
Static Scheduling of a Time-Triggered
Network-on-Chip based on SMT Solving

Jia Huang, Jan Olaf Blech, Andreas Raabe, Christian Buckl
fortiss GmbH

Guerickestr. 25, 80805 Munich, Germany
{huang,blech,raabe,buckl}@fortiss.org

Alois Knoll
Technische Universität München

Boltzmannstr. 3, 85748 Garching, Germany
knoll@in.tum.de

Abstract—Time-Triggered Network-on-Chip (TTNoC) is a net-
working concept aiming at providing both predictable and high-
throughput communication for modern multiprocessor systems.
The message scheduling is one of the major design challenges in
TTNoC-based systems. The designers not only need to allocate
time slots but also have to assign communication routes for all
messages. This paper tackles the TTNoC scheduling problem and
presents an approach based on Satisfiability Modulo Theories
(SMT) solving. We first formulate the complete problem as an
SMT instance, which can always compute a feasible solution
if exists. Thereafter, we propose an incremental approach that
integrates SMT solving into classical heuristic algorithms. The
experimental results show that the heuristic scales significantly
better with only minor loss of performance.

I. INTRODUCTION

Reliable and predictable communication is highly desirable
for many embedded systems. In particular, for safety-related
real-time applications, meeting real-time constraints, such as
the end-to-end latency can be as important as guaranteeing
functional correctness. Time-Triggered (TT) communication
is a natural and efficient way to meet these requirements. In
TT networks, the communication entities are synchronized
with each other. Traffic is injected strictly adhering to the
predefined schedule and resource collision is avoided by
design. Examples of time-triggered protocols include Flexray
(the static segment) in the automotive industry, SAFEBus
and TTP in the avionics domain, and TTEthernet being an
extension of the classical Ethernet.

The traditional time-triggered protocols usually operate
on bus-like systems. The shared communication media is
organized in time slots and all messages are separated in
the time domain. However, bus-based systems cannot meet
the communication requirements of modern Multiprocessor
System-on-Chip (MPSoC) platforms [1] due to the bandwidth
limitation. Researchers therefore investigated the integration
of time-triggered communication in Networks-on-Chip (NoC)
and proposed the Time-Triggered Network-on-Chip (TTNoC)
architecture [2]. TTNoC is based on a network of on-chip
switches. Although the network is globally arbitrated in time,
a major advantage of TTNoC is the possibility to separate
messages in the spatial domain, i.e. messages can share the
same time-slot as long as their routes are non-overlapping. An
example is depicted in Figure 1. In this case, TTNoC message
scheduling becomes a two-fold problem: allocation of slots in
the time domain and assignment of routes in the space domain.

Fig. 1. Example of TTNoC Schedule

This paper tackles the TTNoC scheduling problem and
presents an approach based on Satisfiability Modulo Theories
(SMT) solving. An SMT solver accepts problems formulated
in first-order logic and checks the feasibility of a solution with
respect to background theories. We first present a specification
formulating the complete problem as an SMT instance (Sec-
tion III). This approach always computes a feasible solution if
it exists. Since the solving time may become unacceptable as
the problem size grows, we develop an incremental algorithm
to improve the scalability (Section IV).

A. Related Work

The scheduling problem specific to TTNoC has not been
studied in existing literature. However, our work is closely
related to the scheduling approaches designed for other time-
triggered architectures. In [3] the authors present an approach
for the scheduling of the static segment of Flexray using
Integer Linear Programming (ILP). Lukasiewycz et al propose
a transformation of the Flexray scheduling into a bin-packing
problem and solve it subsequently using ILP [4]. To increase
the effective bandwidth, the concept of switched Flexray is
proposed in [5]. The corresponding scheduling problem is
studied in [6], [7]. Their solutions are based on the branch-
and-price algorithm [6] and graph-based heuristics [7]. The
scheduling problem for time-triggered multi-hop networks is
considered in [8]. The author adopts an approach similar to
ours. A pure SMT formulation is presented, followed by an
incremental method to improve the scalability. One major
difference between [8] and our work is that the route of each
message is assumed to be known in [8] and therefore the
author focuses only on the time domain.

II. PROBLEM DEFINITION AND TRANSFORMATION

The TTNoC architecture consists of a set of fragment
switches (also called nodes). A switch offers four identical

978-3-9810801-8-6/DATE12/ c©2012 EDAA

ports as depicted in Figure 2. Each port-to-port connection
consists of one link per direction (full-duplex). A port can
connect to another switch or a Processing Element (PE) via the
Trusted Interface Sub-System (TISS). The unified interface of
switches and TISSs allows the designer to implement different
topologies with low effort. A set of routes may co-exist as
long as no two routes use the same link, e.g. in Figure 2, the
messages m0, m1 and m2 can co-exist whereas m3 collides
with m1. The switches are not aware of the communication
schedule and just forward the message from the input port to
the output port according to the routing information contained
in the message header. The latency of forwarding is constant.

The payload of a message is decomposed into a set of fixed-
size flits, which is the basic transmission unit in TTNoC. A
flit is handled by a switch in one system clock cycle. The
TTNoC is globally arbitrated using TDMA. The granularity
of the TDMA slots is called a macro tick. A macro tick is a
multiple of the system clock cycle, i.e. multiple flits can be
sent in one slot. The duration of a macro tick is restricted
to be a negative power of a physical second by design [2],
e.g. 1

2 or 1
4 second. The time slots are allocated statically to

each communication entity and the information is stored in
each TISS. The TISS abstracts the details of communication
away from the application side. The TISSs are synchronized
in macro tick, i.e. all communication activities are aligned to
the TDMA slots. In the remainder of the paper, macro tick is
used as the basic unit of time.

We focus on periodic messages in this paper. This is the
typical case in the targeted application domain. A message is
described as a four-tuple (s, t, p, l), where s is the message
source, t is the message sink, p is the period and l is length of
the message. According to the timing specification of TTNoC,
the period must be a positive power of two of macro ticks
(p ∈ {2n|n > 0}), i.e. the messages are harmonic. The
length l is the number of TDMA slots needed to transmit
the message. To guarantee collision freedom, all flits should
reach their destination before the end of the allocated time
interval. Let payload be the message payload in terms of
flits, x be the number of hops in the route, d be the delay
per hop and T be the number of flits per macro tick, the total
number of TDMA slots needed by a message can be computed
as l =

⌈
payload+xd

T

⌉
. As can be seen, the message length

depends on the routing. This dependency causes a correlation
between the time and space domain in the scheduling problem
and it increases the complexity significantly. To cope with this
problem, we introduce a restriction on routing. Let the distance
(in hops) between source and the target TISS of a message m
be Dm. We restrict the routing algorithm to explore routes
with a maximum of Dm +α hops, where α ≥ 0 specifies the
flexibility of the routing. By doing so, l can be over-estimated
by l =

⌈
payload+(D+α)d

T

⌉
.

The TTNoC scheduling problem can be stated as follows.
Given an architecture with a set of nodes N and links B,
a set of communicating PEs C and a set of messages M ,
determine: 1) the PE-to-switch allocation π, i.e. the PE c

Fig. 2. The TTNoC Architecture

joins the network via a port of the switch π(c), 2) the timing
offset (or phase) f of each message, 3) the path P for each
message, such that each two messages are separated either in
the time or in the space domain. A message with period p
and phase f occupies the time intervals [np+ f, np+ f + l]
with n ∈ N0. The path P must be a continuous route from
the source TISS s to target TISS t. Since the message periods
are always positive powers of two, the hyper-period of any set
of messages is the longest period of all messages. We denote
the hyper-period using pmax. Without loss of generality, it is
sufficient to schedule only the first hyper-period.

A. Problem Transformation

The problem of allocating messages into time intervals can
be transformed into a 2D bin-packing problem. Here we adopt
the transformation proposed in [4] and adapt it to our needs.
A brief outline is given in the following.

Assume the shortest period of all messages in M is pmin.
The periods of all messages can be represented as positive
powers of two times pmin, i.e. for message m, pm = rmpmin,
where rm ∈ {2n|0 ≤ n ≤ pmax/pmin} is the repetition factor.
The time line of a hyper-period can be divided into segments
of size pmin and viewed in a 2D fashion as shown in Figure
3a. Each message will appear in every rth segments, e.g. m1

appears in every 1st segment and m3 appears in every 4th
segments. To transform message scheduling to bin-packing,
each message is converted into a rectangle element. The size
of the element can be computed by:

• hm = lm : the height of element is the length of message.
• wm = pmax/pm : the width of element is the number of

appearances in a hyper-period.

Obviously, the widths of elements are always powers of two.
The size of the bin is:

• H = pmin : the height of the bin is pmin in macro ticks.
• W = pmax/pmin : the width of the bin is the number of

segments of size pmin in one hyper-period.

Figure 3b depicts an example. Bin-packing is about placing
the elements in appropriate locations inside the bin, such that
no two elements intersect. The placement of an element is
defined by offsets xm ∈ [0,W) and ym ∈ [0, H) in horizontal
and vertical directions. Note that the horizontal offset xm must
be a multiple of the width, i.e. xm ∈ {nwm|n ∈ N0}. The

Fig. 3. Message Scheduling to Bin Packing Transformation

Fig. 4. Segmentation of Long Messages

placement of elements in the bin-packing problem has a one-
to-one mapping to the allocation of messages in time intervals.
The phase of a message m can be calculated from the position
of the rectangle element as:

fm = bmpmin + ym (1)

bm = t(
xm
wm

,
W

wm
) (2)

where t is the transformation function defined as:

t(x, y) =

 0 x=0
t(x2 ,

y
2) x is even

t(x−12 , y2) +
y
2 x is odd

with x ∈ N0, y ∈ {2n|n ∈ N0}, 0 ≤ x < y

Here bm denotes the segment in which message m appears.
The vertical position ym denotes the offset within the seg-
ment, e.g., the offset of m3 can be computed by fm3

=
t(22 ,

4
1)pmin + hm1

= pmin + lm1
. Using the transformation

above, a feasible message schedule exists if and only if a
feasible bin-packing scheme exists [4]. Since the bins are
of the height pmin, only messages shorter than pmin can fit
inside. Thus, if a message is longer than pmin, it has to be
broken into several pieces. Figure 4 illustrates an example, in
which m4 occupies three time segments of size pmin. Those
pieces can be scheduled individually. Additional constraints
are needed to make sure all pieces follow the same route and
are continuous in time (see Section III).

The bin-packing problem transformed from TTNoC
scheduling is not a standard one. The major difference is that
the intersection of objects is allowed, as long as the collision
can be resolved in the space domain (e.g. m0 and m1 in
Figure 3 can be assigned to non-overlapping routes and share
the same time slot). New approach is needed the address this
issue.

III. SMT SPECIFICATION

This section describes the formulation of the TTNoC
scheduling problem as an SMT specification. We first intro-
duce the used variables and then proceed with the constraints
that apply on the variables.

Variables. To describe the PE-to-switch allocation, we
enumerate all available ports that a PE can attach to and place
a virtual component on each port. The PEs are then mapped to
the virtual components. We use node(v) to denote the switch
that offers the port for virtual component v. A set of binary
variables is defined:
• ac,v ∈ {0, 1} is 1 iff the PE c is mapped to virtual

component v.
For each message m, two sets of binary variables are used to
denote the route:
• qm,n ∈ {0, 1} is 1 iff switching node n is on the path of

message m and 0 otherwise.
• km,i,j ∈ {0, 1} is 1 iff link (i, j) is on the path of message
m and 0 otherwise.

The following variables specify the location of the message in
the bin:
• xm ∈ {nwm|n ∈ N0, n < W

wm
} is the horizontal offset

of m.
• ym ∈ {y ∈ N0, y < H} is the vertical offset of m.

Path Constraints. We introduce a set of constraints to make
sure that the variables q and k denote a continuous, acyclic
path from the source to the destination. If a node is on such a
path, exactly one of its input links and exactly one of its output
links should be used (see Figure 2 for example). Hence, the
general path constraints are:

∀n ∈ N : qm,n → (one in ∧ one out) where

one in = (
∑

i∈in(n)

km,i,n) = 1

one out = (
∑

j∈out(n)

km,n,j) = 1

Here out(n) is the set of switches reachable from the output
links of n, and in(n) is the set of switches that the input
links of n originate from. To guarantee that the path starts
and ends at the correct nodes, the following constraints need
to be enforced:
• The switch that attaches the message source sm and the

one that attaches the message target tm must be in the
path of the message.

asm,v = 1→ qm,node(v) = 1

atm,v = 1→ qm,node(v) = 1

• Also, the link that connects the source/target of a message
to the network has to be used:

asm,v = 1→ km,v,node(v) = 1

atm,v = 1→ km,node(v),v = 1

If a link is on the path, the nodes on the two ends must also
be on the path:

∀(i, j) ∈ B : km,i,j = 1→ qm,i = 1 ∧ qm,j = 1

Dummy loops that go from node i to j and immediately back
should be avoided:

∀(i, j) ∈ B : km,i,j = 1→ km,j,i = 0

The overall route length should be below the upper bound:

∀v1, v2 : (asm,v1 = 1) ∧ (atm,v2 = 1)→
∑

(i,j)∈B

km,i,j

≤ distance(node(v1), node(v2)) + flexibility

Non-Overlapping constraints. If two messages intersect in
the bin-packing, non-overlapping routes must be assigned to
them. This constraint is denoted as following:

∀m1 ∈M,m2 ∈M,m1 6= m2 :

overlap(m1,m2)→
∧

(i,j)∈B

¬(km1,i,j = 1 ∧ km2,i,j = 1)

where the overlap occurs if and only if:

overlap(m1,m2) =

(xm1 < xm2 + wm2) ∧ (xm2 < xm1 + wm1)

∧ (ym1
< ym2

+ hm2) ∧ (ym2
< ym1

+ hm1)

Problem Specific Constraints. The SMT formulation can also
incorporate problem specific constraints. For example, in the
current specification of TTNoC, the TISS can only transmit
or receive one message at a time. This means two messages
with the same source or target must be separated in time. This
constraint can be written as:

∀m1 ∈M,m2 ∈M,m1 6= m2 :

sm1 = sm2 ∨ tm1 = tm2 → ¬overlap(m1,m2)

As discussed in section II-A, a long message may need to be
broken into several pieces to fit into the bin. Those pieces must
share the same path and be continuous in time. Let m′ and
m′′ be two successive pieces of a message, then the following
constraints must be enforced:
• the piece m′′ appears one segment later than m′ :
t(xm′
wm′

, W
wm′

) + 1 = t(xm′′
wm′′

, W
wm′′

),
• the offset within segment is 0 if it is not the first piece:

ym′′ = 0,
• the same links are used: ∀(i, j) ∈ B : km′,i,j = km′′,i,j .

IV. HEURISTIC APPROACH

Section In most cases, message scheduling is only one part
of the design process and needs to be carried out multiple
times. However, as the problem size increases, the long
execution time of a purely SMT based approach might become
a hurdle for the designer. To cope with this problem, we
propose an incremental heuristic to improve the scalability.
The algorithm proceeds in three steps, detailed in the next
section: 1) PE-to-switch allocation, 2) classical strip packing,

Fig. 5. PE-to-Switch Allocation Optimization

Fig. 6. Example of Strip Packing and Level Packing

3) level packing. The general idea of the heuristic is to reuse
the exist bin-packing algorithms to place the objects (step
2) and rely on the SMT solver to handle the non-standard
constraints, i.e. overlapping of objects (step 3).

1) PE-to-switch allocation. The goal of this step is to
find a PE-to-switch allocation scheme π that minimizes the
communication cost estimated by the distance between source
and target nodes:

Minimize : cost =
∑
m∈M

lm
pm
∗ distance(π(sm), π(tm))

For that we adopt an Evolutionary Algorithm (EA) based
optimization approach. The algorithm takes an architecture
graph GA and a communication graph GC (Figure 5) as
input. The architecture graph is a full-meshed graph with
vertices corresponding to virtual components in the TTNoC.
The weighted edges specify the distance in hops between
virtual components. The communication graph is also a full-
meshed graph with the vertices representing PEs. The edges
describe the communication requirement between any two
PEs, which is computed by:

R(C1, C2) =
∑

m∈M∧((sm=C1∧tm=C2)∨(sm=C2∧tm=C1))

lm
pm

A PE-to-switch allocation maps each vertex of GC to one
vertex of GA. This mapping can be encoded as a list of integers
as depicted in Figure 5. Standard operators such as two-point
crossover can be adopted during the EA-based optimization
process.

2) Strip Packing. This step packs the objects into an
imaginary strip with infinite height as illustrated by Figure
6a. This problem has been extensively studied in the past
(cf. [9]). Because of the good performance and simplicity
in implementation, we adopt the First Fit Decreasing Height
Decreasing Width (FFDHDW) algorithm in this paper. In

principle, any other existing algorithm could be used as well.
The FFDHDW algorithm belongs to the category of level
algorithm. These algorithms enforce the restriction that the
objects are placed with the lower edge on certain horizontal
levels [9]. The height of a level is determined by the height of
the tallest object in that level. Using FFDHDW, the objects are
pre-ordered in non-increasing height, and when height equals,
non-increasing width. The objects are iteratively placed onto
the lowest level with sufficient space and a new level is created
on top of the current level if it does not fit any existing level.
Recall that the objects transformed from the TTNoC messages
are restricted to be placed into horizontal locations that are
multiples of their width.

3) Level Packing. In this step, the levels are considered
as one-dimensional objects with size equal to the height of
the level and packed into bins (Figure 6b). As previously
discussed, messages can overlap in time as long as a spatial
separation is guaranteed. Thus, we try to overlay different
levels to reduce the overall height of the strip. An outline
of the level packing algorithm is presented in Algorithm 1.
After strip packing, we iteratively place levels in decreasing
height into the bin. The vector locations contains the possible
vertical locations to place the level. We try to place the level
in the lowest possible location (line 4). If it is successful, the
position and routing of the messages contained in this level
will be computed and fixed later on. The top of the current
level is considered as a possible location for future levels (line
5). This procedure is demonstrated in Figure 7. If a level fails
at all locations, the messages are added to the failedMessage
set and we move on to the next level (line 10).

Algorithm 1 IncrementalMessagePacking(): iterative level
based bin-packing with intersection of objects allowed. The
function place uses SMT solver to check the feasibility. M :
the set of messages.

1: locations = {0};
2: for all l ∈ levels with decreasing height do
3: for all a ∈ locations in increasing order do
4: if place(l,a)=success then
5: locations = locations ∪ {a+ height(l)}
6: break;
7: end if
8: end for
9: if l fails at all locations then

10: addToFailedMessages(l)
11: end if
12: end for
13: for all m ∈ failedMessages do
14: place(m)
15: end for

The feasibility of placing a level at a certain location is
checked by the SMT solver. Since packing and routing of
existing messages in the bin are fixed, the corresponding
SMT variables are replaced by constants in the constraints
to simplify the formulation. The constraints to check if level

Fig. 7. Example of Level Packing

l can be placed in location x is:

∀m ∈ l,m′ ∈ existingMessages(x) :

overlap(m,m′)→
∧

(i,j)∈B

(km′,i,j = 1→ km,i,j = 0)

The SMT solver can be granted the freedom to change the
horizontal location of messages inside levels. In many cases,
only certain combination of messages causes an unroutable
case. It will be much more efficient to resolve these conflicts
by moving the messages in the horizontal direction than by
placing levels at different locations. For example, if messages
m5 and m1 in Figure 6 cannot be routed together (e.g. they
are from the same sending TISS), the area {m1,m4,m5}
becomes unroutable and level 2 cannot be placed at location
0. However, this can be resolved by moving m5 to the right,
e.g. to the same location as m3. After placing all levels, an
additional fixing step can be introduced that tries to allocate
the set of failed messages (line 15 to 17 in Algorithm 1). We
iteratively consider all messages and give the SMT solver the
full freedom to change the location in both horizontal and
vertical axis, i.e. messages are not restricted to any levels.
Since only the variables associated with a single message need
to be computed, such a problem is expected to be solved in a
short time. Our experimental results verify this assumption.

V. EXPERIMENTS

The SMT formulation and incremental heuristic are imple-
mented in JAVA using the Z3 SMT solver [10]. The program
is running on a Windows machine with 3GHz CPU and
4GB memory. We tested the scheduling algorithms on three
architectures, namely a 3x3 TTNoC with 9 switching nodes,
a 5x5 architecture with 25 nodes and a 7x7 architecture with
49 nodes. Three algorithms are compared:
• Pure SMT formulation (SMT).
• Incremental heuristic without fixing failed messages (H-

NoFix).
• Incremental heuristic with the fixing step (H-WithFix).
We generate messages with periods between 32µs and

32ms and random length. For each architecture, a random set
of 5 to 50 messages is generated and allocated. We execute
15 such test cases and compute the average results. In each
round, the execution is terminated if the runtime exceeds 1.5
hour. Figure 8 compares the runtime of the three algorithms.
The error bars depict the best and worst results obtained. As
can be seen, the heuristic algorithm scales far better than a
pure SMT solution. In case of 40 messages, a speedup of
58x and 30x is achieved by H-NoFix for the 3x3 and 5x5
TTNoC, respectively. The pure SMT solution exceeds the 1.5

Fig. 8. Execution Time Comparison

Fig. 9. Error Rate of Heuristic Algorithms

hour budget as the number of messages approaches 45 for the
5x5 architecture and 35 for the 7x7 architecture. The execution
time of H-WithFix is very close to the H-NoFix algorithm. The
extra time spent on fixing increases with the total number of
messages. This is due to the fact that more messages fail as
the problem becomes more difficult.

To evaluate the performance of the heuristic, we consider
the percentage of messages failed to be allocated using the
algorithm. Figure 9 presents the results. It can be seen that
the failure rate generally decreases as the architecture size
becomes larger. For the case of 50 messages, failure rates
of 33%, 14% and 9% respectively are observed by H-NoFix.
A very likely explanation is that mapping the same amount
of messages to a larger architecture is generally a simpler
problem due to more routing options. The H-WithFix algo-
rithm further improves the performance. Again for the 50
message case, the failure rate is reduced to round 5% after the
incremental fixing step. In Table I, we compare the number
of successful/failed/expired test runs for some representative
setups. A test case is considered as successful if all messages
are allocated and failed if at least one message cannot be
allocated. For relatively simple test cases (e.g. tests with
less than 25 messages), the success rate of the heuristic (H-
WithFix) is comparable with that of SMT. For larger tests
(e.g. those with 50 messages), the success rate of heuristic is
relatively low. Nevertheless, only a small portion of messages
(less than %5) cannot be allocated. The designer may manually
map the remaining messages or explore a larger architecture.
As the counterpart, the SMT approach fails to provide a result
due to expiration of time budget.

VI. CONCLUSION

This paper tackles the TTNoC message scheduling problem.
We transform the problem into a special case of 2D bin-
packing and formulate it as an SMT instance. Since the
scalability of a pure SMT based solution is very limited, we
propose an incremental heuristic that combines SMT solving
with a classical bin-packing algorithm. Experimental results

SMT Heuristic
arch num. #succ. #fail. #exp. #succ. #fail. #exp. #failed

mess. case case case case case case mess.(%)
3x3 25 13 2 0 13 2 0 0.8
5x5 25 15 0 0 14 1 0 0.3
7x7 25 15 0 0 12 3 0 1.2
3x3 50 13 2 0 1 14 0 4.9
5x5 50 0 1 14 3 12 0 4.7
7x7 50 0 1 14 2 13 0 4.6

TABLE I
COMPARING THE NUMBER OF SUCCESSFUL/FAILED/EXPIRED TESTS

show that a significant speedup is achieved with an acceptable
performance loss (around 5% on average). As future work
we plan to integrate heuristic routing algorithms into the bin-
packing algorithm to further improve the scalability.

ACKNOWLEDGMENT
This work has been supported in part by the European research project ACROSS

under the Grant Agreement ARTEMIS-2009-1-100208.

REFERENCES

[1] H. Shah, A. Raabe, and A. Knoll, “Bounding wcet of applications using
sdram with priority based budget scheduling in mpsocs,” in DATE, 2012.

[2] C. Paukovits, “The time-triggered system-on-chip architecture,” Ph.D.
dissertation, Technische Universität Wien, Institut für Technische Infor-
matik, Dec. 2008.

[3] H. Zeng, W. Zheng, M. Di Natale, A. Ghosal, P. Giusto, and
A. Sangiovanni-Vincentelli, “Scheduling the flexray bus using optimiza-
tion techniques,” in DAC, 2009.

[4] M. Lukasiewycz, M. Glaß, P. Milbredt, and J. Teich, “FlexRay Schedule
Optimization of the Static Segment,” in CODES+ISSS, 2009.

[5] P. Milbredt, B. Vermeulen, G. Tabanoglu, and M. Lukasiewycz,
“Switched FlexRay Increasing the Effective Bandwidth and Safety of
FlexRay Networks,” in EFTA, Bilbao, Spain, 2010.

[6] T. Schenkelaars, B. Vermeulen, and K. Goossens, “Optimal scheduling
of switched flexray networks,” in DATE, 2011.

[7] M. Lukasiewycz, S. Chakraborty, and P. Milbredt, “Flexray switch
scheduling - a networking concept for electric vehicles,” in DATE, 2011.

[8] W. Steiner, “An evaluation of smt-based schedule synthesis for time-
triggered multi-hop networks,” in RTSS, 2010.

[9] N. Ntene and J. H. van Vuuren, “A survey and comparison of level
heuristics for the 2d oriented strip packing problem,” in submitted to
Applied Discrete Optimization, 2006.

[10] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in TACAS,
2008.

