(on 6th clock) after the read command.
The Bank0 can be activated again, at the earliest, after tRP
(2) clock cycles(on 8th clock) from the precharge. It is clear
from the figure that for a seamless data transfer, each bank
must be activated after every 8 clock cycles. Example shown in
Fig. 3(a) achieves this deadline to get seamless data transfer for
a read operation and 100% command and data bus utilization.

For a write transfer (Fig. 3(b)), data is put on the data bus
AL+CL-1 clock cycles after the Wr command is issued to the
bank (6th clock). The precharge operation starts tWR clock
cycles after (10th clock) the last element of data is put on the
data bus. The delayed precharge delays next earliest activation
of the Bank0 (12th clock) due to the tRP requirement. Thus,
voids are created on the command and data bus.

For an alternating Rd/Wr transfer shown in Fig. 3(c), the
void at clock 10 is caused by Read to Write Turn Around Time,
tRTP, which defines minimum time from the Rd command to
the Wr command. Because of Rd command issued at clock
8 to the Bank3, Wr command cannot be issued before 12th

clock cycle. Again, void is created at the clock 17 due to tCCD

requirement which states the minimum distance between any
two Rd or Wr commands. Three voids created at 19, 20 and
21 are the same as of continues write transfer and has already
been explained in the previous paragraph. The void created at
clock 23 is because of minimum Wr to Rd command spacing
which is defined as CL-1+BL/2+tWTR (internal write to read
command delay). Voids created at 30, 33, and 40 have the
same reasons as of 17, 10 and 17 respectively. It is clear from
the figures that alternating accesses to the SDRAM create the
worst latencies than continues accesses. For further detail on
the timing parameters readers are referred to [12].

Here we define three parameters Worst Case Write Com-
mand Width (WcWrCmdWidth), Worst Case Read Com-
mand Width (WcRdCmdWidth) and Worst Case Read La-
tency (WcRdLat). As shown in the figure, in the worst
case, write operation on command bus starts at clock
9 and completes at clock 18. We define this width as
WcWrCmdWidth = 10. The same way, read operation on
command bus starts at 19 and completes at 31. We define this
width as WcRdCmdWidth = 13. Since in read operation
data is read from the SDRAM, the requester has to wait after
issuing the Rd command. In the worst case, as shown in figure,
after issuing Rd command on clock 31, entire data is received
on clock 37. We define this time from clock 31 to 37 as
WcRdLat = 6. Thus in the worst case, write operation is
10 clock cycles long, while read operation is 13+6=19 clock
cycles long. Clearly, to achieve tight WCET bounds both read
and write accesses have to be analyzed separately.

IV. PRIORITY BASED BUDGET SCHEDULING

In the Priority Based Budget Scheduling (PBS) masters are
assigned fixed priorities and fixed budgets at design time [10].
The priority relates to a master’s latency requirements and the
budget relates to its bandwidth requirements. Access to the
shared resource is granted to the requesting master which has
highest priority provided that it still has a budget left. When
the granted master does a transfer its budget is reduced by
one. When a master’s budget becomes zero, that master is
termed not eligible and cannot be granted the shared resource
until the next replenishment period starts. At the beginning
of a replenishment period, each master receives its original
budget back. In practice, masters with low budget is assigned
high priority and masters with high budget is assigned low
priority. The replenishment period is kept long enough to
accommodate the number of requests, which is equal to the
total budget of all masters, in the worst case. Equation (1) is
used to calculate the worst case command width WcCmdWd
considering alternating read/write accesses. Equation (2) gives
the size of a replenishment period in clock cycles.

WcCmdWd =

⌈
WcRdCmdWd+WcWrCmdWd

2

⌉
(1)

Rp = WcCmdWd×
N∑
i=1

Budget[i] (2)
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A. Worst Case Interference
Fig. 2b depicts the architecture and Fig. 4a illustrates PBS

operation with three masters. Here, master3-m3 is assigned
the highest and master1-m1 is assigned the lowest priority.
The highest priority master is served with minimum latency as
long as it has budget left. When it consumed its entire budget,
it is no longer eligible to access until the beginning of the
next replenishment period. Since the PBS is non-preemptive,
the highest priority master has to wait for only one on-going
low priority request even in the worst case. This is illustrated
in Fig. 4a: m3 waits until m1 has finished (dotted line).

In Fig. 4b, OnChipProcTime (Sec. III-A) of m1 is
included for considering the worst case latencies. As shown in
the upper portion of the figure, m1 requests in the beginning
of the replenishment period, but it is interfered by a sequence
of accesses from the higher priority masters. For the worst
case analysis it has to be assumed that these accesses are
of the alternating type and thus cause the longest possible
access latency (Sec. III-C). Moreover, when m1 wants to do
a Read transfer the alternating sequence ends with a Write
transfer and vice versa. Thus, in the worst case m1 has to
consider the read/write switching penalty additionally (red
arrow). After considering these latencies, m1 can do a transfer.
Before doing the next transfer m1 does an onchip operation.
When this is finished, m1 requests another access, which is
again interfered by a sequence of higher priority alternating
accesses. In PBS, an earlier access request cannot produce
longer over all execution time than had it been requested later.
Thus, PBS does not introduce timing anomaly [13] and since it
is assumed that the architecture is free from timing anomalies,
commutativity of accesses in the replenishment period can be
considered. The lower portion of the Fig. 4b shows the re-
arranged version of accesses shown in the upper portion. For
simplicity of worst case analysis, it can be assumed that the
first access in the replenishment period of the lowest priority
master will be interfered by all higher priority masters with ex-
ploitation of their entire budget. For the subsequent accesses in
the replenishment period, the lowest priority master is granted
immediately since all other masters do not have a budget left.
Only the Rd/Wr switching penalty has to be considered as
shown in the lower portion of the Fig. 4b. The same way
interference for higher priority masters can be calculated. We
denote the First Access of Master in a Replenishment Period as
FArp

m and subsequent accesses as Not First Access of Master
in Replenishment Period (NFArp

m ). In the worst case, FArp
m of

a master will be interfered by all higher priority masters with
exploitation of their entire budgets and one on-going lower

Algorithm 1 Algorithm to Calculate WCET of Single Access
1: //Calculate WcFAT rp

m when FArp
m = write

2: if (WcFAIrpm + 1) is even then
3: acc=(WcWrCmdWd+WcRdCmdWd)×(WcFAIrpm +1)/2
4: else
5: acc=(WcWrCmdWd+WcRdCmdWd)× (WcFAIrpm )/2
6: acc+ = WcWrCmdWd
7: end if
8: WcFAT rp

m = acc

9: //Calculate WcFAT rp
m when FArp

m = read
10: //execute lines 1–8;
11: WcFAT rp

m + = WcRdLat

12: //Calculate WcNFAT rp
m

13: if m 6= 1 then
14: if NFArp

m = read then
15: WcNFAT rp

m = WcWrCmdWd+WcRdCmdWd
16: WcNFAT rp

m += WcRdLat
17: else
18: WcNFAT rp

m = WcRdCmdWd+WcWrCmdWd
19: end if
20: else
21: if NFArp

m = read then
22: WcNFAT rp

m = WcRdCmdWd+WcRdLat
23: else
24: WcNFAT rp

m = WcWrCmdWd
25: end if
26: end if

priority transfer. For NFArp
m interference from only one on-

going lower priority transfer has to be considered. Clearly,
for any transfer the highest priority master has to consider
interference from only one on-going lower priority transfer.
Equation (3) defines the Worst Case First Access Interference
in a Replenishment Period for master M which we denote
by WcFAIrpm . Equation (4) defines the Worst Case Not First
Access Interference in a Replenishment Period for master M
(WcNFAIrpm ). The master with index N has the highest and
index 1 has the lowest priority.

WcFAIrpm =



1, m = N
N∑

i=m+1

Budget[i] + 1, m ∈ (1, N)

N∑
i=2

Budget[i], m = 1

(3)

WcNFAIrpm =

{
1, m ∈ (1, N ]

0, m = 1
(4)

In Algorithm 1, lines 1–11 detail calculation of Worst Case
First Access Time in a Replenishment Period for master M,
denoted as WcFAT rp

m . Addition of 1 in WcFAIrpm at line 2
in the Algorithm considers the first access of master m as the
last access in the sequence of alternating reads and writes.
On line 16 of the algorithm WcRdLat is added, since acc
only contains the worst case time required to issue the Read
command to the SDRAM. The same way worst case time for
subsequent accesses is computed in lines 12–26.

For the WCET analysis, OnChipProcTime plays an im-
portant role. It exists between any two consecutive accesses to
an SDRAM and it can be obtained from a third party WCET



Algorithm 2 Algorithm to Calculate WCET of Application
Running on Master m
1: budget, acc = 0
2: repeat
3: if budget = 0 then
4: acc+= WcFAT rp

m +OnChipProcT ime[i]
5: else
6: acc+= WcNFAT rp

m +OnChipProcT ime[i]
7: end if
8: budget++
9: if budget = cBUDGET then

10: WCET += Rp

11: acc, budget = 0
12: end if
13: if acc ≥ Rp then
14: WCET += Rp

15: acc = acc−Rp

16: budget = 0
17: end if
18: until i ≤ TotalAccesses

19: WCET += acc
20: REFRESH = dWCET/tREFIe
21: WCET = (REFRESH + 1)× tRFC
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Fig. 5: (a) Memory Trace (b) Adding SDRAM Latency

analyzer. The WCET analyzer analyzes the application binary
code and predicts the application execution in the worst case.
From the WCET analyzer, memory access trace of each cache
miss and the worst case time of its occurrence can be extracted.

In Fig. 4b, because of its long OnChipProcTime, m1
can do only 2 transfers in the replenishment period though
its budget is 5. As shown in the figure, the 3rd transfer of
m1 would fall in the next replenishment period. Here, all
the higher priority masters would regain their original budget
and may interfere with exploitation of their entire budget.
Hence, WcFAIrp1 of m1 has to be considered. Certainly,
such OnChipProcTime exists in higher priority masters as
well. But while analyzing in isolation, worst behavior from
others must be assumed. Thus, in the worst case, the lowest
priority master will not be able to use its allocated bandwidth
entirely. Therefore, the application executing on it may miss
the deadline or the QoS will be degraded.

As shown in Fig. 5(a) it is assumed that the memory trace
ignoring SDRAM latency is available for all execution paths
from the third party WCET analyzer. Afterwards, as described
in Algorithm 2, for every access worst case access latency and
OnChipProcTime[] are accumulated. This is done until the
master’s budget is exhausted or the accumulated time exceeds
the replenishment period. In the first case master has to wait
till the beginning of the next Replenishment period and in

the second case the current replenishment period has already
completed. Thus, time duration of one replenishment period
is added to the WCET (lines 10,14). Refresh penalty tRFC
is added considering the average number of refreshes. An
additional tRFC penalty, at line 21, is to consider an interfering
refresh for the very first access of the application.

For BCET calculation, it needs to be assumed that the appli-
cation under consideration is the only application running on
the multi-core architecture. Thus there is no interference from
other masters. Moreover, it has to be assumed that the refresh
occurs when application is in OnChipProcTime. Thus not
a single refresh interferes with the application execution.

In the presence of timing anomalies, our technique can
be implemented as a software API. For each access, a third
party WCET analyzer calls the API considering a range of
all possible [Bc, Wc] values of the OnChipProcTime. The
API then returns range of [Bc, Wc] latencies for each possible
value of OnChipProcTime. Then the WCET analyzer has
to pick the combination of OnChipProcTime and latency
value which produces the longest over all execution time of the
program. Thus, the core technique of calculating latencies does
not change, only computation of WCET becomes exhaustive
which is a typical case in presence of timing anomalies.

V. TEST SETUP
We connected six hardware traffic generators to an SDRAM

controller running on an Altera Cyclone III FPGA, the same
way as shown in Fig. 2b. The Altera High Performance
Controller II (HP II) does not support BI in the native mode.
Therefore BI was implemented using access splitting and user
controlled auto precharge [14]. The HP II contains internal
FIFOs for commands and data. These FIFOs affect access
latencies depending upon their status. In the case of a write
transfer, the master proceeds with its operation while com-
mand and data move from point (1) to point (2) in Fig. 2b and
are subsequently written to the SDRAM. For read transfers,
the time required for a read command to proceed from (1)
to (2) must be considered. After arriving at (2), latencies of
Fig. 3 have to be considered.

To obtain safe values of worst case latency parameters, we
generated continuous alternating traffic to the SDRAM and ex-
tracted latency parameters WcRdCmdWd, WcWrCmdWd
and WcRdLat at (1) in the Fig. 2b using an on-chip logic an-
alyzer (SignalTap II). Since (1) is the only visible point to the
user, it is safe to extract all latency parameters from there only.
Using Signaltap II, we also found that the Altera SDRAM
controller issues a refresh every tREFI ± 20 clock cycles
depending upon ongoing transfers. To avoid this variability, we
implemented a user controlled refresh circuit [14] that closes
all channels at point (1) slightly before tREFI to empty the
SDRAM controller FIFO. When the tREFI timer expires, a
refresh is applied to the SDRAM immediately. This way a
precise issuing of the refresh in tREFI intervals is achieved at
very low cost of SDRAM bandwidth. We tested our setup at
125 MHz SDRAM clock frequency.

Assuming the worst case path is known, we generated
two types of memory traces for investigating different traffic
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Fig. 6: WCET, BCET and OET in Number of Clock Cycles

scenarios. (1) Equal Density Traffic, where each master gener-
ates 2K random alternating accesses to the SDRAM. Average
traffic density is identical for all masters. (2) Incremental Den-
sity Traffic, where each master generates alternating random
accesses such that the traffic density is proportional to its
budget. Moreover, the total number of accesses also increases
proportionally with traffic density (cf. Table I). In both the
tests, master6 has the highest and master1 has the lowest
priority. Since in both the cases masters generate alternating
accesses, high interference occurs, but the worst case is not
guaranteed due to the access randomization. We estimated how
much time will be required by each master to complete its
transfers in the worst as well as the best case.

Average Total Priority
OnChipProcTime[] Budget Accesses Pm

Eq. Incr. Eq. Incr. Eq. Incr.
Density Density Density Density Density Density

master1 23 20 22 25 2048 25 × 100 6
master2 23 21 22 24 2048 24 × 100 5
master3 23 22 22 23 2048 23 × 100 4
master4 23 23 22 22 2048 22 × 100 3
master5 23 23 22 21 2048 21 × 100 2
master6 23 24 22 20 2048 20 × 100 1

TABLE I: Tested Traffic Pattern

VI. RESULTS

For these tests, WCET, BCET and Observed Execution
Time (OET) are depicted in Fig. 6. Due to the nature of
PBS which prefers a high priority master over a lower priority
master, worst case interference experienced by a high priority
master is significantly less than that experienced by a low
priority master. The estimated WCET is 1.003 times and 3.4
time the OET for the highest and the lowest priority masters
respectively. It is clear from the graphs that for high priority
masters BCET, WCET and OET are similar. For low priority
masters WCET increases drastically due to the conservative
assumption of permanently interfering high priority masters.
The OET of the lowest priority master in Fig. 6(b) is also
slightly more than others though traffic produced by each
master is proportional to its budget. Therefore, it can be
concluded, that our analysis approach lends itself well to
shared SDRAMs using PBS. Nevertheless, the PBS itself does
not allow tight bounding of WCET of low priority masters.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduce a method to calculate the WCET
of tasks when an SDRAM is used as a shared memory. The
WCET is calculated using worst case memory access traces
produced by a third party WCET analyzer for each execution
path. No knowledge of the behavior of tasks running on other

masters is assumed. We analyzed and tested the worst case
behavior of a Priority Based Budget Scheduled (PBS) SDRAM
on an Altera Cyclone III FPGA. From the memory traces of
an individual master, each access is analyzed for its worst
possible interference considering the priority of the master, its
assigned share in one replenishment period and the total share
of higher priority masters. Since PBS favors a high priority
master over a low priority master, the WCET produced for
the highest priority master is much less than that of the lowest
priority master. We conclude that our method can readily be
applied to the multi-core architectures with shared SDRAM.
In our future work, we will apply this approach in real life
multi-core applications and compare performance of various
real time capable shared SDRAM arbitration schemes.
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