Verification of Partial Designs
Using Incremental QBF Solving

Paolo Marin and Christian Miller and Matthew Lewis and Bernd Becker
Albert-Ludwigs Universitidt Freiburg, Germany
Email: {paolo,millerc,becker} @informatik.uni-freiburg.de

Abstract—SAT solving is an indispensable core component of
numerous formal verification tools and has found widespread use
in industry, in particular when using it in an incremental fashion,
e.g. in Bounded Model Checking (BMC). On the other hand,
there are applications, in particular in the area of partial design
verification, where SAT formulas are not expressive enough and
a description via Quantified Boolean Formulas (QBF) is much
more adequate.

In this paper we introduce incremental QBF solving and
thereby make it usable as a core component of BMC. To do so,
we realized an incremental version of the state-of-the-art QBF
solver QuBE, allowing for the reuse of learnt information e.g. in
the form of conflict clauses and solution cubes. As an application
we consider BMC for partial designs (i.e. designs containing
so-called blackboxes) and thereby disprove realizability, that
is, we prove that an unsafe state is reachable no matter how
the blackboxes are implemented. In our experimental analysis,
we compare different incremental approaches implemented in
our BMC tool. BMC with incremental QBF turns out to be
feasible for designs with more than 21,000 gates and 2,700
latches. Significant performance gains over non incremental
QBF based BMC can be obtained on many benchmark circuits,
in particular when using the so-called backward-incremental
approach combined with incremental preprocessing.

I. INTRODUCTION

SAT solving is a mature technology, the increase of its
power over the last decade has been astounding. It is now an
indispensable core component in many hardware and software
formal verification tools. Moreover, it has found widespread
application for verification in industry, in particular when
using it in an incremental fashion [1], like in Bounded Model
Checking (BMC) [2], [3], where most of the formula remains
the same for consecutive instances along the unrolling. This
way, the problems can be tackled more efficiently thanks
to the reuse of much of the information learnt step by step
(i.e. conflict clauses, literal activities) [4], [5]. On the other
hand, for some applications SAT formulas are not expressive
enough, for instance in the area of partial design verification,
and a representation using Quantified Boolean Formulas
(QBF) is required [6], [7].

In this paper we introduce incremental QBF solving, where
we take into consideration both the propositional part and the
dependencies between old and new variables. We build upon
many of the incremental techniques used in SAT solving,
discussing the requirements that allow a solver to keep the
information it learnt from one call to the next one, and how
to modify a search-based QBF solver to work incrementally.

978-3-9810801-8-6/DATE12/(©2012 EDAA

We have realized an incremental QBF solver built upon the
state-of-the-art QBF solver QuBE [8]. Moreover, we present
the first application of incremental QBF solving as the verifi-
cation of incomplete designs, where certain parts of the circuit
(combined into a so-called blackbox) are not specified. The
interest in verifying incomplete designs is emerging as larger
system-on-chip (SoC) designs, that contain multiple blackbox
IP cores, have become more prevalent. Blackboxes can also
be used to verify designs which are too large to verify in their
entirety by adding a layer of abstraction. Lastly, they allow us
to start the verification process earlier in the design stages of
a chip when certain components are only partially completed.

In BMC for incomplete designs we look for an answer to
the question of unrealizability, that is, if there exists a path of
length k violating the property regardless of the implementa-
tion of the blackbox. If it exists, the property is unrealizable.
The unknown behavior of the blackbox outputs could be
modeled using 01X-logic [9], yielding a SAT formula, but it
may be too coarse when the counterexample depends on the
blackbox’s behavior. In that case we can rely on QBF-logic
and quantify the blackbox’s outputs universally [6], [7]. For the
purpose of obtaining a more compact representation of each
unfolding step, BMC was also performed using Quantified
Boolean Formula in [10], [11], but at that time no QBF solver
supported incremental solving, nor was there any theoretical
groundwork proposed. To solve our partial design verifi-
cation problems using incremental QBF, we introduce two
approaches (namely. backward and forward unfolding), and
highlight the advantages and disadvantages of both proposed
methods, in particular regarding the possibility of keeping
learnt information. We also show on a range of incomplete
design benchmarks (designs having more than 21,000 gates
and 2,700 latches) that QBF BMC is feasible using incremen-
tal QBF, and significant performance gains can be obtained,
especially when using the so-called backward-incremental
approach in combination with incremental preprocessing.

The paper is structured as follows. Section II first introduces
the reader to QBF. After this, Section III presents the incre-
mental QBF problem, and how to modify a search-based solver
to take it. We then describe our partial design verification
problems, and explain how to use incremental QBF to solve
them in Section IV. Section V presents some preliminary
results we have on circuits available from Opencores [12].
Finally, Section VI concludes this paper.

II. FORMAL PRELIMINARIES

QBF formulas are a generalization of pure propositional
Boolean formulas where variables are either existentially or
universally quantified. Most modern QBF solvers require the
problem to be formatted in Quantified Conjunctive Normal
Form (QCNF). This format consists of a prefix and a ma-
trix. The prefix of the formula defines how each variable is
quantified, and the interdependencies between all the variables
(represented by the order in which they are quantified). Each
quantifier alternation defines the next quantification level. The
matrix consists of a conjunction of clauses, with each clause
consisting of the inclusive disjunction of literals. Each literal
represents the occurrence of a Boolean variable in a clause.
A literal can take on the positive or negative form of the
variable it represents. For our QBF problems, we expect the
formula to be closed, meaning that each variable is quantified
in the prefix. In search-based QBF solvers it is common to
make use of additional clauses, determined and learned into a
separate CNF formula ¥ while backtracking from conflicts, to
avoid unsatisfiable parts of the search space, and likewise to
determine and learn cubes (sometimes referred to as terms)
during the solution analysis to truncate the solution space.
Each cube consists of a conjunction of literals, and cubes are
stored in a Disjunctive Normal Form (DNF) formula ©, which
is treated as a disjunction together with the CNF matrix. Given
an input formula ®, these QBF solvers solve its logically
equivalent form WA ®V O, also called Extended QBF (EQBF)
in [13]. For more details on QBF logic, semantics and solving
techniques, the interested reader is referred to [14].

ITI. INCREMENTAL QBF SOLVING

In this section we generalize to QBF the idea of incremental
solving as it was defined in [4]. Given at step O an arbitrary
prenex CNF formula &, with prefix @1X;...Q,X, and
matrix ¢g, the formula ®; at step ¢ is the merge of the prefix
at step ¢ — 1 and the prefix at step ¢, and the matrix is obtained
by conjuncting the new clauses qu to ¢;—1 and/or removing
old clauses ¢; from ¢;_;. A critical point of incremental
solving such problems lies in the information depending on
¢, held from the solver at step 7. Indeed, modern QBF solvers
use learning techniques that improve their performance, and
incremental solving takes advantage of that. What is then
necessary, is to be able, at the beginning of step i, to delete all
the learnt clauses and cubes that depend on ¢; . In QBF we
also have to take care of the learnt cubes from an additional
point of view: In general, at every step, we must delete all the
cubes learnt previously. This however does not always apply:
It can be proved that old cubes are still sound if:

o the new variables do not depend on the old ones
e in qﬁj there are no clauses having literals that depend on
universal variables from previous steps.

Remember that in search-based QBF solving, to decide heuris-
tically the value to give an unassigned variable, the prefix
order matters: For instance, it is not sound to decide a value
for a variable, if some variables in the quantifier blocks to

its left are still unassigned. Now consider a cube: It can only
be activated (made unit or empty) by a unit or a decision
universal literal. Since a universal literal can only be implied
by a cube, it turns out that the old cubes will not be activated
until a decision over a universal variable in the old universal
quantifier blocks (which depends on the new variables) is
taken. Hence, all the new variables must have been assigned
a value without producing any conflict, thus satisfying ¢;,
before the old cubes are activated.

Our starting point for extending a QBF solver by in-
cremental means is the state-of-the-art search-based solver
QUBE7.2 [8], [15]. The first new feature QUBE7.2 needed
to support was to solve QBF formulas modulo assumptions.
Assumptions act as decision literals forced from outside the
solver, with the difference being that they are assigned at
decision level 0. As proposed in [4] for incremental SAT, we
use an additional existential variable called “assumption” to
activate and deactivate clauses and solution cubes depending
on ¢; before each new iteration. To keep the assumptions into
the conflict clauses (and solution cubes) produced by the con-
flict (and solution) analysis procedure, this is modified not to
discard from the simplifications the variables assigned at level
0. Furthermore, in QBF we may face long-distance resolutions
performed by the conflict (and solution) analysis (also called
recursive resolutions) [13]. Binding the assumption variable
to the outermost existential quantification level of the prefix
does not affect the above mentioned mechanism.

The solver can basically take advantage of solving the
problems incrementally in two ways: (i) if every incremental
matrix has always the same structure, the new variables can
inherit the activity score from those of their counterparts of
the previous iteration, and (ii) the search space can be pruned
using the conflict clauses learnt previously. Solution cubes
learnt previously can be used only if the conditions above
hold.

IV. USING INCREMENTAL QBF FOR BMC OF
INCOMPLETE DESIGNS

In this section we present an application for incremen-
tal QBF solving, namely proving unrealizability of a safety
property P in an incomplete design (those containing so-
called blackboxes) using BMC. In other words, we prove the
existence of a path of length k£ violating P no matter how
the blackboxes are implemented. One option to model the
unknown output of the blackboxes is to extend Boolean logic
to represent the third value ‘X’ using an additional Boolean
variable, and applying this value to each blackbox output (this
is referred to as 01X-encoding [16]). By using this three valued
logic, we obtain a SAT problem, which can be solved in an
incremental fashion. However, if it happens that the unknown
value ‘X’ propagates to one of the circuits outputs which the
property depends on, no information about the property can be
found. In this case, those blackbox outputs need to be modeled
by universally quantifying them, yielding a QBF formula.

For the encoding of the BMC problem of incomplete
designs we are naming the variables as shown in Fig. 1. Here,

0,0 Tn,0 0,1 Tn,1 Lo,k Tn,k
B I B S I e U I I
| EZO’O | | EZOJ . i @:ZOJC .

0 Z1,0 AR Z1k
1o : Ti — — Ty -
Sr,0 T~ ~1] Sr,0 Sr,1 T~ T] Sr.1 Sr.k T . . Sr k
Yo,0 Ym,0 Yo,1 Ym,1 Yo,k Ym,k

P
Fig. 1. Encoding of the BMC problem.

s;,; denotes the ith state bit in the jth unfolding. The same
holds for the primary inputs x ;, . . ., %, ;, the primary outputs
40,5+ -+»>Ym,j» and the blackbox outputs Zy ;,...,Z; ;. The
next state variables s ;, ..., s; ; which depend on the current
state, the primary inputs and the blackbox outputs are then
connected to the current state bits of the next state j + 1. The
whole circuit is transformed according to [17] using additional
auxiliary variables H; for each unfolding depth j. The initial
state Ij is encoded by unit clauses, setting the respective state
bit to its initial value. The invariant P, can be a Boolean
expression over the primary outputs and the state variables
of the k-th unfolding. Using this information, the quantifier
prefix (and the matrix) for the unrealizability problem is:

/ /!
ElmO,O~~~xn,050,0~~~sr,OVZO,O~~~Zl,OE|HOS()70~~~87«70

3x0,k~'~$n,k50,k~~'Sr,kVZO,kle,kaHkS(),]fmS/T,k
IgNTogN ... NT NPy

as proposed in [7] as non-uniform prefix. For the sake of
simplicity we include the variables representing the primary
outputs of unfolding depth j into H;.

We now show how we have extended [4] to QBF in the
context of the verification of incomplete designs. This could be
done in many ways, as we can play not only with adding and
removing clauses and variables, but also adding or removing
quantifier blocks. We introduce two incremental strategies
where the prefix is augmented at its extremes.

A. Forward-Incremental BMC for Incomplete Designs

Our first approach for adding new information to the BMC
problem incrementally relies on the nature of the BMC prob-
lem itself. We start at depth 0 with Iy A Ty A =Py to check
whether the property is violated in the initial state (we add
Ty to have access to the primary outputs at depth 0). Thus,
the initial prefix for the QBF solver contains three quantifier
blocks and is denoted in Fig. 2(a). The matrix ¢y contains
the clauses resulting from the Tseitin transformation of all
gates in Ty and —Fp, and the unit clauses for the initial state
Iy. For the next unfolding depth k, the prefix of the previous

depth is then extended to the right, adding two new quantifier
blocks, and merging the inner existential quantifier block at
depth k£ — 1 and the outer existential quantifier block at depth
k. The matrix is augmented by the set gb,i' containing only
the clauses representing the transition relation 7T}, and those
representing the negated property — Py (Fig. 2(a)).

By doing incremental solving this way, we can keep much of
the information which was learnt during the solving process of
the previous depth IgATpA. . . ATy_1 A Pi_1. However, since
keeping the clauses for —=P;_; would lead to unsatisfiability
of all future unfolding depths, these clauses must be inserted
in ¢, and deleted, as well as all learnt information resulting
from these clauses. This is done by using the assumptions as
explained in Section III. In addition to this, we must delete
all solution cubes, as they will no longer be valid if we add
quantifier levels to the inside of the prefix. In fact, since
new variables depend on the old ones, there may exist old
cubes which are triggered when new variables still have to be
assigned.

B. Backward-Incremental BMC for Incomplete Designs

In the forward approach it is not sound to keep learnt solu-
tion cubes in the incremental BMC process. To overcome this
problem, we now present a backward-incremental procedure in
which the prefix is extended to the left at each unfolding depth.
In this approach we start at depth 0 again with Iy ATy A =P,
checking for an initial violation of the property. For all future
unfolding depths k£ we extend the matrix (and the prefix)
backwards. This means, at step k, the clauses for the initial
state ¢, = I,_ are disabled, and the set ¢Z including the
transition relation 7}, as well as the new initial state [, is
added (Fig. 2(b)).

Actually, with backward-incremental BMC the same prob-
lem instances (except for variable renaming) are generated as
for the forward-incremental procedure, as depicted in Fig. 3.
But using this approach we can now keep, and reuse, all learnt
information that does not depend on the old initial state, as
we now fulfil the conditions stated in Section III, allowing for
also the solution cubes to be kept.

I ANTOANTIA . NT

forward incremental

T. N\ ﬁPk-

[k'/\Tk

T aN...NTYNTYy NPy

[BJUOUWAIOUT PIRMIDR(]

Fig. 3.

E'xo’o...wn_’oS()yo...S»,‘)o
VZo.0.-Z10

/ /
JHosg 0-+-510

depth 0

T k1T k—150,k—1---Sr k-1
VZok—1--Zi k-1
/ /
ElHk—lSO,szl"'Sr,kfl
320 k- T,k 50,k Sr
VZ()’k...Zl,k
/ /
EIHkso’k...sT’k
IoAToA ... ATpy NSBeT AT A —Ps
—— ———

 disable add
(a) Forward-incremental

depth k-1

depth k

E|x07k...xn7k50,k...sr,k
VZO,kal,k

1 1
HHks()’k...sr’k

depth k

Jro k1. Tn k—150,k—1---Srk—1
VZ0 k—1--Z1 k-1

/ /
IHy 1) 1Sy

depth k-1

E|$070...,In705070...5r70
VZO,OWZZ,O

JHos(.57

I N1 N Nl_1 AN...\NTyg NP,
Lo TN

add disable .
(b) Backward-incremental

depth 0

Fig. 2. QBF encoding of the BMC problem using the incremental approaches.

C. OBF Preprocessor Modifications

We extended the incremental BMC preprocessing methods
for SAT presented in [18] to the QBF domain by modifying
sQueezeBF [19], the preprocessor built into QUBE7.2, to
preprocess the QBF formulas incrementally. In essence, we
adopted the idea of don’t touch literals for preprocessing the
transition relation: The idea is to take the list of the state and
next state variables, and ensure these not to be eliminated
from the output formula. By incorporating this idea we obtain
smaller sets of clauses and variables which have to be added at

Extension of the search space for the incremental approaches.

every step. However, not fouching a (next) state variable means
that we can neither eliminate that variable by Q-resolution, nor
by equivalence reasoning [19]. This can sometimes restrict the
effectiveness of the preprocessor. The preprocessing step is
performed independently before the incremental search starts.

V. EXPERIMENTAL RESULTS

To test our novel forwards and backwards-incremental QBF
approaches for verifying incomplete designs, we implemented
an extension to our blackbox BMC tool [7] that allows us to
work incrementally. As a test-bed, we selected some VHDL
designs from Opencores [12], and replaced parts of the circuits
by blackboxes. We did this because there is currently no
blackbox design problems (or increment QBF problems) pub-
licly available. We first used an IEEE-754 compliant pipelined
double precision floating point unit that supports four basic
operations (+,-,*,/), multiple rounding modes and exceptions.
The instances differ in their initialization settings and inserted
error locations. After replacing the multiplication and division
units by blackboxes and inserting an error into the circuit,
proper functionality of the sign bit was falsified for addition
and subtraction operations. Secondly, we used an incrementer-
encoder design consisting of a configurable incrementer unit
and a combinatorial logic puzzle. The instances scale with
respect to both the size of the incrementer and the puzzle. With
the step amount of the incrementer part blackboxed, it was
falsified that the logic puzzle is solved before the incrementer
reaches a certain value. Lastly, we consider a traffic light
controller extended by a configurable incrementer unit. The
instances differ in the complexity both of the controller and
the incrementer. After blackboxing the amount added by
the incrementer, we have proven unrealizability of properties
expressing that one cycle of the traffic light is done before
a certain value of the incrementer was reached. The size of
these benchmarks range from about 300 gates and 26 latches
to 21,000 gates and 2,700 latches. The VHDL designs were
compiled with Synopsys Design Compiler Version B-2008.09
using a minimized gate library containing only one and two
input basic logic gates and latches. All the QBF formulas
generated can be freely downloaded from QBFLIB [20].
The experiments were performed on an AMD Opteron 252

TABLE I
INCREMENTAL QBF RESULTS ON INCOMPLETE CIRCUIT DESIGNS

(a) Results without Preprocessing

non-incremental

forward-incremental backward-incremental

benchmark k time #dec time #dec time #dec
inc4-enc16-01 17 3.13 20,732 2.75 20,286 1.85 11,892
inc4-enc16-02 17 6.88 93,938 6.49 104,692 4.10 72,660
inc5-enc16-01 33 30.48 94,888 27.93 93,103 23.72 65,739
inc5-enc16-02 33 32.65 100,324 288.88 676,013 27.55 71,191
inc5-enc16-03 33 63.72 384,787 60.86 384,712 45.45 284,750
inc5-enc32-01 33 29.16 94,888 27.89 93,103 23.65 66,491
inc5-enc32-02 33 74.73 133,460 76.10 179,187 68.72 112,372
inc5-enc32-03 33 108.29 372,391 109.59 362,929 78.78 215,530
inc6-enc16-01 65 270.80 421,035 TIMEOUT 268.81 347963
tlc-132-01 132 25.64 1,553 133.12 1,553 130.34 1,553
tle-132-02 132 24.35 1,553 8.36 1,553 7.71 1,553
tlc-132-03 132 768.58 747,764 1,203.63 759,961 26.65 17,445
tlc-152-01 152 1,330.43 1,117,627 2,056.70 1,081,608 38.09 21,666
tlc-258-01 258 MEMOUT MEMOUT 97.47 93,506
(b) Results with Preprocessing
benchmark k npn—incremental foryvard—incremental bacl'sward—incremental
time #dec time #dec time #dec
fpu-10Xh-error01 27 724.88 2,339 625.68 19,594 606.31 24,586
fpu-10Xh-error02 27 815.30 2,339 621.53 19,594 602.50 24,586
fpu-10Xe-correctO1 27 593.80 149 606.19 13,740 576.71 14,272
fpu-10Xh-correctO1 27 821.22 2,222 624.94 18,440 604.67 23,432
fpu-10Xh-correct03 27 722.44 2,143 590.02 3,182 563.91 3,455
fpu-10Xe-correct02 28 800.34 131 2,383.94 17,340 1,994.26 17,894
fpu-10Xh-correct02 28 1,009.46 2,510 676.01 19,704 661.01 25,207
fpu-10Xh-correct04 28 709.45 212 629.90 3,193 609.26 3,466
inc4-enc16-01 17 7.02 12,748 2.15 13,525 1.64 12,867
inc4-enc16-02 17 13.34 73,852 5.11 88,128 4.93 83,768
inc5-enc16-01 33 29.43 19,857 8.95 22,296 8.61 10,946
inc5-enc16-02 33 70.04 86,753 56.68 112349 57.24 98,664
inc5-enc16-03 33 121.83 394924 142.36 502423 151.39 546,768
inc5-enc32-01 33 29.99 19,857 8.85 22,296 8.54 20,946
inc5-enc32-02 33 66.21 80,398 52.90 89,777 50.95 113,038
inc5-enc32-03 33 111.35 260,433 94.93 250,004 84.38 227,278
inc6-enc16-01 65 201.19 56,098 TIMEOUT 101.11 63,858
tlc-132-01 132 111.62 248 25.32 249 25.29 249
tlc-132-02 132 164.54 1,536 3.71 1,553 3.68 1,553
tlc-132-03 132 520.41 655,991 714.72 545,511 13.72 14,129
tle-152-01 152 753.16 995,600 1,325.41 813,496 16.73 17,265
tlc-258-01 258 MEMOUT MEMOUT 44.34 103,441

processor running at 2.6 GHz with 4 GB of main memory
and a timeout of 7,200 seconds.

Table I(a) shows our results on the benchmarks described
above without preprocessing. The fpu~* family was excluded
as none of the configurations were able to solve any of them.
For each benchmark, the depth & at which unrealizability could
be proven is stated. This is followed by the results for the non-
incremental, forward-incremental, and backward-incremental
solvers. For each mode the solve time in seconds and the
number of decisions over all unfoldings (0 to k) are provided.
It can be seen that the forward-incremental approach does not
provide a good improvement from the non-incremental case.
Rather, backward-incremental QBF solving seems to provide
the best performance gain (bold values): this is obtained by
a reduction in time, and a constantly smaller number of
decisions needed to prove unrealizability, also when compared
with forward-incremental. Basically, the learnt information
helps the search, preventing certain parts of the search space

from being searched multiple times as would be needed in
the non-incremental case. Moreover, this happens even more
frequently in the forwards setting, but the greater amount of
decisions made by the solver shows that those previously learnt
clauses do not always drive the search in the best direction.
As explained in Section IV-B, the solution cubes learnt by
the solver in the backward-incremental approach can be very
general, and similar effects benefit conflict clauses as well.

Table I(b) shows the results when performing preprocessing
during the BMC process, and is organized as Table I(a).
It is evident that the backward-incremental approach with
preprocessing is the winning strategy for solving the most
benchmarks (bold values). Note, in many cases, the number of
decisions taken by the solver is lower in the non-incremental
approach. This is due to the fact that the non-incremental
method allows for a more effective preprocessing, allowing the
(next) state variables (don’t touch) to be eliminated. However,
because of the complete preprocessing phase repeated at every

Beginning on the unrollings End on the unrollings

max-dec

Decisions

non incremental
—»— forward incremental
—©— backward incremental

—— non incremental
—— forward incremental
—o— backward incremental

0 35% 85% k—max

Unfolding Steps Unfolding Steps

Fig. 4. Number of branches explored along the verification process.

unrolling step overall BMC times are higher. In Fig. 4 we
display the progress of the search computed by the solver
(logarithmic scale) at the beginning (left) and at the end (right)
of the BMC procedure, in terms of decisions taken, when using
preprocessing. We only considered the benchmarks that all the
three (incremental and non) versions could solve.

Looking at the left plot, we notice that thanks to the (uncon-
strained) preprocessor, the non incremental solver has to make
less decisions. Indeed, when using don’t touch variables, the
preprocessor is less effective. This also makes the incremental
solving procedure explore a larger space in the last part of
the process (right plot). We do not show the plot for the
non-preprocessed case as there are no intersections between
the lines, nor other unexpected comportments. Overall, the
performance gains of our verification tool are best when using
backward-incremental and preprocessing methods.

VI. CONCLUSION AND FUTURE WORK

This paper introduced incremental QBF solving, and de-
scribed how a QBF solver can be made to work incrementally.
We demonstrated the usefulness of incremental QBF solving
in an exemplary application area, Bounded Model Checking
of incomplete designs. We discussed two possible ways to
solve the problem incrementally using modern search based
QBF solvers. For both the forward and backward-incremental
approaches, we discussed the advantages and limitations of
each idea. Regarding preprocessing, we highlighted some of
the problems associated with preprocessing and incremental
QBF solving and presented possible solutions. Finally, re-
sults were presented showing that the backward-incremental
approach seems to be the most promising.

In the future, we plan to continue the development of our
tool, and incorporate circuit based optimizations such as cone-
of-influence reductions instead of always using the transition
relation in its entirety. Furthermore, we want to extend our
incremental BMC tool for partial designs to the uniform

quantifier prefix: This should allow us to verify larger and
more complex designs in the future, and allow to take in input
formulas coming from other domains as well, for example for
QBF based BMC of complete designs as proposed in [10],
[11].

ACKNOWLEDGMENTS

The authors would like to thank STAR-lab of the University
of Genova, Italy, for fruitfully cooperating on QuBE. Addition-
ally, this work was partly supported by the German Research
Council (DFG) as part of the Transregional Collaborative
Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org
for more information.

REFERENCES

[1] J. N. Hooker, “Solving the incremental satisfiability problem,” Journal
of Logic Programming., pp. 177-186, 1993.

[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic Model Checking
without BDDs,” in Tools and Algorithms for the Construction and
Analysis of Systems, 1999, pp. 193-207.

[3] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded Model Checking
Using Satisfiability Solving,” Formal Methods in System Design., pp.
7-34, 2001.

[4] N. Een and N. Sorensson, “Temporal Induction by Incremental SAT
Solving,” Electr. Notes Theor. Comp. Sci., vol. 89, 2003.

[5] O. Shtrichman, “Pruning Techniques for the SAT-Based Bounded Model
Checking Problem,” in Advanced Research Working Conference on
Correct Hardware Design and Verification Methods., 2001, pp. 58-70.

[6] M. Herbstritt and B. Becker, “On Combining 01X-Logic and QBF,”
in Proceedings of 11th International Conference on Computer Aided
Systems Theory (EuroCAST). Springer Verlag, 2007, pp. 531-538.

[7]1 C. Miller, S. Kupferschmid, M. Lewis, and B. Becker, “Encoding Tech-
niques, Craig Interpolants and Bounded Model Checking for Incomplete
Designs,” in Theory and Applications of Satisfiability Testing, 2010.

[8] Giunchiglia, E., and Marin, P., and Narizzano, M., “QuBE7.0, System
Description,” Journal of Satisfiability., pp. 83-88, 2010.

[91 M. Herbstritt, B. Becker, and C. Scholl, “Advanced SAT-Techniques for
Bounded Model Checking of Blackbox Designs,” in Proc. Workshop on
Microprocessor Test and Verification, 2006, pp. 37-44.

[10] N. Dershowitz, Z. Hanna, and J. Katz, “Bounded Model Checking with
QBF,” in Theory and Applications of Satisfiability Testing, 2005, pp.
408-414.

T. Jussila and A. Biere, “Compressing BMC Encodings with QBF,”
Electr. Notes Theor. Comput. Sci., vol. 174, no. 3, pp. 45-56, 2007.
[12] “OpenCores,” http://opencores.org/.

[13] E. Giunchiglia, M. Narizzano, and A. Tacchella, “Clause/Term Resolu-
tion and Learning in the Evaluation of Quantified Boolean Formulas,”
Journal of Artificial Intelligence Research., vol. 26, pp. 371-416, 2006.
E. Giunchiglia, P. Marin, and M. Narizzano, Reasoning with Quantified
Boolean Formulas, ser. Frontiers in Artificial Intelligence and Applica-
tions. IOS Press, February 2009, vol. 185, ch. 24, pp. 761-780.

P. Marin, E. Giunchiglia, and M. Narizzano, “Conflict and Solution
Driven Constraint Learning in QBF,” in Doctoral Program of Constraint
Programming Conference, 2010.

C. Scholl and B. Becker, “Checking Equivalence for Partial Implemen-
tations,” in Design Automation Conference, 2000, pp. 238-243.

G. Tseitin, “On the Complexity of Proofs in Propositional Logics,”
Seminars in Mathematics, 1970.

S. Kupferschmid, M. Lewis, T. Schubert, and B. Becker, “Incremental
Preprocessing Methods for use in BMC,” in Int’l Workshop on Hardware
Verification, 2010.

E. Giunchiglia, P. Marin, and M. Narizzano, “sQueezeBF: An Effective
Preprocessor for QBFs Based on Equivalence Reasoning,” in Proceed-
ings of the International Conference on Theory and Applications of
Satisfiability Testing, 2010.

“Quantified Boolean Formulas satisfiability library,” www.qbflib.org.

[11]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

