
Optimizing Performance Analysis for Synchronous
Dataflow Graphs with Shared Resources

Daniel Thiele, Rolf Ernst
Institute of Computer and Network Engineering
Technische Universität Braunschweig, Germany

{thiele,ernst}@ida.ing.tu-bs.de

Abstract—Contemporary embedded systems, which process
streaming data such as signal, audio, or video data, are an
increasingly important part of our lives. Shared resources (e.g.
memories) help to reduce the chip area and power consumption
of these systems, saving costs in high volume consumer products.
Resource sharing, however, introduces new timing interdepen-
dencies between system components, which must be analyzed
to verify that the initial timing requirements of the application
domain are still met. Graphs with synchronous dataflow (SDF)
semantics are frequently used to model these systems.

In this paper, we present a method to integrate resource
sharing into SDF graphs. Using these graphs and a throughput
constraint, we will derive deadlines for resource accesses and
the amount of memory required for an implementation. Then
we derive the resource load directly from the SDF description,
and perform a formal schedulability analysis to check if the
original timing constraints are still met. Finally, we perform an
evaluation of our approach using an image processing application
and present our results.

I. INTRODUCTION

Streaming applications such as audio and image processing
algorithms are often implemented on distributed embedded
systems and come with strict latency and throughput con-
straints. Systems such as advanced driver assistance systems
or handheld devices additionally require adherence to strict
power consumption and chip area constraints demanded by
their respective application domains. In contrast to these re-
quirements, complex and high-performance applications usu-
ally implement each processing step of an algorithm as a
dedicated hardware unit, each consuming valuable resources.
One solution to save chip area and power is a shared resource
approach for less frequently used or larger hardware units (e.g.
memories, arithmetic units, or runtime-configurable compo-
nents), which can be shared either within the same application
or between different applications. As access to these resources
must be arbitrated, their introduction into the application has
a significant impact on the application’s real-time aspects.

In the targeted domain, synchronous dataflow (SDF) graphs
[1] are often used as a model of computation, as they explicitly
expose the concurrency inherent in such applications. Here,
data processing units called actors are connected via commu-
nication edges with FIFO semantics modeling data dependen-
cies. Data communication is abstracted by tokens representing
the availability of data, which actors produce and consume
with certain rates. Due to their good analytical properties, SDF
graphs are suited to derive performance metrics such as latency
and throughput. Back-pressure effects (i.e. buffering data along

a pipeline including pipeline stalls if needed) can be integrated
into SDF graphs by assigning buffer sizes to each edge.

Using SDF graphs, this paper presents a method to integrate
shared resources into streaming applications together with a
formal analysis of the resulting application performance for a
given throughput constraint. For shared resource analysis, we
rely on formal methods introduced by [2] and event models
[3] abstractly describing the load on these resources. With
these methods, the system behavior is abstracted to its timing
behavior, which is then utilized to derive worst-case response
times that are used to verify timing constraints. First, we
identify shared resources and their connections to specific
actors. Then we derive deadlines for each actor accessing
a shared resource from the required throughput, assuming
periodic actor executions. These deadlines specify how long an
actor execution can be maximally extended while accessing a
shared resource, which introduces a certain dynamic during the
execution of the SDF graph. Then we compute sufficient buffer
sizes for each edge in the SDF graph to support this dynamic
behavior and still meet the throughput constraint. After that,
event models are derived from the SDF graph (now containing
buffer sizes) for each actor accessing a shared resource using
self-timed execution. These event models, which are derived
from the real application behavior, are then passed into a
formal performance analysis to check if the initial throughput
constraint that we used to derive deadlines and buffer sizes
is still met. This method enables designers to efficiently use
SDF graphs to model dataflow applications containing shared
resources and verify their timing constraints.

The rest of this paper is organized as follows. We discuss
related work in Section II, followed by an introduction of the
system model for the analysis in Section III. We then present
our analysis method in Section IV and evaluate it using an
example in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

Different dataflow models can be used to describe stream
processing applications. The selected SDF [1] model of com-
putation is characterized by a high design-time and scheduling
predictability. In particular, we need to be able to check our
application for deadlock freedom, and also need to be able
to produce artificial deadlocks during event model derivation.
Rate consistency is needed to derive deadlines and bounds on
token production and consumption for buffer size computation.
Like in [4], we annotate actors with execution times for
performance analysis.978-3-9810801-8-6/DATE12/ c©2012 EDAA

In contrast to SDF, the boolean dataflow (BDF) [5] model
allows actors to produce and consume tokens dependent on
a two-valued function. This is accomplished by introducing
control tokens, making BDF turing complete. This implies that
reasoning about deadlock behavior becomes undecidable and
rate consistency cannot be guaranteed. Kahn process networks
[6] are also more expressive than SDF graphs, but have the
drawback that, in general, a decision of the boundedness
of buffers on edges cannot be made. In [7], an approach
to integrate homogeneous SDF (HSDF) graphs (i.e. graphs
with token production and consumption rates equaling one)
into a compositional performance analysis framework is pre-
sented. The authors describe methods for deriving performance
metrics (i.e latency and throughput) and event models from
HSDF graphs. SDF graphs can be converted into HSDF graphs
[4], so that these methods can be applied as well. During
this conversion, actors and channels are duplicated depending
on their production and consumption rates and tokens are
redistributed to mimic the initial state of the SDF graph.
This significantly increases the complexity of the graph to
be analyzed and hinders performance analysis of duplicated
actors, as multiple actors must be tracked and the results
must be merged. In order to cover this issue, we will present
methods that are able to derive these performance metrics
directly from SDF graphs. Furthermore, the impact of shared
resources within the SDF graph and the derivation of deadlines
under a throughput constraint are not considered in [7].

An approach to calculate buffer sizes for SDF graphs given
a throughput constraint is presented in [8]. Linear bounds on
token production and consumption times are derived for each
edge in the graph based on strictly periodic schedules for each
actor. We will extend this method to also work under the
presence of the corner cases that can occur when we allow
actors to prolong their execution up to their deadlines. There
are also other buffer sizing methods available [9], which can be
extended to account for a throughput constraint. However, the
abstraction in [8] of representing the communication between
actors by the accumulated number of tokens at a given time
is well-suited for our extension that considers the worst-case
scenario that can occur while two actors communicate.

In [10], a method to integrate resource sharing into SDF
graphs based on Latency-Rate (LR) servers is described.
Arbiters in the LR class serve all requests at a guaranteed rate
with a bounded maximum latency. The authors demonstrate
that LR-based arbiters can be realized using two SDF actors
modeling latency and rate. While many arbitration schemes
fall in the LR class (e.g. round-robin), priority-based methods,
in general, do not (with the exception of rate-controlled pri-
ority arbiters). We will present a method that is not restricted
to LR servers, but also allows priority-based arbitration in
SDF analysis. This is useful when a latency critical part of an
application shares a resource with latency tolerant parts.

III. SYSTEM MODEL

For this paper, we assume a dataflow architecture compris-
ing individually (point to point) interconnected data processing
units, a set of shared resources, and a constraint on through-
put. All data processing units are implemented as individual
hardware units. Thus neither inteconnect nor shared resources,

Fig. 1. Example of an SDF graph (a) and (b), and event model bounds (c)

except for those we explicitly model, can cause contention.
We model the dataflow architecture using an SDF graph

G=(V,E, δ, ρ, π, γ). Here, actors vi∈V model data process-
ing units, and directed edges eij∈E describe causal data
dependencies between two actors vi and vj . A token distribu-
tion δ :E→N specifies the initial number of tokens available
on each edge. Edges are assumed to have FIFO behavior.
Let γ :E→N∗ (π :E→N∗) describe the number of tokens
consumed (produced) from an edge when an actor adjacent to
that edge begins (completes) its execution. The execution time
of an actor is given by ρ:V →N∗. An actor vi is enabled if at
least γ(eji) tokens are available on all of its input edges. After
an actor is activated, it consumes γ(eji) tokens from each
input edge and, after an execution time of ρ(vi) clock cycles,
produces π(eik) tokens on all output edges. This process is
called firing. For HSDF graphs π(eij)=γ(eij)=1 holds for
all eij . An SDF graph is said to be (rate) consistent if it
produces on each edge as many token as it consumes from
that edge in the long term run. This means the graph is able
to execute infinitely often with finite memory [1]. If the initial
token placement allows the graph to actually execute infinitely
often, the graph is said to be deadlock-free [1]. We do not
allow concurrent execution of the same data processing unit,
and assume that each actor is equipped with an implicit self-
edge with one initial token preventing overlapping executions.

If each actor starts firing as soon as it is enabled, the graph
executes self-timed. Self-timed SDF graphs show monotonic
behavior, which means that a decrease in any actor start time
cannot lead to an increase of any other start time [8]. After
a transient phase of length τ , consistent deadlock-free SDF
graphs enter a periodic phase of length µ during which each
actor vi is executed N · q(vi) times with q :V →N. Where N
can be determined from the number of tokens on the graph’s
critical cycle [4] and q specifies the number of times each
actor must fire to return the graph into its initial state.

The original SDF model assumes unlimited edge capacities.
To model systems with limited resources, a bound on the buffer
size between two actors vi and vj is modeled by introducing
an edge eji with δ(eji) representing the free FIFO buffers
between vi and vj , whereas δ(eij) describes the buffers that
are currently in use. An example is shown in Fig. 1a.

A path from actor v1 to vn is defined to be a non-empty
sequence Q(v1, vn)=(v1, v2, ..., vn), with edges eij∈E, 1≤
i<n, 1<j≤n connecting these actors. If there exists a path
Q(vi, vi), then the graph is said to contain a cycle. For the
scope of this paper, we only consider applications modeled
by SDF graphs that do not contain cycles apart from the
previously mentioned self-edges and the back edges modeling
the buffer capacity between two actors. This limitation does
not impose a problem for the major parts of stream processing
applications, which often do not contain cycles in their data

flow (e.g. optical flow, stereo vision, and marker classification).
Actors may access shared resources during execution. Let

the shared resources be si∈S. The mapping σ :V →S asso-
ciates actors with shared resources, and ρ̃:V →N∗ specifies
the time an actor needs to access the resource without any
interference from other actors. If vi does not access a shared
resource, then ρ̃(vi)=0. Each actor is allowed to access only
one shared resource. This imposes no limitation in practice,
as actors accessing multiple shared resources can be split into
multiple actors accessing only one resource. As actors always
consume tokens before they access a shared resource, such an
access will lead to a prolonged actor execution time.

Shared resources can be arbitrated using different methods.
Accesses to shared resources are assumed to be independent
of each other. This might not be the case in practice, where
actors are often causally dependent on each other. However,
this simplification can only lead to overestimations of response
times, as benefits by actor correlations are left unexploited.

Whenever an actor accesses a shared resource, it sends an
event to the resource (e.g. memory access, arbitration request).
Using an SDF description, a derivation of event models is
possible [3]. These models are described by η+vi

(∆t) and
η−vi

(∆t), the maximum and minimum number of events that
actor vi may send in a time interval ∆t (see Fig. 1c). The
parameters P , J , and dmin are used in the following to define
these models such that period, jitter, and the minimum distance
between any two events are specified, respectively.

η+
vi(∆t)=min

“l ∆t

dmin
i

m
,
l∆t+ Ji

Pi

m”
(1)

η−
vi(∆t)=max

“
0,

j∆t− Ji

Pi

k”
(2)

A throughput constraint is given by the tuple (vt, Pt) and
specifies the constraining actor vt together with a period
Pt∈N∗. The throughput of vt is thus 1

Pt
. Throughout this

paper, vt denotes the throughput constrained actor. We assume
vt to execute strictly periodically, which does not impose a
limitation for streaming applications, as typical input sources
such as cameras or memories exhibit this execution pattern.

IV. SCHEDULABILITY ANALYSIS

The schedulability analysis comprises four steps, each of
which described in detail in the following subsections. During
the computation of deadlines and buffer sizes, we execute
the SDF graph under certain worst-case schedules. These
schedules, however, are only auxiliary means and do not
impose a strict schedule on the application, which runs entirely
event-triggered. Thus, we must assume self-timed execution
for event model derivation and shared resource analysis.

A. Deriving Deadlines from Throughput Constraints
First, deadlines Di for all actors accessing shared resources

will be derived. Given an SDF graph and a throughput
constraint (vt, Pt), the period of each actor vi can be calculated
as Pi=

q(vt)
q(vi)

Pt. If every actor executes according to its period,
then the throughput constraint will be met. Thus, we assume
Di=Pi for actors accessing shared resources.

The buffer size on the edge between every pair of actors
must be large enough to support this behavior. Assume, for
example, in Fig. 1b ρ(va)=ρ(vb)=2, δ(eab)=0, δ(eba)=2,

Fig. 2. Buffer size analysis on edge eab from [8] (a) and bounds for dynamic
actor execution (b) and (c)

and the constraint (va, 6) yielding Pb=3. Starting va at t0, vb
can first start at t0 + ρ(va). If vb executes strictly periodically
it will finish its second execution at t0+ρ(va)+Pb+ρ(vb)=
t0 + 7, whereas va needed to be activated at t0 + 6 to meet
its period. Thus, a buffer size of δ(eba)=2 is not sufficient. In
subsection IV-B, buffer sizes will be computed accordingly.

For cycles other than the cycle introduced to model buffer
sizes between two actors, Di=Pi does not hold. In general
cycles, deadlines are limited by the actor dependencies in such
cycles, meaning that we cannot push back deadlines arbitrarily.

B. Buffer Size Computation
The buffer size computation is a revised approach of [8]

and provides several extensions. In [8], the buffer size for
each edge eab (i.e. δ(eba)) is computed based on linear bounds
on token production and token consumption times, assuming
strict periodic schedules ν(va, eab) for all actor firings. A
linear upper bound on the production time of token x∈N∗

on eab under ν(va, eab), assuming va produces tokens as late
as possible, is given by

p̂a(x, eab, ν(va, eab))=s(va, 1, ν(va, eab))+

ρ(va) +
Pa

π(eab)
(x− δ(eab)− 1) (3)

and for a lower bound on the consumption time of token x
from eab by vb under ν(vb, eab), assuming vb consumes tokens
as early as possible, is given by

čb(x, eab, ν(vb, eab))=s(vb, 1, ν(vb, eab)) +
Pb

γ(eab)
(x− γ(eab))

(4)

where s(vi, 1, ν(vi, eij)) is the time of the first activation of vi
underν(vi, eij). Note that for the production and consumption
rates Pa

π(eab)
= Pb

γ(eab)
holds in rate consistent graphs.

For these bounds, tokens on eab must be produced before
they are consumed, i.e. p̂a≤čb. Given this constraint using (3)
and (4), a minimum difference of the start times of the actors
adjacent to eab can be derived as

κ=s(vb, 1, ν(vb, eab))− s(va, 1, ν(va, eab))≥
Pa

π(eab)
(γ(eab)− δ(eab)− 1) + ρ(va). (5)

Fig. 3. Longest time between activations of vb on eab (a) and (b) and buffer
size computation for dynamic actor executions (c)

All these (per-edge) differences are then used to formulate
a min-cost max-flow problem, which is solved for the entire
graph to minimize the start times on all edges and the
dependencies they impose on the actors. The buffer size for
eab is the token backlog needed on the back edge eba (b in
Fig. 2a), assuming interchanged actor roles (i.e. va consumes
tokens as soon as possible and vb produces tokens as late as
possible). Note that these buffer sizes do not impose a strict
schedule on the application’s self-timed execution. They do,
however, guarantee that the application cannot execute slower
than we assumed during buffer size computation, as, due to
monotonicity of the self-timed execution, earlier actor starts
cannot lead to later actor firings. Details can be found in [8].

As we allow actors to prolong their execution up to their
deadlines, we cannot assume ν(va, eab) to be periodic any-
more. This dynamic execution behavior can lead to transient
shorter or longer times between firings. In the following,
we will derive bounds for the maximum and minimum time
between the actions of vb on edge eab that account for this
transient behavior, which will then be used to calculate bounds
on token production and consumption times.

In the following, we assume αa=Da if va accesses a shared
resource and αa=ρ(va)+ρ̃(va) otherwise. Given that Da≤Pa

holds, to derive the maximum difference Mb between succes-
sive firings of vb, we must consider two cases. If multiple
firings of va are required to activate vb once (q(va)

q(ba)
>1), the

maximum difference occurs if va executes with ρ(va)+ ρ̃(va)
just once (enabling vb as soon as possible), experiences Ma,
and then executes with Da as often as required (i.e. d q(va)

q(vb)
e

times) to activate vb again. As Da≤Pa, va must wait for
Pa between activations, meaning it must wait for (n̂ab − 1)

periods, where n̂ab=d q(va)
q(vb)

e (Fig. 3a)

Mb≤(n̂ab − 1)Pa +Ma − ρ(va)− ρ̃(va) + αa. (6)
If every firing of va enables at least one firing of vb (q(va)

q(ba)
≤1),

then the maximum difference Mb occurs if va executes with
ρ(va) + ρ̃(va) just once, experiences Ma, and then executes
with Da. Equation (6) already accounts for this, as in this case
n̂ab=1 (Fig. 3b). This overestimates Mb, as there could be a
second activation of vb enabled by va (dotted box in Fig. 3a).

The smallest transient difference between two firings of vb
can, in this case (Db≤Pb), be bounded to mb≥ρ(vb)+ ρ̃(vb).

As actors in SDF graphs are causally dependent along paths,
Mi has to be propagated to all actors. Since input actor vt
executes strictly periodically, we start with Mt=Pt. For actors
that join multiple paths with different Mi, max i(Mi) is taken,
as sufficient tokens on all these paths are required to fire.

Next, we extend the method described in [8] to support this
dynamic actor execution by deriving new bounds p̂alapi and

časapi . First, we derive a new upper bound on token production
times p̂alapi . We observe that actor vt experiences Mt between
the first two firings, the token production times are maximally
apart. Since vt executes strictly periodically, the next token
production time can be delayed maximally by Pt (i.e. Mt can
only be experienced once), meaning that no other periodic
firing sequence can lead to later token production times. This
holds for all other actors, as the effects of Mt are propagated
along the graph. A similar argument holds for the lower
bound on token consumption times časapi . The first two firings
move as close together as possible if the first one is delayed
maximally and the second one begins right after the previous
one finished. Regarding Pi, all consecutive activations of vi
must be Pi apart. So no other periodic firing sequence can
consume tokens faster without violating its period.

Fig. 2b shows the new upper bound p̂alapa for token produc-
tion times. By overestimating the upper bound to a straight
line p̂∗a (dashed line), it can be embedded into the analysis of
[8]. This is achieved by beginning at p̂a, assuming deadlines
as actor execution times for p̂∗a, and moving it up along the Y-
axis until p̂∗a≥p̂alapa (dotted box indicating an actor execution).
In the worst-case, Ma is experienced once at the beginning,
so the Y-offset can be calculated to Ma − Pa, yielding

p̂∗a(x, eab, ν(va, eab))=p̂a(x, eab, ν(va, eab)) +Ma − Pa. (7)

This is done analogously for the lower bound on token
consumption times časapb (Fig. 2c). This bound is embedded
into [8] by underestimating the lower bound to a straight line
č∗b (dashed line), which is done by beginning at čb and moving
it down along the Y-axis until č∗b≤casapb . In the worst-case, mb
is experienced once at the beginning, leading to a Y-offset of
Pb −mb, yielding

č∗b(x, eab, ν(vb, eab))=čb(x, eab, ν(vb, eab))− Pb +mb. (8)

As (7) and (8) have the same slopes as (3) and (4), the graph
will still meet its throughput constraints after an initial delay.

Similar to (3), (4), and (5), p̂∗a and č∗b are then used to
derive minimum start time differences of the actors adjacent
to eab. Then [8] can be used to minimize these start times on
all edges. Fig. 3c shows how to derive buffer size from the
token backlog b between the new bounds on eba, assuming
interchanged roles of the adjacent actors. Here, [8] can also be
used if we overestimate (underestimate) the bounds for p̂alapb
(časapa) accordingly. This is similar to Fig. 2a. To avoid clutter,
the boxes showing actor executions are omitted in Fig. 3c.

So far, we have assumed shared resource accesses while
deriving these bounds. For actors that do not access shared
resources, tighter bounds can be given. Here, ρ(va) can be
used instead of Da for all firings of va after the first one in
p̂alapa , and vb in časapb can be assumed to execute periodically.

C. Deriving Event Models from SDF Graphs
In this step, we derive event models for all actors accessing

shared resources. We extend the method presented in [7] to
enable a direct application on SDF graphs. In contrast to
the previous steps, this also works for cyclic graphs. Note
that throughout this subsection, the SDF graph is assumed to
execute self-timed. This is necessary, as in this step, we derive
performance metrics for a real event-triggered (i.e. as tokens
arrive) application, which can execute faster than according to
a given schedule as assumed during the previous steps. This
can lead to (transient) high loads on a shared resource.

1) Maximum Load: We construct a token placement that
maximizes the output load of a given actor va. This is
analogous to minimizing the distances between subsequent
firings of va. In [7], this has been done for HSDF graphs. All
tokens available in the graph are placed on all edges leading
towards va, starting with the edges adjacent to va. The authors
show, that if the graph is executed with this token placement,
vawill experience its maximum load. In HSDF graphs, this
token placement can be constructed by disabling va and then
simulating the graph until deadlock [7]. If we re-enable va and
simulate until the periodic phase is reached, we can extract an
event model from the time points at which va fires.

We will now extend this method to work on SDF graphs
without the need to convert them to HSDF. In SDF graphs,
the described method can lead to different token placements
in the deadlocked state depending on the graph’s initial token
placement. Take for example Fig. 1a with an initial placement
of δ(eab)=δ(eba)=1. Actor vb can fire immediately and then
must wait for va to fire before it can fire again. Assuming an
initial placement of δ(eab)=2 and δ(eba)=0, vb can fire twice
before it depends on va again, resulting in a higher load.

To construct the token placement leading to the maximum
load of va, we must consider all reachable token placements as
starting points. This is done by disabling va and simulating un-
til deadlock. Then we save the graph state (i.e. current progress
of actor executions and token placement). After this, the output
load is derived by self-timed simulation. Then we load the
saved state and fire va once before disabling it again and
repeating the steps above until an already processed deadlock
state is encountered. During simulation, vt is executed strictly
periodically with Pt. To minimize token production times, all
actors vi execute with ρ(vi) + ρ̃(vi).

Given the maximum load, an event model Êa=
(P̂a, Ĵa, d̂

min
a) can be derived from the time points of the

i-th activation of va. For the period we have P̂a=
µ

fµ,va
,

where fµ,va is the number of firings of va during the
periodic phase. The jitter is calculated from (1) to Ĵa=
max0<∆t≤τ+µ(η

+
va
(∆t)P − ∆t). d̂min

a equals the minimum
distance between any two firings.

2) Minimum Load: The minimum load of va can be derived
from the maximum time span between two successive firings
of va. This interval can be bounded conservatively by the
difference between the minimum and maximum latency along
all paths from vt to va [7]. The latency along a path Q(vi, vj)
is defined to be the time between the start of vi until the first
causal firing of vj . Token x depends causally on all tokens
consumed by an actor that lead to the production of x.

The minimum latency along a path is simply the
sum of all actor execution times along that path
Lmin(Q(vt, va))=

∑
vi∈Q(vt,va)

(ρ(vi)+ρ̃(vi)). The minimum
latency Lmin(vt, va) from vt to va is the minimum of the
latencies along all paths leading from vt to va. Taking into
account all reachable token placements on Q(vt, va), and
the number of tokens on the feedback cycles that rejoin
Q(vt, va), a better lower bound for Lmin could be derived.

The maximum latency between actors vt and va is defined
as the longest time it takes an input token at vt to cause a
causally dependent firing of va. Let the activation time of vt
on an arbitrary path Q(vt, va) be t0, and the time of the first

causally dependent firing of va be tf , then the latency along
this path will be Lmax(Q(vt, va))=tf − t0.

As t0 is fixed, we will compute a conservative estimation
for tf . In [7], this is done for HSDF graphs. We will present
a method that will directly work on SDF graphs. First, we
determine which firing of va is the first causally dependent
one. This is done by propagating tokens along Q(vt, va) and
firing actors as often as possible given the tokens propagated
up to each actor’s input edge. Assume, for example, a chain
containing actors vw, vx, and vy . Let δ̃(ewx) be the number
of tokens propagated to edge ewx including the initial tokens
δ(ewx). The number of tokens on exy after firing vx as often
as possible given δ̃(ewx) is

δ̃(exy)=
j δ̃(ewx)

γ(ewx)

k
π(exy) + δ(exy). (9)

This is done for all actors on Q(vt, va)=(vt, v1, ..., vn, va),
starting with δ̃(et1)=δ(et1). The number of the first
causally dependent firing nf (Q(vt, va)) on path Q(vt, va) is
nf (Q(vt, va))=b δ̃(ena)

γ(ena)
c + 1. Even though we only consider

paths and ignore cycles during this process, all tokens on
cycles that share edges or actors with Q(vt, va) are accounted
for, making this a valid simplification. Tokens on common
edges are already considered during token propagation, and
tokens on the other part of a cycle will eventually become
available to the actor that rejoins cycle and path. This is
because in a consistent and deadlock-free SDF graph, cycles
are also consistent and deadlock-free.

In general, there can be multiple paths from vt to va denoted
by the set Q̂. Imagine two paths Q1 and Q2 leading from
vt to va. Let nf (Q1)=n and nf (Q2)=m, with n<m. This
means that the n-th activation of va is the first one that is
causally dependent on a firing of vt (via Q1). Thus, we have
nmin
f =minQ∈Q̂(nf (Q)).
Using nmin

f , we can derive tf by simulating the SDF
graph under self-timed execution, while keeping track of how
often va fires. During this simulation, we let each actor that
accesses a shared resource execute with its execution time
set to its deadline. We also assume that the throughput-
constrained input actor vt executes strictly periodically with
Pt. Monotonicity during self-timed execution ensures that
shorter actor execution times, which lead to earlier token
production, cannot lead to a later start time of any actor. So
even if an actor finishes its shared resource access before its
deadline, this cannot lead to a later tf than computed by using
deadlines as the execution times.

The maximum latency can then be derived to Lmax=tf−t0.
As an SDF graph visits multiple states during execution (with
states repeating themselves in the periodic phase), we must
compute Lmax for each state and use the maximum (as done
in [7] for HSDF graphs). Using (2), we can derive the jitter
J̌a for the minimum load case to

J̌a=∆t− Pa=Lmax(vt, va)− Lmin(vt, va)− Pa. (10)

A larger jitter implies a more general event model [3], so
we derive the final event model for all actors va accessing
shared resources by merging the results from the maximum
and minimum load cases to

Ea=(P̂a,max(Ĵa, J̌a), d̂
min
a). (11)

As we assumed a strictly periodic execution of the throughput
constrained actor vt during self-timed execution for both the
minimum and maximum load, the length of the periodic phase
µ is the same in both cases. Since va, in both cases, executes
q(va) times during µ, Pa=P̂a holds.

D. Shared Resource Analysis

As we cannot rely on the real application to execute
according to the schedules used to derive deadlines and buffer
sizes, we use ρ̃(vi), the derived event models Ei, and dead-
lines Di to perform a schedulability analysis to check if the
throughput constraint is still met. Using techniques from [2],
we implemented a static order scheduling analysis based on
[11] to derive the worst-case time Rmax

i (including ρ̃(vi)) for a
shared resource access sj under the load imposed by all Ei for
sj . This is the time by which vi’s execution can be maximally
prolonged. Thus, the system is schedulable if, for all sj∈S,
the inequalities ρ(vi)+Rmax

i ≤Di,∀vi∈{vi|σ(vi)=sj} hold.

V. EXPERIMENTS

To evaluate the proposed analysis method, we consider a
specific part of an image processing algorithm for marker
classification. An SDF graph of the application is shown in
Fig. 4a. Processing is done pixel-wise. Input pixels in HSV
color space and are split up into individual color components
by the split actor. Then, each component c∈{H,S, V } enters
a processing pipeline, where it is subtracted from the mean of a
trained probability distribution (subc), squared in sqc, divided
by the corresponding distribution’s standard deviation in divc,
and rounded by rndc. The results from the pipelines are added
up in add and fed into exp, an exponentiation. The application
is implemented as VHDL modules targeting an FPGA.

The dividers consume a significant amount of chip area, so
our goal is to turn a single divider into a shared resource sdiv
(box in Fig. 4a) that is used for all pipelines (σ(divc)=sdiv).
The dividers are fully pipelined and support a throughput of
one pixel per clock cycle. As the application does not contain
any feedback loops, we can model the access to the divider
pipeline by just one actor divc experiencing the arbitration. Of
course, this can also be applied to all parallel pipeline stages.

The system is able to process one pixel per clock cycle and
is targeted to run at 200 MHz leading to a rate of 254.31
frames per second (FPS) given input images of 1024 × 768.
Since we only need to reach 25 FPS to meet real-time
constraints, we set the throughput constraint to (split, 10).

Our analysis results in the deadlines ddivc=10 cycles. The
total amount of buffer size required is 140 FIFO slots. The
derived event models are Edivc=(10, 51, 2). The schedulabil-
ity analysis results in worst-case response times of Rmax

divc
=9

cycles for all c for static order scheduling. Assuming ρ(divc)=
ρ̃(divc)=1, we have that ρ(divc)+Rmax

divc
≤Ddivc holds for all

c. Thus, the system, saving the chip area of two dividers, is
schedulable, while still meeting timing requirements.

Fig. 4b shows a second example. Here, actors hp, mp,
and np share a resource. Using the constraint (str, 3), the
event models for these actors are (3, 6, 2), (6, 15, 2), and
(15, 42, 2), respectively. Under static order scheduling, only
np with Rmax

np =7 meets its deadline, whereas hp and mp
miss their deadlines by 4 and 1 cycles. With static priority

Fig. 4. Example applications

non-preemtive scheduling (higher priorities assigned to shorter
deadlines), however, all actors meet their deadlines, with
worst-case response times being 3, 5, and 14, respectively.

In general, response times are overestimated due to the large
jitter. During schedulability analysis, the jitter causes the first
shared resource accesses to be very close together, resulting in
large response times due to high resource load. This is because
during buffer size computation, we used worst-case assump-
tions and periodic schedules for each actor. The application,
however, executes self-timed, leading to a dynamic execution
behavior. This results in higher jitter values, especially when
we derive the event model for the maximum load. There, the
transient phase processing the queued up tokens increases the
jitter, leading to the observed overestimation of response times.

The analysis time is in the order of seconds to minutes de-
pending on the graph’s structure and the throughput constraint.

VI. CONCLUSION

In this paper, we have shown how SDF graphs can be used
to model dataflow applications that contain shared resources,
and how to derive deadlines for accesses to these resources
given a throughput constraint. We showed that this introduces
a certain dynamic to the execution of the graph, and presented
a method to compute buffer sizes supporting this behavior.
Deriving event models from the SDF graph enabled us to
integrate existing scheduling analyzes to derive performance
metrics such as throughput and latency. With the help of a real-
world application, we demonstrated how our approach can be
used to save chip resources and still meet timing requirements.

REFERENCES

[1] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235–1245, September 1987.

[2] K. W. Tindell, A. Bruns, and A. J. Wellings, “An extensible approach
for analysing fixed priority hard real-time tasks,” RTSS, 1994.

[3] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the symta/s approach,” in IEEE
Proccedings Computers and Digital Techniques. IEEE, 2005.

[4] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors - Schedul-
ing and Synchronization. Marcel Dekker, Inc., 2000.

[5] J. T. Buck and E. A. Lee. (1993, Apr.) Scheduling Dynamic Dataflow
Graphs With Bounded Memory Using The Token Flow Model.

[6] G. Kahn, “The Semantics of a Simple Language for Parallel Program-
ming,” in Information Processing ’74: Proceedings of the IFIP Congress.
New York, NY: North-Holland, 1974, pp. 471–475.

[7] S. Schliecker, S. Stein, and R. Ernst, “Performance analysis of complex
systems by integration of dataflow graphs and compositional perfor-
mance analysis,” in DATE, 2007, pp. 273–278.

[8] M. H. Wiggers, M. J. Bekooij, and G. J. Smit, “Buffer capacity
computation for throughput constrained streaming applications with
data-dependent inter-task communication,” RTAS, IEEE, 2008.

[9] W. Liu, Z. Gu, J. Xu, Y. Wang, and M. Yuan, “An efficient technique for
analysis of minimal buffer requirements of synchronous dataflow graphs
with model checking,” in CODES+ISSS. ACM, 2009, pp. 61–70.

[10] M. Wiggers, M. Bekooij, and G. Smit, “Modelling run-time arbitration
by latency-rate servers in dataflow graphs,” January 2007.

[11] R. Racu, L. Li, R. Henia, A. Hamann, and R. Ernst, “Improved response
time analysis of tasks scheduled under preemptive round-robin,” in
CODES+ISSS. ACM, 2007.

