
Correct-by-Construction Multi-Component SoC
Design

Roopak Sinha
POP ART Team

INRIA Rhône Alpes
France

roopak.sinha@inria.fr

Partha S Roop, Zoran Salcic
Electrical and Computer Engineering

University of Auckland
Auckland, New Zealand

p.roop, z.salcic@auckland.ac.nz

Samik Basu
Department of Computer Science

Iowa State University
Ames, IA

sbasu@cs.iastate.edu

Abstract—Systems-on-chip (SoCs) contain multiple intercon-
nected and interacting components. In this paper, we present a
compositional approach for the integration of multiple compo-
nents with a wide range of protocol mismatches into a single
SoC. We show how SoC construction can be done in single-step
when all components are integrated at once or it can also be
performed incrementally by adding components to an already
integrated design. Using a number of AMBA IPs, we show that
the proposed framework is able to perform protocol conversion
in many cases where existing approaches fail.

I. INTRODUCTION

A system-on-a-chip (SoC) contains multiple intellectual
property blocks (IPs) composed together to achieve system-
level functionality. It is desirable that IPs are integrated into
a SoC automatically because manual integration is a time
consuming and error prone process for even small SoCs.

A few techniques for compositional reasoning for multi-
component systems have been proposed [1], [2], [3]. In Alfaro
et al [1], interface automata are introduced as a framework to
capture the temporal aspects of software component interfaces.
Here, two components are deemed compatible if an environ-
ment under which they can work together exists. This frame-
work is extended by Tripakis et al [2] to relational interfaces
where input-output relations can be captured. Bozga et al [3]
provide a modelling framework for the compositional nature
of synchronous multi-component systems. Although SoCs are
compositional systems, existing compositional frameworks are
not directly applicable to their construction. Generally, IPs
cannot be composed without the resolution of protocol mis-
matches, which may lead to undesirable composite behaviour
such as deadlocks. Existing compositional techniques can
check whether two or more IPs are compatible [1], but cannot
enforce compatibility.

Formal approaches have been used in generation of protocol
converters which resolve incompatibilities between IPs [4],
[5], [6], [7]. Avnit et al [4] present a framework for the
precise modelling and conversion of AMBA bus protocols.
Passerone et al [6] present a game-theoretic formulation for
protocol conversion between two protocols. Kumar et al [5]
present a technique to bridge mismatches using supervisory
control theory, while Tivoli et al [7] present adaptor synthesis,
where an adaptor is generated to control a multi-component
real-time system such that given timing as well as functional
requirements (expressed as automata) are met. However, these
approaches are also inapplicable to SoC construction. Some

(like [4]) generate converters for only two IPs, and only ad-
dress control mismatches. Existing approaches cannot address
data-width mismatches (caused by different word sizes), nor
clock mismatches (that occur when different clocks drive the
IPs). In addition, no existing protocol conversion approach
can generate converters to ensure the satisfaction of multiple
constraints (specifications) on the behaviour of the SoC.

IP protocols (SKS)

FSM

Clocks

Converter

CTL properties

Data

Converter

Generation

Algorithm

Converter

Classification of I/O

Control

Converter

Converted system

Shared

Environment

Converter

IP protocols CTL properties

Fig. 1: Overview of the conversion process
This paper presents a SoC construction approach, which

extends the work presented in [8], to allow formal correct-
by-construction design of SoCs with mismatching IPs. An
overview of this approach is provided in Fig. 1. It addresses
clock, data-width and control signal mismatches, and can
integrate more than 2 protocols at once, making it more general
than existing protocol conversion techniques. IP protocols
are represented as synchronous, finite-state automata called
Synchronous Kripke Structures (SKS) [9], that may operate
on different phase-aligned clocks. The user provides control
and/or data constraints using the temporal logic CTL, and
identifies each control signal as shared (emitted and read
within the IPs), environment-generated (generated by the con-
trollable environment), or converter-generated (generated by
the converter whenever needed). A tableau-construction based
algorithm is then employed to generate a converter, if possible,
that ensures the satisfaction of given constraints regardless of
how the environment behaves.

As compared to [8], this paper provides a simpler formalism
(in Sections II and III), more specifically in the categorisation
of control signals for conversion (Section III-B). We also show
that SoCs can be constructed in two ways in Section III-D.
Single-step construction (Fig. 2(a)) combines all IPs of a SoC

978-3-9810801-8-6/DATE12/ c©2012 EDAA

t0
s0

(a) IR Receiver PS (b) Control PT

Idlet

0

ready/.
keyok/.

ready/.

keyok/

start
IR Buffer

16 bits

Idles

true/. ./done

KeyIn16

t1COut8

s1
clk1

clk2

Off

u0

stop/

S
a
te
llite

PAL out (to TV)

start

SigOut8

u2

SigRd8

u1

start/.

true/.

stop/.

Wait

v0

pkt/.pkt/.

e
sig

n
a
l
in
p
u
t
(8

(d) PAL/NTSC Encoder PV start/.

stop /.

POut8

v2

NOut8

v1

pal/.ntsc/.

(c) Video Decoder PU

b
its)mclk clk3

8

AV Output signal (8 bits)

(a) Protocols of the set-top receiver box SoC

ca
0

ca
1

true/

{mclk clk3}

ca
2

ca
3

{mclk,clk3}

true/

{mclk,

clk1}

true/

{mclk,clk3}

true/

{mclk,

clk2}

23

(b) Clock automaton

Fig. 3: Conversion techniques

IPs

Converter

IPs IPs

Converter

Environment

Final SoC

(a) Single-step conversion

IPs Stage 1 IPs Stage 2 IPs Stage 2

SoC Stage 1

IPs Stage 1

Converter1

IPs Stage 2

Converter2

IPs Stage 2

Converter3
Environment

Final SoC

SoC Stage 2

(b) Incremental conversion

Fig. 2: Conversion techniques

using a centralized converter. On the other hand, incremental
conversion (Fig. 2(b)) allows adding IPs to a SoC in stages.
At each stage, the system is partially closed with respect to
shared I/O (input/output) between known IPs, but is open with
respect to I/O from its environment, allowing more IPs to be
added later on. Another major contribution of this paper is that
the extended algorithm generates a maximally-permissive non-
deterministic converter. All possible deterministic converters
are restrictions of this converter. We show that this feature
is essential for incremental conversion, where IPs are added
to an SoC in stages. This feature is absent in [8], which
affects its applicability for incremental design. We also test
the formulation using larger SoC benchmarks in Section IV.

II. MOTIVATING EXAMPLE

Protocols are described as Synchronous Kripke Struc-
tures (SKS), which is a finite state machine represented
as a tuple 〈AP , S, s0, I, O, R, L, clk〉 where, AP =
APcontrol

⊎
APdata is a set of propositions where APcontrol

is the set of control labels and APdata is the set of data labels.
S is a finite set of states, with s0 as the initial state. I and

O are finite, non-empty set of inputs and outputs respectively.
R ⊆ S × {t} × B(I) × 2O × S is the transition relation
where B(I) represents the set of all boolean formulas over I .
A transition triggers when the corresponding boolean formula
over its inputs evaluates to true. This evaluation is done at
every rising edge (tick) of the clock clk. If the transition
is taken, the corresponding set of outputs may be generated.
L : S → 2AP labels each state by a set of atomic propositions
describing the control and data I/O status in that state.

Fig. 3(a) presents the IPs of a set-top receiver box SoC.
The IR receiver IP PS writes 8-bit data (represented by the
label COut8 of state s1) onto an IR buffer. The control IP PT

awaits an input ready and then reads 16-bit data from the
IR buffer (represented by the label KeyIn16 of state t1). It
emits start if the key is valid, which is read by the video
decoder PU . PU then alternates between reading 8-bit data
from the satellite signal input stream (in state u1) and writing
it to the AV output signal stream (in state u2) until it receives
the stop signal. The PAL/NTSC encoder PV can convert an
AV packet stream to a PAL or NTSC stream depending on the
corresponding input received before each packet.

The IPs execute on different phase-aligned clocks, as shown
by the clock automaton CA in Fig. 3(b), that describes the
relationships between clock ticks. It is driven by the fastest
clock mclk in the system, which synchronizes with all other
clocks. Clocks clk1 and clk2 have the same period, but do not
synchronize (their rising edges occur at different instances or
ticks of mclk). Clock clk3 is twice as fast as these clocks but
does not synchronize with either.

In order to integrate the above IPs into a SoC, a designer
faces the following challenges. Firstly, the SoC contains IPs
operating on different clocks, resulting in timing issues and a
possibility of losing shared control signals (such as start).
Also, different I/O signals needs to be treated differently in
the final SoC. For example, input signal keyok is generated
asynchronously in the environment, whereas signals like stop
are needed for some IPs to progress but are not generated

anywhere in the system. Moreover, while the IR receiver emits
8-bit packets, the control unit reads 16-bit data, resulting in a
data-width mismatch. Additionally, the SoC must satisfy the
following specifications: (a) The control unit must continually
check the validity of the IR buffer, and (b) The video decoder
must never be disabled before a control unit check. Unlike
the technique proposed in this paper, no existing technique for
compositional reasoning or protocol conversion can address all
of the above issues.

III. METHODOLOGY

A. Inputs
The first step in the conversion process is the conditioning of

inputs to the conversion algorithm. Essentially, the algorithm
has two inputs: protocols and specifications.

1) Protocols: As each SKS may execute on a different
clock, each protocol is oversampled to describe its behaviour
with respect to the fastest clock in the SoC. This step simplifies
the problem to the conversion of SKS executing on a common
clock. Fig. 4 shows how the IR receiver SKS (Fig. 3(a)) can
be oversampled with respect to the fastest clock mclk in the
SoC. Note that the oversampled SKS makes a transition that
matches a transition in the original SKS only when the clock
automaton makes a transition during which the original clock
input for the SKS was emitted. In the rest of the paper, we
assume all SKSs are oversampled unless otherwise mentioned.

true/.

Idle
s

s0,ca0

s0,ca1

s1,ca0

s1,ca1
true/.

true/.

./done

Idle
s

0 1

COut
8

s1,ca2

1 1

Idle
s

s0,ca2
true/.

s1,ca3

Idle
s

s0,ca3
true/.

true/.

true/.

Fig. 4: Oversampled IR receiver PSCA

Next, we compute the parallel composition of the SKSs.
The parallel composition of protocols P1 and P2, denoted by
P1||P2, is computed as a Cartesian product of P1 and P2 [9].
The composition operator || is associative and distributive.

The last step in the preparation of protocols is partitioning
of inputs and outputs. This step is described in Fig. 5. This
step explicitly states how different I/O signals are managed
by the converter. Each signal is placed in one of the following
partitions by the user. Inputs that are read from (or outputs
emitted to) the environment are placed in the uncontrollable
signals partition. The converter must ensure that these signals
are passed to/from the protocols as soon as they are available.
Shared signals are emitted and read by protocols. The con-
verter must ensure that such signals are read from the protocols
when they are emitted and buffered until they are ready to
be read back by the protocols. Missing control signals are
protocol inputs that are generated neither by the environment
nor within the protocols. The converter might need to generate
these signals itself in order to ensure progress.

For example, in Fig. 3(a), the signal keyok is uncontrol-
lable as it is read from the operating environment (a remote

OuncIunc

IP

1-place

signal

Oemit Iemit

Ibuf
IPsEnvironment buffers

Signal

Generator

Obuf

Ogen

SoC

Converter

Fig. 5: Different types of inputs and outputs

control device interface). Signal start is a shared signal as it
is emitted by the control unit PT and read by the video decoder
PU . Also, ready (PT) and stop (PU) are missing control
signals because they are emitted neither by the environment
nor by any protocols in the SoC.

2) Specifications: Our conversion algorithm takes as input
specifications written in temporal logic CTL, that describe the
desired communication between the IPs. The various types of
specifications admitted by the algorithm are:
• Control constraints are CTL properties over state labels

in the protocols. E.g., the CTL properties AGAFKeyIn16

and AG(SigRd8 ⇒ A(¬Off UKeyIn16)) require that the
set-top system (in Fig. 3(a)) remains receptive to reading
data from the remote control, and the video decoder must
never be disabled before a control unit check.

• Data constraints are CTL properties over data counters
that are used to keep track of the data communication
between IPs. A data counter is associated with a data
buffer, and is incremented/decremented whenever data is
added to/removed from the buffer. For the set-top box
example, we introduce a counter I for the IR Buffer
(shown in Fig. 3(a)). As the capacity of the IR buffer is
16 bits, we introduce the data-constraint AG(0 ≤ I ≤ 16)
to ensure that the buffer never overflows (or underflows).
Note that we do not differentiate between the different
(upto 216) data values in the buffer but the number of bits
contained in the buffer at any one time during execution.
This allows us to prevent state-space explosion due to data.

• Control-data constraints involve the use of state labels as
well as counter values within the same formula. E.g., the
formula AG((Idles ∧ Idlet ∧ Off ∧Wait) ⇒ (I = 0))
requires that whenever all IPs of the set-top box are in
their initial states, the IR buffer should be empty.

B. Converters

A converter C controls a protocol P , which can indeed
be the parallel composition P1||P2|| . . . ||Pn of multiple IP
protocols. The converter uses the information about how
different I/O signals are to be treated, as shown in Fig. 5,
and can perform the following actions. All uncontrollable
signals, if read, are forwarded to the environment/protocols
in the same clock tick. The converter buffers shared signals
read from P and then can forward them later on (after one
or more clock ticks), allowing synchronized communication
between two protocols executing on different clocks, or having
mismatching protocols. The converter maintains a 1-place
buffer for each shared signal. It may also hide a buffered signal

from P in a tick to disable an undesirable transition. Finally, it
may artificially generate some control signals that are emitted
neither by the environment nor in P .

The converter executes using the base (fastest) clock of the
SoC so that it can manage every transition in P . At each clock
tick, the converter follows a precise sequence of interactions
(called a micro-step) with the environment and the protocols.
Firstly, the converter reads the uncontrollable signals present
in the environment as input formula bunc. It then forwards
the uncontrollable signals as well as any converter-controlled
signals (buffered or generated) to the protocols as the set
o. It then reads the signals generated by the IPs, emitting
any uncontrollable outputs (oemit) to the environment, and
buffering relevant control signals (ibuf). These steps form a

single transition (or macro-step) C
bunc/o;oemit;ibuf−−−−−−−−−−−→ C′ of a

converter state C.
C is formally a converter SKS, or CSKS. Each state precisely

corresponds to a unique state in the protocol being converted.
It operates using the fastest clock in the SoC, and each transi-
tion in C triggers a unique corresponding protocol transition.
Each state is also associated with a control buffer, indicating
the set of signals contained in the converter’s buffers. In the
initial state, the buffers are empty. After each transition, the
buffers are adjusted by adding any newly buffered signals (and
removing any signals emitted) during that transition.

The lock-step composition [9] describes the converted sys-
tem, and is defined using the // operator. C//P is a SKS
where each state corresponds to a unique state C in C and
its corresponding state s in the protocols. Each transition
corresponds to a transition in C and the matching transition
in s. The converted system therefore contains only those
transitions and executions in P that are allowed by C.

C. Converter Generation Algorithm
The converter generation algorithm Alg. 1, based on the

conversion algorithm presented in [9], is a recursive algorithm
that constructs a graph corresponding to all possible valid
behaviours of the protocol such that given constraints are
satisfied. The initial call is made with the arguments s = s0,
the initial state of P (the protocol(s) to be converted); I = I0

a set of counter valuations where all counters are reset to 0;
FS = FS0, the set of all CTL constraints; E = ∅, an empty set
of buffered signals; and H = ∅, the set referring to the entries
created during previous calls to the algorithm. These initial
arguments (except H) correspond to the root node, or entry, in
the graph. An entry represents the assertion (s,I,E) |= FS.

The algorithm first checks if the same entry has
been processed earlier (lines 2–4), and returns failure (a
FALSE_NODE), in case the ancestor entry contains EU or AU
formulas. Otherwise it returns the ancestor node itself. This
prevents infinite unrolling, and the finitization is based on rules
for on-the-fly model checking, also described in [9]. Then, a
new entry is processed by simplifying the set of constraints
FS by removing one formula (line 7) and either checking
its satisfaction (lines 8-9) or by simplifying it into sub-
formulas and making recursive calls to Alg. 1 (lines 10-36).
The algorithm returns the processed entry, or FALSE_NODE
if the unrolling/satisfaction process returns failure.

Alg. 1 extends the conversion algorithm presented in [9] in
the processing of disjunctions (lines 13–16) and sets of AX and

Algorithm 1 NODE isConv(s, I, FS, E, H)
1: curr = createNode(s, I, FS, E);
2: if anc ∈ H = curr then
3: return FALSE_NODE if FS contains AU/EU formula, else return anc
4: end if
5: H_1 = H ∪ {curr}; FS_1 = FS;
6: if FS contains a formula F which is neither of type AX nor EX then
7: FS_1 := FS_1− F; Node ret:= FALSE_NODE;
8: if F is a (negated) proposition/counter constraint satisfied in s, I then
9: ret:= isConv(s, I, FS_1, E, H_1)

10: else if F = ϕ ∧ ψ then
11: ret:= isConv(s, I, FS_1 ∪ {ϕ,ψ}, E, H_1)
12: else if F = ϕ ∨ ψ then
13: ret:= createORNode(s,I,FS_1 ∪ F,I);
14: ret.addChild(isConv(s, I, FS_1 ∪ {ϕ}, E, H_1));
15: ret.addChild(isConv(s, I, FS_1 ∪ {ψ}, E, H_1));
16: ret= FALSE_NODE if both its children are FALSE_NODE;
17: else if F = AGϕ, EGϕ, A(ϕ U ψ), ir E(ϕ U ψ) then
18: ret:= isConv(s, I, FS_1 ∪ F′, E, H_1) where F′ is the

conjunctive/disjunctive unrolled formula corresponding to F;
19: end if
20: curr.addChild(ret); curr = FALSE_NODE if ret=FALSE_NODE;
21: return curr;
22: end if
23: curr.type := OR_NODE;
24: FS_AX = {ϕ | AXϕ ∈ FS}, FS_EX = {ϕ | EXϕ ∈ FS}
25: for each conforming subset Succ of the successor set of s do
26: for Each possible distribution of FS_EX over Succ do
27: Create child nxt of curr; nxt.type = X_NODE;
28: for each state s′ in Succ do
29: E′ = AdjustBuffer(E,s −−→ s′);I’ = AdjustCounters(I,s’);
30: nxt.addChild(isConv(s’, I’, FS_AX ∪ FS_EX’, E’, H_1));
31: end for
32: nxt = FALSE_NODE if any of its child nodes is FALSE_NODE;
33: end for
34: end for
35: curr = FALSE_NODE if all of its child nodes is FALSE_NODE;
36: return curr;

EX formulas (lines 23–36). In [9], the conversion algorithm
looks for one way the assertion (s,I,E) |= FS can be satisfied.
E.g., it does not process the second operand of a disjunction if
the recursive call relating to the first operand returned success.
However, Alg. 1 enumerates all possible ways in which an
assertion is satisfied. Although this results in a larger graph
than in [9], the complexity of conversion is unaffected. In the
worst case, both algorithms must explore all possible nodes.

A deterministic converter can be created by first extracting
a sub-graph from the graph constructed by Alg. 1 such that
only one non-FALSE_NODE child of every OR_NODE (lines
13, 23) is retained. This sub-graph can then be interpreted as
a converter by the extraction algorithm presented in [9].

1) Soundness, Completeness, and Maximality: We prove
the correctness of the conversion algorithm in [9]. Specifically,
given a protocol P (or a parallel composition of protocols),
a set FS of CTL properties, and the identification of all I/O
signals as shared, generated or uncontrollable, a converter C
to achieve the satisfaction of all formulas FS in a converted
system C//P exists iff the isConv(s0,I0,FS, ∅, ∅) returns
a non-FALSE_NODE. The extended version of the algorithm
presented in this article, which has the added functionality of
enumerating all possible ways of satisfying given constraints,
can also be observed to be sound and complete. In addition to
the results of soundness and completeness, we also prove that
the graph returned by Alg. 1 is equivalent to a protocol result-
ing from the lock-step composition of the given protocol(s)
with the maximally-permissive, non deterministic converter.
Using the soundness and completeness results and showing

that the enumeration of all possible ways in which disjunctions
and AX/EX formulas can be satisfied ensures maximality.

D. Approaches to SoC design

1) Single-step conversion: Single-step conversion involves
the generation of a single converter to guide all protocols (as
shown in Fig. 2(a)). We illustrate how this technique works
by using the set-top box example shown in Fig. 3(a). Firstly,
all SKS PS , PT , PU and PT are oversampled by using the
common clock automaton (Fig. 3(b)), and their parallel com-
position PS ||PT ||PU ||PV (after oversampling) is computed.
Next, a call to Alg. 1 is made by passing the initial state of
the parallel composition, and all CTL constraints provided by
the user. For the set-top box example, the control constraints
AGAFKeyIn16 and AG(SigRd8 ⇒ A(¬Off U KeyIn16)),
and the data constraint AG(0 ≤ I ≤ 16) are included in
the input formula set. These inputs, along with categorisation
of I/O (e.g. marking start as a shared signal, keyok
as an uncontrollable input, and pal,ntsc,stop,ready
as converter-generated signals), are used by the conversion
algorithm to generate a converter. The conversion algorithm,
using the above inputs, successfully generates a converter
C, obtained by determinizing the maximally-permissive non
deterministic converter obtained from Alg. 1.

2) Incremental Conversion: In incremental conversion, IPs
are added to the SoC incrementally in multiple stages (as
shown in Fig. 2(b)). Whenever one or more IP is added to
the system, the conversion algorithm is used to generate a
converter that integrates the newly-added IP(s) to the system.
We illustrate how this technique works by generating a con-
verter for the set-top box example (Fig. 3(a)) in 2 stages, as
shown in Fig. 6.

P
S

P
T

startdone ready,

keyok

Converter
1

startdone ready,

keyok

Environment

(a) Stage 1 SoC layout

P
S

P
T

startdone ready,

keyok

Converter
1

startdone ready,

keyok

EnvironmentConverter
2

done

keyok

start pkt

pal

P
U

P
V

pal

(b) Stage 2 SoC layout

Fig. 6: Two-stage construction of the set-top box SoC
In the first stage, we integrate the protocols PS and PT .

We first over-sample them and then compute their parallel
composition PS ||PT . As the two protocols interact each with
the other using the IR buffer, we include the data constraint
AG(0 ≤ I ≤ 16) (as explained in Sec. III-A2), and mark all
I/O signals (done,ready,start etc.) as uncontrollable.

The above inputs are used to automatically generate a
maximally-permissive, non deterministic converter C1 (Fig.
6(a)), which executes using mclk and ensures the satisfaction
of the data constraint. The converter however does not further
constrain the system in stage 1. The layout of the system
obtained from stage 1 is shown in Fig. 6(a). C1 can be
determinized to generate one deterministic converter. However,

since the goal is to add more IPs, the non deterministic
converter C1 is used for the next stage.

The converted system C1//(PS ||PT) (equivalent to the
graph generated by the algorithm in stage 1), is used as
one of the IP inputs for stage 2. Here, we over-sample
the remaining IPs PU and PT and the parallel composi-
tion (C1//(PS ||PT))||PU ||PV is computed. We now include
AGAFKeyIn16 and AG(SigRd8 ⇒ A(¬Off U KeyIn16))
as input constraints to the algorithm. Finally, the common
signal start is marked as shared (hence bufferable in the
stage 2 converter), signals done and keyok are marked as
uncontrollable signals, while all remaining signals are marked
as converter-generated. These inputs are read by the conversion
algorithm which successfully generates a converter C2 to
satisfy all constraints described above. In fact, C2, the non-
deterministic converter generated in this stage is equivalent
to the non-deterministic converter generated in the single-
step conversion process. C2 can be processed to extract a
deterministic converter. Note that C2 prevents C1 from inter-
acting directly with the environment, and instead serves as the
communication interface between the two.

Incremental construction can be done by using any combi-
nation of IPs in stages 1 and 2. For example, we could have
integrated PS and PU first, and then add the other IPs in stage
2. However, the only difference is that the user may need to
provide different specifications in this case. For example, as
PS and PU do not interact directly, the input specification to
the algorithm would be AGtrue (a default property that is used
whenever no other specifications are available). The choice
of which IPs to integrate first depends solely on the designer
(governed by issues such as desired IP placements on chip).

3) Comparison: Traditional SoC design favors the single-
step construction process as the system is integrated only after
all IPs are identified. Single-step construction also reduces the
time spent in specifying the behaviour of each intermediate
stage for incremental conversion. However, incremental con-
version has a few advantages that can make it useful in some
situations. Firstly, a converter that controls all IPs of a system
(as constructed in single-step conversion), that can number
well into the hundreds, is difficult to realize in hardware as
each IP must read its I/O through the converter. This may
result in increasing the wiring congestion on chip and can
result in latency errors, as identified in [10]. On the other hand,
in incremental conversion, converters can be built to control
the interaction of IPs located closer to each other. The user
can also choose to generate different converters to implement
different bus policies. Incremental conversion can also aid in
the reuse of SoCs where an existing (pre-converted) system
can be integrated with more IPs to extend its functionality.
Hence, incremental conversion can play an important part in
situations where a large number of IPs have to be integrated,
and issues relating to wire congestion and latency errors are
more important to avoid than the extra effort involved in
generating multiple converters.

IV. RESULTS

The proposed conversion algorithm has been implemented
in Java, and Tab. I presents results obtained from AMBA SoC
case studies. The SKS abstractions of IP protocols were ex-
tracted from AMBA white papers and HDL implementations.

The columns of Tab. I respectively describe each SoC, its
size (number of states without counter-based unrolling) of the
parallel composition of its IP protocols, and the behaviour en-
forced by the converter, respectively. Each benchmark contains
IPs that execute using different clocks. Both incremental and
single-step conversion were successfully used for every case.

IPs |S| CTL Properties
1. Master (single-write) 96 No databus over/under flows
Slave (single-read),
AMBA ASB Arbiter
2. Master (multi-write) 96 Correct sequence of
Slave (single-read), writes/reads to avoid
AMBA ASB Arbiter data buffer over/under flows
3. Master (multi-write 26 bit), 96 Correct invocation sequence
Slave (multi-read 4 bit), to avoid over/underflows
AMBA ASB Arbiter in data bus
4. Master 1 (7 bit write), 384 Sequenced invocation of
Slave (8 bit read/write), masters and slaves to
Master 2 (11-bit read), avoid overflows
AMBA ASB Arbiter
5. 3 Master, 2 Slaves, 3456 Correct sequencing of data
AMBA ASB Arbiter (M1→S1→M2→S2→M3)
6. 6-master SoC 448 Partial closing, correctly
(3 masters known) invoke known masters
7. 6-master SoC 28572 Correct activation sequence
(all masters known)
8. Master, slave 16 No data-loss
(2-channel)
(Different data-widths)
9. Master (28-bit write) 64 No data-loss
Slave 1 (6-bit read)
Slave 2 (8-bit read)

TABLE I: Implementation Results
The first four cases involve one or more masters that write

data (single or multiple times per invocation), and a slave
that is required to read this data. The data-widths of data
operations is the same in case 1, a multiple of one another
in case 2, and completely unrelated in cases 3 and 4. For
each of these cases, and especially for cases 3 and 4 that
cannot be handled by existing techniques, our approach was
able to produce correct converters. Case 5 involves generating
a converter that sequences data flow between multiple masters
and slaves by enforcing a custom scheduling scheme from a
generic AMBA ASB arbiter.

Cases 6–7 show that we can close a converted SoC to its
known IPs. In case 6, only 3 of a possible 6 masters that a
bus arbiter can connect to are known (part of the converted
system). The generated converter ensures that the converted
system remains open with respect to unknown masters such
that the arbiter can respond to handshaking signals from both
known and unknown (environment/uncontrollable) IPs. In case
7, all masters are known, and the converter completely closes
the system to ensure that all masters are activated in the order
of requesting, by using buffering and event forwarding.

In case 8, the conversion algorithm works with multiple data
buffers (in this case the data-bus and a shared buffer). This
handling of multiple data buffers between the same pair of
protocols is another unique feature of the proposed approach.
Similarly, case 9 shows how the proposed approach can han-
dle multiple read/write operations of varying data-widths by
different IPs (2 readers/1 writer) over a single medium. Again,
these approaches cannot be handled by existing approaches.

Overall, it was found that the proposed approach can work
with IPs with different clocks, and can generate converters for
problems (multiple data buffers, non-related data-widths, mul-

tiple protocols) that cannot be addressed by any one existing
approach. Moreover, it is not necessary for the user to provide
all CTL constraints that define the correct behaviour of the
system, since the maximally-permissive converter generated
by one step of conversion can be used with more IPs/CTL
properties in the next.

It should be noted that although both approaches result in
the same functional behaviour, incremental design requires
more user effort and results in an additional converter for
each iteration step, which requires additional chip resources.
However, incremental conversion gives greater flexibility and
allows decentralization of control, where each converter con-
nects to a smaller number of components, allowing a reduction
in wire congestion as compared to a centralized converter.

V. CONCLUSIONS

This paper presented protocol conversion framework for
the correct-by-construction design of of SoCs. The flexible
algorithm allows single-step or incremental design of SoCs.
The proposed approach can generate maximally-permissive
converters for a given SoC. Using various benchmarks from
the ARM AMBA bus, we show that common causes of mis-
matches such as multiple-clocks, multi-directional IP commu-
nication, and control and data-width mismatches, that cannot
be resolved by existing techniques, can be resolved in our
framework. The future directions for this work include the
resolution of more complex mismatches such as interface
inconsistencies between IPs, and unrelated clock sources.
We also intend to carry out more a comparative study of
our technique with existing manual and automatic conversion
techniques in the near future.

VI. ACKNOWLEDGEMENTS

We would like to acknowledge the invaluable input on this
work received from Dr. Alain Girault and Dr. Gregor Goessler.

REFERENCES

[1] L. de Alfaro and T. A. Henzinger, “Interface automata,” SIGSOFT Softw.
Eng. Notes, vol. 26, no. 5, pp. 109–120, 2001.

[2] S. Tripakis, B. Lickly, T. A. Henzinger, and E. A. Lee, “On relational
interfaces,” in EMSOFT ’09: Proceedings of the seventh ACM interna-
tional conference on Embedded software. New York, NY, USA: ACM,
2009, pp. 67–76.

[3] M. D. Bozga, V. Sfyrla, and J. Sifakis, “Modeling synchronous systems
in BIP,” in EMSOFT ’09: Proceedings of the seventh ACM international
conference on Embedded software. New York, NY, USA: ACM, 2009,
pp. 77–86.

[4] K. Avnit, V. D’Silva, A. Sowmya, S. Ramesh, and S. Parameswaran, “A
formal approach to the protocol converter problem,” in DATE, March
2008, pp. 294–299.

[5] R. Kumar, S. Nelvagal, and S. I. Marcus, “A discrete event systems
approach for protocol conversion,” Discrete Event Dynamic Systems,
vol. 7, no. 3, pp. 295–315, 1997.

[6] R. Passerone, L. de Alfaro, T. A. Henzinger, and A. L. Sangiovanni-
Vincentelli, “Convertibility verification and converter synthesis: Two
faces of the same coin,” in ICCAD, 2002, pp. 132–139.

[7] M. Tivoli, P. Fradet, A. Girault, and G. GöSSler, “Adaptor synthesis for
real-time components,” in TACAS. Springer, 2007, pp. 185–200.

[8] R. Sinha, P. S. Roop, S. Basu, and Z. Salcic, “Multi-clock SoC design
using protocol conversion,” in DATE. IEEE, 2009, pp. 123–128.

[9] R. Sinha, “Automated techniques for formal verification of SoCs,” Ph.D.
dissertation, University of Auckland, 2009.

[10] L. Carloni, K. McMillan, A. Saldanha, and A. Sangiovanni-Vincentelli,
“A methodology for correct-by-construction latency insensitive design,”
in ICCAD, 1999, pp. 309–315.

