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Abstract–Non-Uniform Cache Access (NUCA) architectures pro-
vide a potential solution to reduce the average latency for the 
last-level-cache (LLC), where the cache is organized into per-core 
local and remote partitions. Recent research has demonstrated the 
benefits of cooperative cache sharing among local and remote
partitions. However, ignoring cache access patterns of concur-
rently executing applications sharing the local and remote parti-
tions can cause inter-partition contention that reduces the overall 
instruction throughput. We propose a dynamic cache manage-
ment scheme for LLC in NUCA-based architectures, which re-
duces inter-partition contention. Our proposed scheme provides 
efficient cache sharing by adapting migration, insertion, and pro-
motion policies in response to the dynamic requirements of the 
individual applications with different cache access behaviors. 
Our adaptive cache management scheme allows individual cores 
to steal cache capacity from remote partitions to achieve better 
resource utilization. On average, our proposed scheme increases 
the performance (instructions per cycle) by 28% (minimum 
8.4%, maximum 75%) compared to a private LLC organization. 

1. INTRODUCTION AND RELATED WORK 
Multi-core systems are expected to increase the last-level-

cache (LLC) capacity to accommodate the working sets for 
memory intensive applications. However, increasing the LLC 
capacity increases the on-chip interconnect delay. As com-
pared to the transistor delay, interconnect delay does not scale 
at the same rate with each technology node [1-4]. Increasing 
interconnect delay has made Non-Uniform Cache Access 
(NUCA) architectures a promising solution compared to tradi-
tional Uniform Cache Access (UCA) architectures. The con-
cept of NUCA architectures is based on the non-uniformity of 
access time, where the access time depends upon the physical 
location of the line relative to the core. LLC in NUCA-based 
multi-core systems is organized into per-core local partitions 
and remote partitions, each of which has different access la-
tencies. A significant body of work studied LLC management 
to provide better throughput and fairness [5-12]. 

Previous studies [5-7] have proposed several NUCA 
schemes by combining the strengths of private LLC organiza-
tions (i.e. local partition is only accessible to the requesting 
core) and shared LLC organizations (i.e. all partitions are 
shared by all cores providing equal capacity sharing). In such 
a hybrid scheme, each core is provided with a local partition, 
which can be shared with other cores. On a miss in the local 
partition, all of the remote partitions are searched until the re-
quest is satisfied or an LLC miss is detected. In case of an 
LLC miss, the main memory is accessed and the data is 
brought to the local partition of the requesting core. Coopera-
tion among different local partitions was earlier proposed [5], 
where cache lines that are evicted from local partitions (victim
lines) are stored in remote partitions (called spilling). This un-
controlled spilling of victim lines to remote partitions causes 
cache pollution. The research work in [5] focused on control-
ling the degree of cooperation between different partitions by 
dynamically tuning the partition size of each local partition, 
where a part of the local partition is only accessible to the lo-
cal core (private portion), while the remaining part is accessi-

ble to the remote cores (shared portion). The sizes of the pri-
vate and shared portions of the local partitions are controlled 
dynamically on a per-core basis. 

Previously proposed NUCA-based approaches [5-7] do not 
consider application access patterns of the competing applica-
tions sharing local and remote partitions, which can cause con-
tention leading to ineffective utilization of cache resources. As 
future multi-core architectures are expected to have a large 
number of cores, cache contention caused by concurrently 
running application will increase as well. Research work in 
mitigating cache contention has been carried out recently for a 
shared LLC in UCA-based architectures [12]. That work uses 
a Utility Monitoring Circuit (UMON) [13] for adapting the 
cache replacement policy in the shared LLC by tracking run-
time miss rate information of the individual applications. 
However, the use of UMON comes at the cost of additional 
hardware overhead for maintaining shadow tags (a shadow tag 
is similar to a regular cache structure except that it only con-
tains the tag array). In this paper, we focus on the cache man-
agement in NUCA-based multi-core architectures by allocat-
ing cache resources to competing applications in response to 
the diverse application requirements. There has been a consi-
derable amount of work on managing NUCA caches [5-7] and 
we compare our results with the most recently proposed Dy-
namic spill-receive (DSR) architecture [6] as it provides a low-
overhead cooperative caching between different partitions. 

 

LLC size art bzip mcf milc lbm gos povray 
0.5 MB 79.8 6.86 53.34 18.65 26.15 0.694 0.0214 
1 MB 56.14 4.35 37.68 18.65 26.14 0.520 0.0196 
2 MB 0.04 1.47 23.80 18.64 26.13 0.350 0.0193 
4 MB 0.001 0.69 16.86 18.61 26.13 0.213 0.0193 

Table 1: Case study: LLC misses per thousand instructions (MPKI) 

The LLC in our baseline architecture is realized as four 
equally sized Local Partitions (LPs, one per core) and assumes 
an LP size of 1 MB per core. Applications vary widely in 
terms of their cache requirements. Table 1 illustrates this ob-
servation showing LLC misses per thousand instructions 
(MPKI) for different LLC sizes and different applications. In-
creasing the LLC size of some applications (e.g. art, bzip, and 
mcf) incurs significant reduction in MPKI. These applications 
benefit from an increased cache capacity and are classified as 
Taker applications. The applications whose LLC requirement 
is far less than the cache space available in the LP are classi-
fied as Giver applications (e.g. gos and povray already have an 
MPKI < 1 for 0.5 MB LLC). 

 
Figure 1: Overview of the DSR architecture [6] 
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Figure 1 shows an overview of the DSR architecture [6] for 

a 4-core system. The DSR architecture allows stealing cache 
resources from remote partitions in response to the cache de-
mands of individual cores. The LP of the core executing a 
Taker application (at most one application executes per core) 
acts as a spiller partition to spill evicted victim lines to the 
remote partitions for later reuse. The LP of the core executing 
a Giver application acts as a receiver partition to provide 
some of its capacity to the Taker applications. In the DSR ar-
chitecture, a victim line from a spiller partition is stored in a 
randomly chosen receiver partition, whereas a victim line from 
a receiver partition is spilled to the main memory. Each LP is 
provided with one bit named as S/R that decides whether that 
LP will act as a spiller partition (S/R=1) or a receiver partition 
(S/R=0). In Figure 1, the S/R bit of partitions LP0 (local parti-
tion associated with Core 0) and LP2 are set to 1 indicating 
that these partitions act as spiller partitions. Therefore, victim 
lines from LP0 and LP2 are spilled randomly to any of the re-
mote receiver partitions, i.e. LP1 or LP3. Evicted victim lines 
from LP1 and LP3 are spilled to main memory. Each local 
partition learns the spiller-receiver decision using dynamic set 
sampling (details can be found in [6]). 

Comparing across the applications, we found that the cache 
requirements do not correlate linearly with the increase in the 
cache demand. For example, lbm and milc incur a high miss 
rate and a high access rate (see Table 1). These applications 
have large working sets with very poor locality and do not get 
any benefit from increasing the cache resources. Instead, that 
would lead to inter-partition contention in the DSR architec-
ture (details in Section 2). The main drawback of the DSR ar-
chitecture is that it statically determines the line migration, 
insertion, and promotion policies (explained below) and suf-
fers from inter-partition contention. If an application requires 
a different policy to improve the instruction throughput then 
this cannot be achieved when using a fixed policy. The main 
objective of this paper is to realize a low-overhead mechanism 
to reduce inter-partition contention with dynamic migration, 
insertion, and promotion policies. The differences in compari-
son to the DSR architecture and our novel contributions are: 
1. We propose a dynamic migration policy, that decides at run-

time, whether a line that receives a hit in the remote parti-
tion shall be migrated to the local partition of the requesting 
core or not. Our dynamic migration policy detects and 
avoids unnecessary migrations between local and remote 
partitions, whereas the DSR architecture always migrates 
the remote cache-hit lines to the local partition. 

2. We propose a dynamic insertion policy (decides the inser-
tion position for the incoming cache line in case of a cache 
miss) and a dynamic promotion policy (decides how a cache 
line moves towards the most recently used (MRU) position 
on receiving a cache hit) for the local and remote requests in 
response to the dynamic requirements of the applications. 
The DSR architecture uses the traditional least recently used 
(LRU) policy for line insertion and promotion. 

3. Our proposed approach attempts to minimize the cache re-
sources allocated to applications with streaming and thrash-
ing behavior, since they get little benefit from increasing the 
cache resources. Cache thrashing occurs for applications 
that have a working set size that is significantly larger than 
the available cache resources [12, 14]. 

2. DYNAMIC CACHE MANAGEMENT 
Our proposed cache management scheme is based on the 

concept of NUCA architectures, where hits in the local parti-
tion are faster than hits in the remote partitions. On a miss in 
the local partition, all of the remote partitions are searched un-

til the request is satisfied or an LLC miss is detected. An LLC 
miss will require an off-chip access, where the main memory 
is accessed and the cache line is brought to the local partition 
of the requesting core. For cooperative sharing among differ-
ent partitions, we employ the recently proposed set dueling 
technique to learn whether a partition will act as a spiller par-
tition or a receiver partition [6, 14]. 
2.1. Dynamic migration policy 

In the previous NUCA schemes [5-7], on a miss in the local 
partition, all remote partitions are queried by en-queuing the 
request for determining a hit or a miss. In case of a remote hit 
in the DSR architecture [6], the cache line is invalidated in the 
remote partition, and migrated to the local partition of the re-
questing core (migrate policy) exploiting the temporal locality 
that the referenced line will be accessed in the near future. For 
example, Figure 1 illustrates two spiller and two receiver par-
titions. If a line for core 0 (LP0 is a spiller partition) hits in 
LP1 (receiver partition with core 1), then the DSR architecture 
migrates the hit line to LP0. The line evicted from the LP0 (as 
a result of the migration) is transferred to the receiver partition 
LP1. The migrate policy exploits the temporal locality to im-
prove the local partition hit ratio. A migrated cache line that is 
not referenced between its insertion into the local partition and 
spilling it again is called zero reuse migrated line. It is not 
beneficial to migrate such a line into the local partition if its 
reuse distance (the number of insertions made before the line 
is reused) is greater than the local partition associativity as it 
will be spilled before it is reused. For applications with a ra-
ther large number of zero reuse migrated lines (e.g. art exhi-
bits this behavior), the majorities of migrated lines reside in 
the local partition without contributing to cache hits and final-
ly get evicted/spilled to remote partitions, resulting in frequent 
migrations between local partition and remote partition affect-
ing the cache efficiency. 

 
Figure 2: Example illustrating the migrate- and no-migrate policy for a 

hit to Line N in the remote partition for the LRU replacement policy 
LP: local partition, RP: remote partition 

In this paper, we introduce the no-migrate policy and dy-
namically switch between migrate and no-migrate policy at 
run time. In the no-migrate policy, a cache line that receives a 
hit in a remote partition is transferred to the requesting core to 
handle its request without being installed in the local partition 
of the requesting core. Figure 2 shows an example illustrating 
the migrate- and no-migrate policy on receiving a cache hit in 
a remote partition for line N. In the migrate policy, line N is 
migrated to the local partition of the requesting core by plac-
ing it in its MRU position. This migration will cause eviction 
of line H in the local partition, which is then installed in the 
MRU position of the remote partition. In case of the no-
migrate policy, line N is not installed in the local partition but 
promoted to MRU position in the remote partition. 

Figure 3 shows the IPC of four different applications run-
ning on a quad-core system, when using the migrate- or no-
migrate policy for the art application and the no-migrate poli-
cy for the other applications (these applications benefit from 
the no-migrate policy; the details of the experimental setup are 
presented in Section 4). The art benchmark shows a signifi-
cant improvement in the IPC (58%) for the no-migrate policy 
compared to the migrate policy. While applying the migrate 

 



 
policy for art, we found that about 82% of the lines that are 
migrated to the local partition of the core that executes the art 
benchmark are not re-used before spilling the lines again to a 
remote partition. Figure 4 shows the LLC MPKI for art as a 
function of number of ways allocated to it. The art benchmark 
obtains significant benefits from the extra cache capacity 
beyond its local partition size as its MPKI reduces significant-
ly when extra cache resource are allocated to it. The art 
benchmark is determined as a Taker application by DSR, but 
has a much lower reuse frequency in the local partition and 
gets significant benefits with the no-migrate policy compared 
to migrate-policy. 

 
Figure 3: Individual benchmark instruction per cycle (IPC) 

T: Taker application, G: Giver application 

 
Figure 4: LLC misses per thousand instructions (MPKI) 

for art as a function of number of ways 

We propose a dynamic migration policy that decides at run-
time whether a line that hits in a remote partition shall be mi-
grated or not. Algorithm 1 shows our proposed dynamic mi-
gration policy. If an application remote hit ratio exceeds the 
local partition hit ratio, then the requesting core chooses the 
migrate policy, otherwise the requesting core selects the no-
migrate policy. The intuition behind our dynamic migration 
policy is that a high local hit ratio favors the migration policy 
(for later reuse of the cache line), while a high remote hit ratio 
favors the no-migrate policy (to mitigate the negative impact 
of zero reuse migrated lines). When deciding whether the mi-
gration or the no-migration policy shall be used it may happen 
that the core switches through different policy changes before 
converging on a good one. To address this issue, we invoke 
our dynamic migration policy after 4096 misses (interval pe-
riod Ti in Algorithm 1) in the LP to prevent rapid policy 
changes. Once a policy change is made, it remains until 4096 
misses occur in the LP. 

 

NAL     Number of accesses to the local partition 
NHL     Number of hits in the local partition 
NAR     Number of accesses to the remote partitions 
NHR     Number of hits in the remote partitions 
1 At the end of an interval period Ti
2  for all Taker partitions do 
3   if (NHL / (NAL + NAR ) < NHR / NAR) then 
4    choose migrate policy for the next time interval Ti+1 
5   else 
6    choose no-migrate policy for the next time interval Ti+1 
7   end if 
8  end for 
9  Reset NAL, NHL, NAR, and NHR monitoring

Algorithm 1: Our Dynamic Migration Policy 

2.2. Dynamic insertion and promotion policy 
Cache replacement policies can be categorized into two 

parts: insertion policy and promotion policy [14, 12]. The 
priority position of a cache line determines the eviction policy 
on a cache miss. Figure 5-a shows a logical organization (lines 
are shown from left to right in priority order, the physical or-
der in the set may differ) of a cache set with priority values 
assigned to each line that decide the priority position of the 
line in the set. The cache line with the least priority (Line H 
with a priority value of 1) is the candidate for eviction to make 
room for the incoming line on a cache miss. On receiving a 
cache miss, the insertion policy decides the insertion position 
for the incoming line in the priority list [14] which requires 
modification to conventional least recently used (LRU) policy. 
In Figure 5-a, the LRU replacement policy evicts Line H from 
the lowest priority position 1 to make room for the new in-
coming Line I that is inserted into the highest priority posi-
tion 8. The promotion policy decides how a cache line moves 
towards the highest priority position on receiving a cache hit. 
In an LRU based cache, a hit causes the line to move towards 
the highest priority position. In the example shown in Fig-
ure 5-b, Line E is promoted to the highest priority position 8 
on receiving a cache hit. 

 
Figure 5: Example illustrating (a) LRU Insertion policy and 

(b) LRU Promotion policy 

 
Figure 6: Example illustrating (a) Inter-partition contention 

(b) Performance Isolation between local and remote partition 
(remote lines shown in grey boxes) 

The LRU replacement policy (as for instance used by the
DSR architecture [6]) does not work well with applications 
that have streaming or thrashing behavior. These applications 
have a high cache access rate with a working set size greater 
than the available cache size and thus get negligible benefits 
from extra cache capacity. Applications that exhibit streaming 
or thrashing behavior are for instance lbm, libquantum, mesa, 
and milc. The local partition of a core running a streaming ap-
plication is not efficiently utilized due to many rarely reused
lines. Streaming applications are typically classified as Giver 
applications because they do not benefit noticeably from larg-
er cache capacity and thus allow Taker applications to spill 
their lines into the local partition of the streaming application. 
However, they have a high access rate to their local partition 
relative to the access rate of Taker applications to the remote 
lines in this partition. This means, they insert a large number 
of lines in the local partition, and as a result, they quickly 
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evict useful remote cache lines. The eviction of useful remote 
cache lines increases the contention between local and remote 
partitions. Figure 6-a illustrates a receiver partition running a 
streaming application with LRU-based replacement policy, 
which initially contains some useful lines from the remote par-
titions (shown in grey boxes). As the local core inserts more 
lines into its local partition, the useful remote lines are 
evicted. Subsequent accesses to these useful remote lines will 
result in cache misses, hereby affecting performance. Thus, by 
inserting the rarely used local lines in the highest priority po-
sition, the LRU replacement policy increases inter-partition 
contention. The occupancy time of the rarely used lines can be 
reduced, if they are inserted into low priority positions. Fig-
ure 6-b shows how a local cache line for streaming applica-
tions is inserted into a low priority position (i.e. insertion po-
sition of 3), hence providing inter-partition performance isola-
tion/protection. Since local lines exhibit little reuse for stream-
ing applications, they are evicted quickly as more lines are in-
serted. The useful remote lines are maintained in the highest 
priority position, which protects them from the streaming be-
havior of the local core. 

 
Figure 7: Example: promotion of a line by +2 on receiving a cache hit 

In an LRU-based cache, lines that receive a hit are promoted 
to the highest priority position, as shown in Figure 5-b. How-
ever, the LRU-based promotion policy does not perform well 
for streaming applications that exhibit rarely reuse behavior. If 
the local lines for streaming applications are moved by a 
smaller promotion distance (i.e. the distance by which the 
priority position of the line is changed on receiving a cache 
hit), it will not only reduce the occupancy time for the rarely 
used lines, but also prevent eviction of useful cache lines be-
longing to remote partitions. As shown in Figure 7, Line G is 
promoted by a smaller promotion distance (promote by +2) on 
receiving a hit. Promotion of the rarely reused lines by a 
smaller distance will keep the highly reused lines towards the 
highest priority position and rarely reused lines towards the 
lowest priority position, hereby increasing the cache efficien-
cy. 

Let A be the associativity of the local partition. The inser-
tion position IP of an incoming line can be defined as a value 
between 1 and A. An incoming line with IP=A indicates that 
the line is inserted into the MRU position (highest priority), 
whereas an incoming line with IP=1 indicates that the line is 
inserted into the LRU position (lowest priority). Similarly, the 
promotion distance PD of a hit line can have a value between 
1 and A. A local partition with PD=A will always promote the 
cache hit line to MRU position, whereas a local partition with 
PD=1 will promote the cache hit line by a single priority posi-
tion. The primary objective of our dynamic insertion and pro-
motion policy is to reduce the cache resources that are allo-
cated to applications with streaming or thrashing behavior. 
This will effectively reduce the occupancy time of the rarely 
reused lines for streaming applications. These cache resources 
can be provided to the spiller partitions. In our approach, the 
values for IP and PD are adapted at run-time for each local 
partition. 

Algorithm 2 shows our proposed dynamic insertion/promo-
tion policy for an A-way set associative local partition. An ap-
plication’s cache behavior is determined using runtime profil-
ing via the processor’s performance counters. If an application 

running on a core with a receiver partition (i.e. the local parti-
tion does not get any benefit from extra cache capacity) has a 
higher local miss rate than a certain threshold thr1, then the 
application is classified to exhibit extreme streaming (ES) be-
havior. In such a case, our dynamic scheme allocates less 
cache resources to that local core by inserting the incoming 
local lines into the low priority positions as illustrated in Fig-
ure 8. The remote requests (i.e. evicted victim lines from the 
spiller partitions) are inserted into high priority positions to 
give preference to the spiller partitions. In such a case, the 
spiller partitions steal more cache resources from the receiver 
partition that exhibits streaming or thrashing behavior. Differ-
ent stream detection thresholds (thr1, thr2, and thr3) are used to 
classify the cache access behavior (ES, MS, LS, and LF as 
shown in Algorithm 2). Similarly, the cache lines on receiving 
a hit are moved towards high priority position by the promo-
tion distance that is adapted at runtime. The lines are moved 
by a smaller promotion distance in case of a high local miss 
ratio (poor locality), while they are moved by a larger promo-
tion distance in case of a low local miss ratio (good locality). 
In such a case, heavily used lines will be promoted towards 
the high priority position and infrequently used lines will be 
moved towards the low priority positions, hereby reducing the 
occupancy time of the rarely reused lines. 

 

A     Associativity of the local partition 
IL     Insertion position for the local request 
IR     Insertion position for the remote request 
PL     Promotion distance for the local request 
PR     Promotion distance for the remote request 
ES     Extreme Streaming
MS     Moderate Streaming 
RS     Reduced Streaming 
LF     LRU Friendly 
NAL     Number of local accesses 
NML     Number of local misses 
thr1, thr2, thr3 Streaming/Thrashing detection thresholds 
1 At the end of an interval period Ti
2  for each partition p do 
3   if (all local partitions are receiver partitions or 
4        p is a spiller partition) then 
5    LRU policy : IL = A, PL = A, IR = A, PR = A 
6   else if (NML/NAL  thr1) then 
7    Type ES : IL = A/8, PL = A/4, IR = A, PR = A 
8   else if (NML/NAL  thr2) then 
9    Type MS : IL = A/4, PL = A/2, IR = A, PR = A 
10   else if (NML/NAL  thr3) then 
11    Type RS : IL = A/2, PL = 3A/4, IR = A, PR = A 
12   else  // receiver partition has a low miss rate 
13    Type LF : IL = A, PL = 3A/4, IR = 3A/4, PR = 3A/4 
14   end if 
15  end for 
16 Reset NAL and NML
17 Apply the insertion and promotion policy for the next time 
 interval Ti+1 

Algorithm 2: Dynamic Insertion/Promotion Policy 
for an A-way set associative local partition 

 
Figure 8: Example of a 16-way set associative partition, illustrating dy-

namic insertion position for local (circles) and remote (triangles) requests 

 



 
Table 2 shows the average cache miss rate of different ap-

plications (when running alone) for a 4 MB LLC. The stream-
ing benchmarks (lbm, milc, libquantum, and mesa) exhibit 
high cache miss rates (closer to 0.5 for most of the streaming 
applications) even if the entire 4 MB LLC is available exclu-
sively for that application. The threshold values used in Algo-
rithm 2 are determined based on the high miss rates of stream-
ing applications. The threshold values (thr1 = 0.5, thr2 = 0.25, 
thr3 = 0.125) are chosen for easy computation. For instance, 
computing NML/NAL  0.5 (or 0.25 or 0.125, respectively) will 
require right-shifting NML by 1 (or 2 or 3, respectively) and 
compare with NAL (e.g. NML/0.5  NAL). The priority positions 
IL, IR, PL, and PR are determined at run time based on the 
threshold values as shown in Algorithm 2. Our dynamic 
scheme allocates the resources to each application considering 
the streaming behavior of the individual applications. A dy-
namic insertion policy has been carried out recently for a 
shared LLC in Uniform Cache Access (UCA) architectures 
[12]. That work uses a Utility Monitoring Circuit (UMON) 
[13] for adapting insertion policy in the shared LLC by col-
lecting run-time miss rate information of the individual appli-
cations with different associativity. However, the use of 
UMON comes at the cost of additional hardware overhead, 
which requires per-core storage overhead of 7.4 KB, altogeth-
er leading to a 29.6 KB storage overhead for a quad-core sys-
tem. In this paper, we apply our dynamic insertion and promo-
tion policy to a NUCA-based multi-core architecture to reduce 
inter-partition contention between local and remote requests 
with least hardware overhead (for hardware overhead see Sec-
tion 2.3). 

 
Application lbm milc libquantum mesa art

Miss rate 0.519 0.733 0.499 0.482 0.0001 

Application deal gos bzip mcf eon
Miss rate 0.0018 0.0026 0.026 0.051 0.0006 

Table 2: Cache miss rate for entire 4 MB LLC 

Our proposed dynamic insertion and promotion policy exhi-
bits its benefits in situations where streaming applications run 
concurrently with Taker applications. In such a case, the Taker 
applications are able to snatch large fractions of cache re-
sources from the streaming applications without degrading 
their performance. For the corner case where all of the parti-
tions are receiver partitions, our dynamic scheme reverts to 
the LRU policy (Line 3 in Algorithm 2) to prevent underutili-
zation of each local partition (because none of the local parti-
tion benefits from extra cache capacity beyond local partition 
size). The traditional LRU scheme allocates cache resource to 
each application based on demand rather than locality. In LRU 
based caches, applications with higher access frequencies 
(greater demand) and higher miss rate (thrashing behavior) 
will occupy more cache resources, which may lead to ineffec-
tive utilization of the cache resources. 
2.3. Hardware overhead 

Our proposed scheme requires four registers (to keep track 
of the local and remote partition hit ratio) per-core to decide 
the migration policy as illustrated in Algorithm 1. Each parti-
tion requires a 4-bit migration policy vector (for a 4-core sys-
tem) to decide the migration policy for the remote partitions. 
Our dynamic insertion and promotion policy illustrated in Al-
gorithm 2 can be implemented either in hardware or in soft-
ware and requires monitoring of the overall miss ratio to de-
cide the insertion position and promotion distance for local 
and remote requests. A hardware implementation will require 
4 priority encoders (to decide IL, IR, PL, and PR) per LP. In 
terms of storage overhead, we need registers to keep track of 

the miss and access statistics for the current and previous time 
intervals. Altogether, our proposed scheme comes with neglig-
ible per-core hardware/software overhead. 

3. EXPERIMENTAL SETUP 
We use the x86 version of SimpleScalar (zesto) [15] to si-

mulate a quad-core system. The processor is clocked at 
3.2 GHz with 32 KB I-Cache and 32 KB D-Cache with 
3 cycles latency. We use an 80-entry reorder buffer, 32-entry 
reservation station, 24-entry load queue, and 20-entry store 
queue. The branch misprediction penalty is assumed to be 
14 cycles with a four-wide decode and commit width. The 
main memory is modeled as DRAM with 400 MHz front side 
bus. The last-level-cache local partition size is chosen to be 
1 MB with a 10 cycle hit latency. Cache hits in the remote par-
tition incur an additional latency of 30 cycles. Our perfor-
mance evaluations make use of various multi-programmed 
workloads from SPEC2000 and SPEC2006 [16], as shown in 
Table 3. Each application is determined either as Taker (T) or 
Giver (G) application in the DSR architecture. The applica-
tions that exhibit thrashing behavior are denoted as Streaming 
(S) application. Note that streaming application are deter-
mined as Giver (S/R = 0) application by the DSR architecture. 
For each benchmark, we used the Simpoint tool [17] to select 
representative samples. For each benchmark, we collect simu-
lation statistics for 250 million instructions with a fast-
forward of 500 million instructions (to warm up the caches 
and branch predictors in functional mode). When a shorter 
benchmark finishes early by completing its 250 million in-
structions, then it is restarted and continues to contend for the 
cache and bus resources. However, the simulation statistics are 
reported for the first 250 million instructions after the fast-
forward. 

Name Benchmarks 
Mix_1 art (T), eon (G), mcf (T), povray (G) 
Mix_2 mcf (T), eon (G), gos (G), libquantum (S) 
Mix_3 gos (G), art (T), bzip (T), lbm (S) 
Mix_4 bzip (T), milc (S), mesa (S), lbm (S) 
Mix_5 deal (G), lbm (S), bzip (T), art (T) 
Mix_6 mcf (T), bzip (T), deal (G), sjeng (G)  
Mix_7 eon (G), art (T), libquantum (S), art (T) 
Mix_8 bzip (T), lbm (S), bzip (T), libquantum (S) 
Mix_9 mcf (T), libquantum (S), deal (G), milc(S) 

Table 3: Benchmark Workload 
T: Taker, G: Giver, S: Streaming 

4. EXPERIMENTAL RESULTS 
To evaluate the performance of our proposed scheme, we 

use three metrics for comparison: overall throughput, harmon-
ic mean (HM) and best-case performance improvement com-
pared to a private last-level-cache (LLC) organization [5, 7]. 
In a private LLC organization, the local partition is only ac-
cessible to the requesting core and there is no capacity stealing 
between partitions. We have compared our scheme with the 
state-of-the-art Dynamic spill-receive (DSR) cache manage-
ment technique [6] that shares the same philosophy of stealing 
cache resources from the remote partitions but does not con-
sider application’s cache access behavior for cooperative in-
ter-partition cache sharing. DSR uses static policies, whereas 
we use our proposed dynamic migration, insertion, and promo-
tion policies. 

We observe improved benefits for most workload types. 
Figure 9 shows the percent improvement in instruction 
throughput for DSR [6] and our proposed scheme compared to 
a private LLC design. On average, our proposed scheme in-

 



 

 

creases the instruction throughput by 28% (minimum 8.4%, 
maximum 75%) compared to a private LLC organization. In 
comparison with the DSR architecture, it increases the instruc-
tion throughput by 12.5%. We also evaluate the performance 
of our proposed scheme against the DSR architecture using the 
harmonic mean fairness metric (M s the number of applica-
tions) which is given as: 

i

HM =  

 
Figure 9: Total instruction per cycle (TIPC) improvement 

relative to a private LLC organization 

 
Figure 10: Harmonic Mean (HM) for DSR and our architecture 

 
Figure 11: Individual benchmark best–case performance for DSR and our 

scheme compared to a private LLC organization 

Figure 10 shows the HM fairness metric for DSR and our 
proposed architecture. On average, our proposed architecture 
improves HM speedup by 13.3% (minimum 3%, maximum 
30%) compared to the DSR architecture. Maximum gains are 
observed, where the applications with streaming behavior ex-
ecute together with Taker applications (Mix_3, Mix_5, Mix_7, 
and Mix_9). In such a case, Taker applications are able to 
steal large fractions of cache resources from the Streaming 
applications. Thus, our approach not only increases the overall 
throughput but it also balances fairness (13.3% improvement 
in HM speedup) compared to the DSR architecture. Figure 11 
shows the individual benchmark best-case performance im-
provement for DSR and our proposed policy compared to a 
private LLC organization. On average, our proposed policy 
increases the best-case performance by 190%, while DSR in-
creases the best-case performance by 94% compared to a pri-
vate LLC organization. 

5. CONCLUSIONS 
Low latency on-chip cache access with reduced off-chip 

memory traffic is a goal for future multi-core architectures. 
Increasing on-chip interconnect delays, inter-cache contention, 

and the requirements of memory intensive workloads necessi-
tate efficient cache management in order to satisfy the con-
flicting requirements to improve the overall throughput and 
fairness. This paper presents an efficient cache management 
scheme for multi-core systems that reduces average cache la-
tency by increasing the number of hits in the local partitions. 
It provides dynamic insertion, promotion, and migration poli-
cies that dynamically allocate cache resources based on the 
requirements of the individual applications. Our adaptive 
cache management scheme reduces inter-partition contention 
and provides better resource sharing by stealing cache re-
sources from remote receiver partitions via monitoring each 
partition at runtime. Our proposed scheme increases the aver-
age instruction throughput by 28% and 12.5 % compared to a 
private LLC organization and the DSR architecture [6], re-
spectively. Our proposed cache management scheme consider-
ing various dynamic policies comes with limited hard-
ware/software overheads. 
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