
978-3-9810801-8-6/DATE12/ c©2012 EDAA

Model Checking of Scenario-Aware Dataflow with CADP

Bart Theelen1, Joost-Pieter Katoen2 and Hao Wu2

1Embedded Systems Institute, P.O. Box 513, 5600 MB Eindhoven, Netherlands
2RWTH Aachen University, Ahornstraße 55, 52056 Aachen, Germany

bart.theelen@esi.nl, katoen@cs.rwth-aachen.de, hao.wu@cs.rwth-aachen.de

Abstract

Various dataflow formalisms have been used for cap-

turing the potential parallelism in streaming applications

to realise distributed (multi-core) implementations as well

as for analysing key properties like absence of dead-

lock, throughput and buffer occupancies. The recently

introduced formalism of Scenario-Aware Dataflow (SADF)

advances these abilities by appropriately capturing the

dynamism in modern streaming applications like MPEG-4

video decoding. This paper reports on the application

of Interactive Markov Chains (IMC) to capture SADF

and to formally verify functional and performance prop-

erties. To this end, we propose a compositional IMC

semantics for SADF based on which the Construction

and Analysis of Distributed Processes (CADP) tool suite

enables model checking various properties. Encountered

challenges included dealing with probabilistic choice and

potentially unbounded buffers, both of which are not na-

tively supported, as well as a fundamental difference in the

underlying time models of SADF and IMC. Application of

our approach to an MPEG-4 decoder revealed state space

reduction factors up to about 21 but also some limitations

in terms of scalability and the performance properties that

could be analysed.

I. Introduction

Model-based design of distributed (multi-core) realisa-

tions of streaming applications like MPEG-4 and MP3

decoding often use dataflow-based analysis and synthesis

techniques [3], [16], [22], [23], [26], [32]. Many such

approaches (e.g., [3], [22], [23]) rely on the formalism

of (Homogeneous) Synchronous Dataflow ((H)SDF) [21],

[29], which is also known as (Weighted) Marked Graphs

in Petri Net theory. A wide range of design-time analysis

techniques have been developed for SDF, covering both

functional properties such as absence of deadlock [12] and

the key performance properties of throughput [38], [13],

latency [14] and buffer occupancy [31]. However, SDF

only allows for expressing a fixed behavioural pattern.

Using SDF therefore requires abstracting from any dy-

namism in applications such as decoding different types of

video frames in MPEG-4, which imply large variations in

resource usage. Neglecting such resource usage variations

during design-time analysis may lead to substantially over-

dimensioning [32]. Other model-based design approaches

(e.g., [16], [26]) use Kahn Process Networks [20] to cap-

ture dynamism. However, relevant properties, such as the

minimal storage space needed to avoid deadlock, through-

put and latency, cannot be determined at design-time [25],

[10]. The formalism of Scenario-Aware Dataflow (SADF)

[35] has recently been introduced as an alternative that

does allow modelling dynamic behavior, while various

design-time analysis techniques are available and efficient

implementations can be created [33].

Current state-of-the-art techniques for SADF have been

implemented in the SDF3 tool suite [30], [34]. It supports

efficient techniques for worst-case performance analysis of

a relevant subset of SADF based on a max-plus algebraic

semantics [11] as well as specialised exact model-checking

based techniques for any SADF model to evaluate pre-

defined performance properties like throughput, expected

response time and maximum buffer occupancy [37], [34].

The latter type of analysis does however not use exist-

ing (quantitative) model checking tools, thereby lacking

flexible support for evaluating user-defined properties (i.e.,

properties other than certain predefined ones). This paper

reports on an investigation to apply the Construction and

Analysis of Distributed Processes (CADP) tool suite [9]

for quantitative analysis and qualitative model checking of

SADF. This enables the usage of powerful (compositional)

state-space reduction techniques as well as checking a large

range of functional properties expressed in the temporal

logic XTL. To enable using CADP, we introduce a compo-

sitional semantics for SADF based on Interactive Markov

Chains (IMC) [17], [18], thereby formalising previously

noticed similarities between two actor types of SADF as

well as revealing a fundamental difficulty in capturing the

time model of SADF. We propose solutions to handle

probabilistic choice and potentially unbounded buffers in

CADP. Application of CADP’s model checking capabili-

ties to an MPEG-4 decoder [35] shows that considering

dynamism easily yields a state-space explosion, while

also substantial state-space reductions can be achieved.

Although the variety of analysable properties is enlarged,

determining throughput and buffer occupancy suffers from

the inability to evaluate reward-based properties in CADP.

This paper is organised as follows. After giving a brief

introduction to SADF and IMC, Section IV informally

presents our IMC semantics for SADF. Section V discusses

the use of CADP, focussing on model checking the MPEG-

4 decoder example. Section V I lists the lessons learned.

II. Scenario-Aware Dataflow

Fig. 1 depicts the SADF model of an MPEG-4 de-

coder for the Simple Profile taken from [35]. The nodes,

called actors here, represent individual tasks performed in

MPEG-4 decoding like V ariable Length Decoding (V LD)

and Reconstruction (RC) of the final video picture. The

edges are called channels and denote (potential) depen-

dencies between the actors. Such dependencies arise from

communicating tokens, which are abstract representations

of e.g. frames or macro blocks. The number of tokens that

actors consume or produce from/to a channel each time

they fi re (execute) is indicated by the rate labels at the

head and tail respectively. Fig. 1 shows that such rates

may be parameterised as opposed to SDF, where all rates

are fixed. SADF separates the data processing behaviour

from control behaviour causing (course-grain) dynamism

by distinguishing two types of actors and channels. K er-

nels (solid nodes) model the data processing part, while

detectors (dashed nodes) reflect control behaviour. The

Frame Detector (FD), for instance, captures that part of

the MPEG-4 decoder responsible for determining which

type of frame is to be processed by the other actors. The

different frame types imply different operation modes or

scenarios. The FD notifies other actors about the frame

type by communicating scenario-valued tokens over con-

trol channels (dashed edges). Tokens communicated over

data channels (solid edges) are unvalued. Any channel

represents a FIFO buffer which may include initial tokens

at the start of executing the application. Such cases are

indicated in Fig. 1 as a black dot on the edge labeled with

the number of initial tokens.

The MPEG-4 decoder model supports I-frames and P-

frames. When an I-frame is detected, a total of 99 macro

blocks must always be processed. This scenario is called

I99 . A P-frame requires processing between 0 and 99

macro blocks. The workload varies considerably depending

on the number of macro blocks that are processed. This

is because the V LD and IDCT actors are performed for

every individual macro block, while the FD, MC and RC

actors fire once per frame. We model this by defining a

number of different scenarios Px based on the number of

macro blocks that must be processed. Hence, the model

contains different scenarios in which (up to) 0, 30, 40, 50,

60, 70, 80, or 99 macro blocks are processed for a single P-

frame. Next to expressing course-grain workload variations

via scenarios, SADF can capture fine-grain variations in

d

a

1

1

1

1

d

1

1

1

1

b

1

c

1

1

d

e

31

1

c

IDCTVLD

MC

RCFD

Rate
Scenario

I99 P0 Px

a 0 0 1

b 0 0 x

c 99 1 x

d 1 0 1

e 99 0 x

x ∈ {30, 40, 50, 60, 70, 80, 99}

Fig. 1. SADF model of an MPEG-4 decoder

the workload within scenarios by associating a discrete

ex ecution time distribution to each scenario of any actor.

As indicated, the FD is responsible for determining the

scenario in which the other actors operate. SADF abstracts

away from the actual data-dependent control conditions on

which the scenario is determined in real-life by associating

Markov chains to detectors. In Fig. 1, FD contains a fully

connected 9-state Markov chain (one state per scenario),

where the transition probabilities are chosen such that the

probability of visiting each of the 9 states matches with

the occurrence probability of the represented scenario.

Designing distributed streaming systems is usually sub-

ject to satisfying/optimising various functional and per-

formance properties. A prominent performance criterium

is often throughput, which for the MPEG-4 decoder is

the number of frames that are completely processed per

second (i.e., the number of firing completions of actor

RC per time unit). Throughput for SDF is known to be

maximised in case of so-called self-timed ex ecution [29],

which refers to a class of scheduling policies where actors

fire as soon as they are enabled (i.e., when sufficient

tokens have become available on their inputs). Self-timed

execution has been adopted for the SADF analysis tech-

niques implemented in SDF3 [11], [37]. A prerequisite for

achieving a positive throughput is absence of deadlock,

which requires sufficient storage space to be available

for the buffers incorporated in channels (amongst others).

Analysis of buffer occupancies to identify some (minimal)

storage space distribution over the buffers (various such

distributions can exist [31]) is therefore another important

design aspect. Finally, various latencies or variations in

such latencies must often be minimised. Example latency

metrics for the MPEG-4 decoder are the minimum, ex-

pected and maximum time until processing the first frame

(first firing of actor RC) is completed.

III. Interactiv e Markov Chains

Contemporary model checkers like CADP allow user-

defined (quantitative and qualitative) properties to be eval-

uated. Such properties include the aforementioned per-

formance criteria for dataflow models as well as func-

tional correctness checks such as absence of deadlocks

and livelocks. We enabled the use of CADP by cap-

turing the behaviour of SADF using Interactive Markov

pn

p1
τ

t1
1

tn 1

λ

Discrete Time Distribution in SADF Stochastic Time Distribution in IMC

Fig. 2 . Difference in time models

Chains (IMC) [17]. IMCs extend traditional continuous-

time Markov chains with the ability to interact using

interactive actions. Hence, an IMC is a state-based model

with action and Markovian transitions. The Markovian

transitions model advancing time according to a negative

exponential distribution whereas actions can be used to

synchronise with other IMCs in a handshake manner

like in CSP [19]. By parallel composition of IMCs, a

complete system can be described in a compositional way

[17], [18]. IMCs have shown their practical relevance in

applications of various domains, ranging from dynamic

fault trees [4], standardised engineering languages such

as AADL (Architectural Analysis and Design Language)

[5] and Statemate [1] to Globally Asynchronous Locally

Synchronous (GALS) hardware designs [7]. We exploit

IMCs to define the semantics of SADF in a component-

based manner, i.e., each individual actor yields one (or

more) IMC(s) which are subsequently put in parallel.

Capturing the behaviour of an SADF model such as the

MPEG-4 example in Fig. 1 with IMC is not trivial due to

a fundamental difference in their underlying time models.

The original semantics of SADF is defined in terms of

so-called Timed Probabilistic Systems [36]. They contain

action, probabilistic and deterministic time transitions. The

time transitions denote that time must have advanced with

the specified ex act amount of time units before the next

transitions become enabled. A specific combination of

transitions allows expressing any discrete execution time

distribution associated to the scenario of an actor, see Fig.

2. The left-hand side shows that after performing some

(internal) action τ (think of drawing a sample from a

discrete distribution), time advances exactly ti time units

with probability pi for i = 1,...,n. Notice that such a

distribution has clear (lower and upper) bounds. Opposed

to the approach of SADF, the stochastic time model of IMC

on the right-hand side of Fig. 2 uses a single Markovian

transition to indicate a specific exponential distribution

where time advances on average with 1/λ time units. In

such case, there exist no exact bounds, thereby rendering

analysis of properties depending on such bounds infeasible.

On the other hand, the stochastic nature of the time

delays in IMCs enable to determine measures like maximal

expected time objectives and time-bounded reachability.

To apply CADP to SADF and overcome the difference

in time models, we choose to use a single exponential

distribution per scenario of an actor such that the mean

execution time 1/λ equals the mean of the original discrete

distribution
∑n

i= 1
pi · ti. This conforms to the principle

DC1

DCn

CC1

CCm

FM

SM

Fig. 3 . IMC comp onent model temp late

that exponential distributions are the optimal statistical

approximation (in terms of maximiz ing the entropy) if only

the mean execution times are known. We are aware that

this approach may not always imply the same quantitative

results compared to using the SADF analysis techniques

of SDF3 but it does allow investigating the scalability of

CADP for systems with scenario-based dynamism.

IV . IMC Sem antics of SADF

Under the assumption discussed in the previous sec-

tion, we propose an IMC semantics for SADF. A useful

observation is that actors (kernels and detectors) of an

SADF model behave quite similar (See [36] for a detailed

explanation). They first determine the scenario to operate

in. Subsequently, they wait for a number of tokens to

become available on their data inputs. Then, time advances

according to some execution time distribution and their

firing ends with consuming and producing tokens. Kernels

and detectors mainly1 differ in the way they determine the

scenario in the first step. Given the similarity, we propose

a common model for kernels and detectors consisting of

multiple interacting IMCs for each SADF actor together

with its input (data and control) channels. The latter

simplifies testing on the availability of sufficient tokens

while also avoiding larger state spaces when channels are

modelled as separate components. In case of the MPEG-4

example in Fig. 1, we therefore get five of such IMC-based

component models.

Fig. 3 visualises the constituents of the IMC component

model template for an SADF actor with n data and m
control inputs. Since SADF abstracts from the content of

data tokens, a data channel (DC) can be modelled as a

counter that is initialised with the number of initial tokens.

The counter can be incremented by the producer as well as

inspected and decremented by the consumer. Rates exceed-

ing one are realised with a number of consume/produce

actions equal to the corresponding rate. Control channels

(CC) are more complex in the sense that the scenario

values of control tokens must be stored. We choose to

store the token sequence of a control channel as a string of

which the first character can be inspected and removed by

the consumer, while characters can be concatenated (one-

by-one) at the tail by the producer. This allows us to not

predefine the siz e of control buffers. Hence, both data and

control channel models in IMC are potentially unbounded

1Only detectors produce scenario-valued tokens onto control channels.

(conform the definition in SADF). This provides ample

means to identify alternative buffer space distributions as

analysis results.

To represent the actual SADF actor, the component

model template in Fig. 3 contains two more IMCs. The

Functional Module (FM) captures the main behaviour of

an actor. Its first actions express waiting until a token is

available on each control input, which requires interacting

with the CCs. Upon availability of such control tokens, FM

activates the Scenario Module (SM) to delegate establish-

ing the scenario to operate in. The next step of FM after

obtaining the scenario from SM is to wait until sufficient

tokens are available on the data inputs by interacting

with the appropriate DCs. Subsequently, FM includes a

Markovian transition (at most one for each scenario) to

model waiting according to the appropriate exponentially

distributed execution time. The final step of FM is to

interact with the DCs and CCs of the considered actor

to update their status in correspondence with consuming

tokens, while it further interacts with DC and CC IMCs of

the destination actors to realise the production of tokens.

The SM in Fig. 3 is responsible for establishing the

scenario. In SADF, kernels and detectors do this in slightly

different ways. Both operate in a default scenario if there

are no control inputs, otherwise the scenario is (partly)

determined by interpreting the tokens received on control

inputs. For kernels, that is all there is, but for detectors,

the scenario is further detailed by making a transition in

a Markov chain. In general, a Markov chain is associated

to a detector for each possible scenario-value combination

of received control tokens [36]. In case a detector has no

control inputs, as for the MPEG-4 example in Fig. 1, a

single Markov chain details the scenario. However, if a

detector has control inputs, a Markov chain is selected

based on the scenario-value combination of the control

tokens. The state of each Markov chain is retained until

the next occurrence of the corresponding scenario-value

combination [36]. In our IMC semantics, we use the same

modelling approach for kernels and detectors. That is,

we associate single state Markov chains (with a single

transition) to kernels, one for each scenario in which

they can operate. Hence, SM first interprets scenario-

valued control tokens (if there are control inputs) and

subsequently makes an appropriate probabilistic choice

(always with a single option for kernels). Since IMCs do

not support probabilistic transitions (but CADP does), we

use action transitions with a designated label and replace

these labels with concrete probabilities at analysis time,

see also Section V .

Parallel composition of the different IMCs constituting

the template in Fig. 3 gives an IMC semantics for one

SADF actor. Further parallel composition yields an IMC

semantics for a complete SADF model. Such parallel

composition leads to non-deterministic choices between

a λ ||

a

a

λ

λ

hide a + maximal

progress

action urgency

a

λ

τ

λ

Fig. 4. Max imal p rogres s & action u rgency

the transitions that parallel components can perform in-

dependently. Many forms of such non-determinism can

exist in IMCs [17]. Commonly, the assumption of max -

imal progress is used to resolve non-determinism between

internal (τ) actions and Markovian transitions. Internal

actions are those actions that do not participate in the

interaction between IMCs. Therefore, such internal actions

are often hidden for the environment. The upper part of

Fig. 4 illustrates the effect of applying maximal progress

after parallel composition. In Section II, we discussed the

concept of self-timed execution for dataflow models as a

means to partially resolve non-determinism: an actor is

fired without delays in case all its enabled actions are

performed prior to advancing time, i.e., not only internal

actions that can be hidden for other IMCs. Prioritising any

action over progress in time is sometimes called action

urgency [24], [37]. Its effect is illustrated in the lower part

of Fig. 4. The next section discusses constructing the IMC-

based state space of the MPEG-4 example with CADP.

V . F orm al V erifi cation with CADP

The CADP tool suite provides ample means for the

three phases of traditional model checking approaches:

state-space generation, state-space reduction and (qualita-

tive and quantitative) analysis. The main benefit of CADP

is its ability to exploit compositionality. State spaces can

be obtained and be reduced in a component-based manner.

All this relies on expressing behaviour in an extended

version of LOTOS [2]. CADP supports action transitions,

probabilistic transitions and Markovian transitions (but not

the time transitions as defined in SADF). Given the natural

match with two types of these transitions, IMCs are easily

expressible without additional semantic modifications [6].

a) State-Space Generation.: The main steps of map-

ping SADF models onto the analysis capabilities of CADP

are provided in Fig. 5. First, the IMC models of each

individual SADF actor are glued together by means of

parallel composition. The action transitions allow a flexible

way of combining IMCs such that channels are for instance

shared between a sending and receiving SADF actor. As

now the actions to compose the individual IMCs are

not of any relevance, they are abstracted away (hiding).

This entails that all action transitions are labeled with

the internal action τ . Applying the maximal progress

principle of IMCs yields the removal of all Markovian

transitions emanating from states that also have outgoing

Component IMC Models

Monolithic IMC of Complete System

Closed IMC of Complete System

Pruned IMC of Complete System

Parallel Composition

Hide Synchronizing Interactions

Action Urgency / Maximal Progress

Branching Bisimulation Reduction

Reduced IMC of Complete System

Amalgamate Markovian and Probabilistic Transitions

CTMC

Qualitative & Quantitative Analysis

Check Absence of Non-Determinism

Extended CTMC

|S|

|S’|

1

2

3

4

5

6

7

Fig. 5 . From SADF models to analy s is

τ -transitions. Thus, as a result either a state has only outgo-

ing τ -transitions or outgoing Markovian transitions. Parts

that become unreachable by this operation are removed

from the state space. Subsequently, the state space of the

IMC is reduced using branching bisimulation [15]. In case

no non-determinism is left, i.e., no state has two (or more)

outgoing τ -transitions — this holds for any SADF model

thanks to action-determinism [35]— the resulting IMC is

a stochastic process that after amalgamating probabilistic

with subsequent Markovian transitions [28] (illustrated in

Fig. 6) yields a continuous-time Markov chain (CTMC).

CADP allows qualitative model checking on any IMC,

including the non-deterministic ones; quantitative analysis

however is restricted to CTMCs. All above steps are

realised by the scripting language SV L [8] of CADP.

b) State-Space R eductions.: As the SADF buffers

are modeled by data types and are in principle unbounded,

they do not have a fixed a priori capacity. This means

that state-space generation may not terminate. Specific

characteristics of the MPEG-4 example (which include

consistency between production and consumption rates and

the cyclic dependencies) imply a bounded system, but

indications about the siz e of the individual buffers are

not available by a static analysis of the SADF model. In

case of bounded SADF systems, CADP can generate the

state space, possibly apply some reductions, and perform

various analyses. The state-space reductions obtained by

CADP using branching bisimulation are substantial, cf.

the two tables in Table I. The tables differ in the set of

scenarios of the MPEG-4 decoder that are supported in the

λ

p 1-p
p·λ (p-1)·λ

Fig. 6 . Eliminating p rob ab ilis tic trans itions

Scenarios I99, P0, P30, P40, P50, P60, P70, P80, P99

PD |S| Memory Time |S′| Factor Time

1 121430 148MB 4.34s 20664 5 .8 8 14.24s
2 11843682 19.2GB 282s 748813 15 .8 2 604s
3 ? >192GB ? ? ? ?

Scenarios I99, P0, P30, P60, P99

PD |S| Memory Time |S′| Factor Time

1 89166 121MB 3.98s 12580 7 .0 9 12.15s
2 3853042 6.9GB 88s 259145 14.8 7 175s
3 56867106 135GB 2241s 2661313 21.3 7 3279s

T AB L E I. State s p ace redu ctions

model. PD denotes the pipelining degree of the MPEG-4

example which coincides with the number of initial tokens

on the channel between RC and FD. The parameter PD

varies the state space: the more initial tokens are available,

the more pipelining (i.e., concurrency) is possible. The first

three columns provide the siz e of the state space |S| of the

original, i.e., non-reduced model, the storage requirements

for this model, and its generation time. The last three

columns provide the siz e of the minimised state space |S′|,
the reduction factor and the generation plus minimisation

time. The experiments were ran on a 2.6 GHz machine

with 192GB main memory. The entries ? in Table I indicate

that more memory is needed to cover these models.

c) Q ualitative and Q uantitative Analysis.: Several

functional properties of the MPEG-4 model were analysed

using the built-in model checker of CADP. This includes

simple reachability properties (“ does RC eventually fire?”)

as well as properties such as “ between two consecutive MC

firings, RC must fire at least once” and leadsto properties

(“ after V LD fires, eventually IDCT fires”). To analyse

the CTMC obtained from the state space generation and

reduction process, CADP supports standard transient anal-

ysis (“ what is the probability to be in a certain state

at time t?”) as well as steady-state analysis (“ what is

the state probability on the long term?”). Such analysis

can be readily applied to the minimised models. A more

intricate performance measure that has been considered is

the response time distribution of the RC component. That

is to say, “ what is the probability that RC finishes its first

firing within a certain time?” . We accomplished this by

modeling an observer to the IMC of the SADF component

which synchronises on the first firing completion of the

RC component. The time to reach the final state of the

observer now yields the requested measure. The results are

depicted in Fig. 7. This form of analysis is not supported by

SDF3, which only allows computing some statistics of the

response time distribution being the minimum, maximum

and expected response time. This shows the added value

of using a model checking tool like CADP.

V I. L essons L earned

Applying CADP for model checking SADF revealed

several new insights compared to the SDF3 approach. The

0 1,000 2,000 3,000 4,000 5,000 6,000
0

0.2

0.4

0.6

0.8

1

T [kCycle]

P
(R

es
p

o
n

se
T

im
e

o
f

R
C

≤
T

)

Fig. 7 . R es p ons e time of R C

latter uses shared data structures for the channels, which

are not an integrated part of the processes as opposed

to the IMC actor model template in Fig. 3. Moreover,

instead of using explicit interactive actions, SDF3 currently

solely uses guards on the shared data structures modelling

the channels (i.e., interactions are implicit). The composi-

tional approach shown in this paper is however perfectly

transferable to an alternative implementation in SDF3. The

same holds for exploiting the similarity between kernels

and detectors discussed in Section III, which could unify

separate functionality in SDF3 for kernels and detectors,

thereby potentially improving efficiency.

Contemporary model checkers like CADP provide more

flexibility over dedicated ones like SDF3, especially in

terms of the range of analysable properties. On the other

hand, SDF3 mostly supports reward-based properties that

could not be evaluated with CADP. Support for evaluating

such properties could boost applicability of CADP. Due

to the different time models of CADP and SDF3, their

effectiveness (in terms of quantitative analysis results) and

efficiency (in terms of state space siz es) seem however

fairly incomparable. Future work includes identifying what

properties are invariant to the difference in time models.

R eferences

[1] E. Böde, et al. Compositional Dependability Evaluation for STATE-
MATE. IEEE Tr. on Softw. Eng., vol. 35, 274– 292, 2009

[2] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification
Language LOTOS. Comp. N etw., vol. 14, 25– 59, 1987

[3] A. Bonfietti, et al. An Efficient and Complete Approach for
Throughput Maximal SDF Allocation and Scheduling on Multi-
Core Platforms. DATE, ACM, pp. 897– 902, 2010

[4] H. Boudali, et al. Rigorous, Compositional, and Extensible Frame-
work for Dynamic Fault Tree Analysis. IEEE Tr. on Secure and
Dependable Comp., vol. 7, 128– 143, 2009

[5] M. Boz z ano, et al. Safety, Dependability and Performance Analysis
of Extended AADL Models. Comp. J ., vol. 54(5), 754– 775, 2011

[6] N. Coste, et al. Ten Y ears of Performance Evaluation for Concurrent
Systems using CADP. ISO L A, LNCS 6416, pp. 128– 142, 2010

[7] N. Coste, et al. Q uantitative Evaluation in Embedded System
Design: V alidation of Multiprocessor Multithreaded Architectures.
DATE, ACM, pp. 88– 90, 2008

[8] H. Garavel and F. Lang. SV L: A Scripting Language for Compo-
sitional V erification. FO R TE, Kluwer, pp. 377– 394, 2001

[9] H. Garavel, et al. CADP 2010: A Toolbox for the Construction and
Analysis of Distributed Processes. TACAS, LNCS 6605, pp. 372–
387, 2011

[10] M. Geilen and T. Basten. Requirements on the Execution of Kahn
Process Networks. ESO P, LNCS 2618, pp. 319– 334, 2003

[11] M. Geilen and S. Stuijk. Worst-case Performance Analysis of Syn-
chronous Dataflow Scenarios. CO DES+ ISSS, pp. 125– 134, 2010

[12] A. Ghamarian, et al. Liveness and Boundedness of Synchronous
Data Flow Graphs. FMCAD, IEEE, pp. 68– 75, 2006

[13] A. Ghamarian, et al. Throughput Analysis of Synchronous Data
Flow Graphs. ACSD, IEEE, pp. 25– 36, 2006

[14] A. Ghamarian, et al. Latency Minimiz ation for Synchronous Data
Flow Graphs. DSD, IEEE, pp. 189– 196, 2007

[15] R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstrac-
tion in Bisimulation Semantics. J . of the ACM, vol. 43, 555– 600,
1996

[16] W. Haid, et al. Multiprocessor SoC Software Design Flows. Signal
Processing Magaz ine, vol. 26, no. 6, pp. 64– 71, 2009

[17] H. Hermanns. Interactive Markov Chains and the Q uest for Q uan-
tified Q uality. LNCS 2428, 2002

[18] H. Hermanns and J.P. Katoen. The How and Why of Interactive
Markov Chains. FMCO ’0 9 , LNCS 6286, pp. 311– 337, 2009

[19] C.A.R. Hoare. Communicating Seq uential Processes. Prentice Hall,
1985

[20] G. Kahn. The Semantics of a Simple Language for Parallel Pro-
gramming. Proc. of IFIP’7 4, pp. 471– 475, 1974

[21] E. Lee and D. Messerschmitt. Static Scheduling of Synchronous
Data Flow Programs for Digital Signal Processing. IEEE Tr. on
Comp., vol. 36, no. 1, pp. 24– 35, 1987

[22] W. Liu, et al. Efficient SAT-based Mapping and Scheduling of
Homogeneous Synchronous Dataflow Graphs for Throughput Op-
timiz ation. R TSS, pp. 492-504, 2008

[23] O. Moreira, et al. Multiprocessor Resource Allocation for Hard-Real
Time Streaming with a Dynamic Job-Mix. R TAS, pp. 332-341, 2005

[24] X. Nicollin and J. Sifakis. An Overview of Synthesis on Timed
Process Algebras. CAV, pp. 376– 398, 1991

[25] T. Parks. B ounded Scheduling of Process N etworks. PhD Thesis,
University of California, Berkeley, 1995

[26] A. Pimentel. The Artemis Workbench for System-level Performance
Evaluation of Embedded Systems. J . of Embedded Systems, vol. 3,
no. 3, pp. 181-196, 2008

[27] P. Poplavko, et al. Execution-Time Prediction for Dynamic Stream-
ing Applications with Task-Level Parallelism. DSD, IEEE, pp. 228–
235, 2007

[28] M. Rettelbach. Probabilistic Branching in Markovian Process Al-
gebras. Comp. J ., vol. 38, no. 7, 1995.

[29] S. Sriram and S. Bhattacharyya. Embedded Multiprocessors:
Scheduling and Synchroniz ation, Second Edition. CRC Press, 2009

[30] S. Stuijk, et al. SDF3: SDF For Free. ACSD, IEEE, pp. 276– 278,
2006

[31] S. Stuijk, et al. Throughput-Buffering Trade-Off Exploration for
Cyclo-Static and Synchronous Dataflow Graphs. IEEE Tr. on
Comp., vol. 57, no. 10, pp. 1331– 1345, 2008

[32] S. Stuijk, et al. A Predictable Multiprocessor Design Flow for
Streaming Applications with Dynamic Behaviour. DSD, IEEE, pp.
548– 555, 2010

[33] S. Stuijk, et al. Scenario-Aware Dataflow: Modeling, Analysis and
Implementation of Dynamic Applications. SAMO S, pp. 404– 411,
2011

[34] B.D. Theelen. A Performance Analysis Tool for Scenario-Aware
Streaming Applications. Q EST’0 7 , IEEE, pp. 269– 270, 2007

[35] B.D. Theelen, et al. A Scenario-Aware Data Flow Model for Com-
bined Long-Run Average and Worst-Case Performance Analysis.
MEMO CO DE, pp. 185– 194, 2006

[36] B.D. Theelen, et al. Scenario-Aware Dataflow. Technical Report
ESR-2008-08, Eindhoven University of Technology, July 2008

[37] B.D. Theelen, et al. Performance Model Checking Scenario-Aware
Dataflow. FO R MATS, LNCS 6919, pp. 43– 59, 2011

[38] M. Wiggers, et al. Efficient Computation of Buffer Capacities for
Multirate Real-Time Systems with Back-Pressure. CO DES+ ISSS,
pp. 10– 15, 2006

