
Dynamic Directories: A Mechanism for Reducing

On-Chip Interconnect Power in Multicores
Abhishek Das*

1
, Matt Schuchhardt, Nikos Hardavellas, Gokhan Memik, and Alok Choudhary

Electrical Engineering and Computer Science Department

Northwestern University

Evanston, IL USA

*Datacenter and Connected Systems Group

Intel Corporation

Hillsboro, OR USA

Abstract—On-chip interconnection networks consume a

significant fraction of the chip’s power, and the rapidly

increasing core counts in future technologies is going to further

aggravate their impact on the chip’s overall power consumption.

A large fraction of the traffic originates not from data messages

exchanged between sharing cores, but from the communication

between the cores and intermediate hardware structures (i.e.,

directories) for the purpose of maintaining coherence in the

presence of conflicting updates. In this paper, we propose

Dynamic Directories, a method allowing the directories to be

placed arbitrarily in the chip by piggy-backing the virtual to

physical address translation. This eliminates a large fraction of

the on-chip interconnect traversals, hence reducing the power

consumption. Through trace-driven and cycle-accurate

simulation in a range of scientific and Map-Reduce applications,

we show that our technique reduces the power and energy

expended by the on-chip interconnect by up to 37% (16.4% on

average) with negligible hardware overhead and a small

improvement in performance (1.3% on average).21

Keywords-On-chip networks; Non-uniform caches; Multicore

architecture

I. INTRODUCTION

Advances in process technology enable exponentially more
cores on a single die with each new process generation, leading
to a commensurate increase in cache sizes to supply all these
cores with data. To combat the increasing on-chip wire delays
as the core counts and cache sizes grow, future multicore
architectures become distributed: the last-level on-chip cache
(LLC) is divided into multiple cache slices, which are
distributed across the die area along with the cores [5, 21]. To
facilitate data transfers and communication among the cores,
such processors employ elaborate on-chip interconnection
networks. However, recent studies show that such on-chip
networks consume between 20% to 36% of the power of a
multicore chip [7, 10] and significantly raise the chip
temperature [13] leading to hot spots, thermal emergencies, and
degraded performance. As core counts continue to scale, the
impact of the on-chip interconnect is expected to grow even
higher in the future.

1 This work was performed while Abhishek Das was affiliated with

Northwestern University.
2 This work was supported in part by NSF grants CCF-0916746, CCF-

0747201, CNS-0720691, CNS-0830927, CNS-0551639, IIS-0536994,

HECURA CCF-0621443, OCI 0956311, OCI 0724599, and SDCI OCI-

0724599.

978-3-9810801-8-6/DATE12/©2012 EDAA

To minimize the power consumption of on-chip
interconnects, recent research proposes circuit-level techniques
to improve the power efficiency of the link circuitry and the
router microarchitecture [17], dynamic voltage scaling [13] and
power management [13, 14], and thermal-aware routing [15].
However, these prior works miss one crucial observation: a
large fraction of the on-chip interconnect traffic stems from
packets sent to enforce data coherence, rather than from
packets absolutely required to facilitate data sharing.

The coherence requirement is a consequence of
performance optimizations for on-chip data. To allow faster
data accesses, the distributed cache slices are typically treated
as private caches to the nearby cores [2, 21], forming tiles with
a core and a cache slice in each tile [1, 3, 5]. Private caches
allow the replication of shared data, which, in turn, employ a
directory-based coherence mechanism where a directory
structure is typically address-interleaved among the tiles [5,
21]. However, this address interleaving is oblivious to the data
access and sharing patterns; it is often the case that a cache
block maps to a directory in a tile physically located far away
from the accessing cores. To share a cache block, the sharing
cores need to traverse the on-chip interconnect multiple times
to communicate with the directory, instead of communicating
directly between them. These unnecessary network traversals
increase traffic, consume power, and raise the operational
temperature with detrimental consequences.

In this paper, we propose Dynamic Directories, a
distributed directory architecture that cooperates with the
operating system to eliminate the need to place directory
entries on a predetermined tile. We utilize this capability to
place directory entries close to the most active requestors of the
corresponding cache blocks, eliminating unnecessary network
traversals and conserving energy and power. The principal
contributions of this paper are:

1. We observe that a large fraction of the on-chip
interconnect traffic stems from the data-access-oblivious
placement of directory entries.

2. We propose Dynamic Directories, a mechanism to co-
locate directory entries with the most active requestors of
the corresponding cache blocks, eliminating unnecessary
network traversals and conserving energy and power.

3. Through trace-driven and cycle-accurate simulation of
large scale multicore processors running a range of
scientific and Map-Reduce workloads, we show that
Dynamic Directories reduce the interconnect energy and
power by up to 37% (22% on average for the scientific

workloads and 8% on average for Map-Reduce) with a
1.4% performance improvement on average.

The rest of the paper is organized as follows. Section II
presents background and related work. Section III describes the
details of our Dynamic Directory scheme, followed by the
evaluation methodology in Section IV. The results of our
evaluation are presented in Section V. Finally, we conclude the
paper with a short summary in Section VI.

II. BACKGROUND AND RELATED WORK

A. Baseline Architecture

This section describes the basics of our tiled architecture.
Figure 1 shows each tile consisting of a processing core, a
private split I/D first-level cache (L1), a slice of the second-
level cache (L2), and a slice of the distributed directory. To
scale high core counts, the directory is distributed among the
tiles in an address interleaved fashion, i.e., the address of a
block modulo the number of tiles determines the directory
location for this block. In this work we assume a full-map
directory for the baseline and Dynamic Directory architectures,
i.e., the directory has the capacity to hold coherence
information for all the cache blocks across all the tiles in all
cases.

Address interleaving does not require a lookup to extract
the directory location; all nodes can independently calculate it
using only the address of the requested block. However,
address-interleaved placement statically distributes the
directories without regards to the location of the accessing
cores, leading to unnecessary on-chip interconnect traversals.
Figure 2 shows an example of the drawbacks of static address-
interleaved directory placement. Tile 7 requests a data block,
currently owned by Tile 1, with its directory entry located at
Tile 5 as determined by address interleaving. To access the
block, Tile 7 first has to access the directory at Tile 5, which
forwards the request to the owner Tile 1, which then sends the
data to Tile 7 and an acknowledgement to the directory at Tile
5. As the directory placement is oblivious to the location of the
sharing cores, most on-chip data transfers will require similar
3-hop messages. Ideally, if the directory is co-located with the
sharer at Tile 1, it could eliminate two unnecessary network
messages. Such placement is the goal of Dynamic Directories.

Note that in an N-tile multicore system with address-
interleaved distributed directory, the probability of a particular
tile holding the directory entry for a block is 1/N. This is the
probability with which a requesting core can access a directory

within its own tile. As the number of tiles increases, the
probability of hitting a local directory diminishes. Thus,
traditional address-interleaved directory placement becomes
increasingly inefficient in future technologies, as it increases
the on-chip interconnect power.

B. Related Work

Several previous proposals suggest new coherence
mechanisms and cache architectures to reduce multicore cache
energy and enhance performance. Ros et al., proposed Dico-
CMP [12] which extend cache tags to keep sharer information.
Zebchuk et al. [20] proposes bloom filter mechanism for tag-
less cache coherency. Finally, Cuesta et al. [4] use protocol
deactivation for private block accesses to reduce directory
accesses. All these schemes are orthogonal to our scheme
which allows directories to be located at any tile by cooperating
with the OS.

III. DYNAMIC DIRECTORIES SCHEME

The Dynamic Directory mechanism reduces the
unnecessary on-chip interconnect traffic by placing directory
entries on tiles with cores that share the corresponding data. To
achieve this, for every page, Dynamic Directories designate an
owner tile of the directory entries for the blocks in that page,
and store the owner ID in the page table. By utilizing the
already existing virtual-to-physical address translation
mechanism, Dynamic Directories propagate the directory
owner location to all cores touching the page. There are two
important aspects of this scheme: the classification of pages by
the OS, and the directory placement and distribution among the
cores. We describe these aspects in the following sections.

A. Operating System Support

To categorize pages and communicate their directory
location to the cores, Dynamic Directories piggyback on the
virtual-to-physical address translation mechanism. In modern
systems, almost all L2 caches are physically accessed. Thus,
for all data and instruction accesses, a core translates the virtual
address to a physical one through the TLB before accessing L2.
Upon a TLB miss (e.g., the first time a core accesses a page, or
if the TLB entry has been evicted) the system locates the
corresponding OS page table entry and loads the address
translation into the TLB.

We implement Dynamic Directories by slightly modifying
this process. When a page is accessed for the first time ever by
any of the cores, the page is declared private to the accessing

P0 P1

P4 P5

P2 P3

P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

P10 core

I$ D$

L2
Directory

Figure 1. Baseline tiled architecture of a 16-core CMP. Each tile has a

core, split I/D L1 caches, an L2 cache slice, and a directory slice.

D

[5]

Shr

[1]
R

[7]

Data

Request

Forward

Request
Ack

Data

Response

Off-chip Miss

On-Chip

Off-Chip

Figure 2. Sequence of messages following a request by tile 7 for a block

owned by tile 1, with its directory at tile 5.

core. This information is stored in the page table. No directory
entries need to be allocated for a private page, as there is no
need to maintain coherence without sharers.

If another core accesses the page, that core will also miss in
its TLB as it has no valid entry. Upon the TLB miss, the OS (or
the hardware page walk mechanism) discovers that this page is
already accessed by a core, and reclassifies the page as shared.
At the same time, the first accessor core becomes the owner of
the page’s directory entries and the directory entries are
allocated in its tile. The directory location is recorded in the
page table, and communicated to the core through the TLB fill.
Thus, any subsequent accessor of the page is also notified of
the directory location for the blocks in the page. This
mechanism guarantees that the directory is co-located with one
of the sharers of the page, and at the same time provides a
simple mechanism to locate the directory entries.

To allocate the directory entries when the page is
reclassified from private to shared, the system can either issue a
purge request to the old owner of the page similar to [5], which
shoots down the TLB entries for that page and flushes the
corresponding cache blocks, or it can allocate directory entries
for all the blocks in the page and declare the old owner’s cache
as the owner of the blocks. In the latter case, requests for
blocks that are not in the old owner’s cache can be easily
detected and translated into off-chip misses. In either case, such
events happen only once per shared page for the lifetime of the
execution of the program, and it has been shown that they have
a negligible performance impact [5]. Upon reclassifying a page
from private to shared, the page table entry is placed in a
special poison state that holds off all requests for TLB fills in a
FIFO queue until the reclassification is complete, similar to [5].

We modeled the TLB structure with CACTI 6.5 and found
that the energy overhead for accessing the TLB is negligible

(0.7% per read access). Note that when a TLB entry is evicted,
the system does not need to take additional actions. The page
table is already up-to-date, and there is no need to flush the
cache for that address.

B. Directory Placement Mechanism

Directory placement can be done at different granularities.
For example, instead of designating one tile as the owner for
the directory entries of all the blocks in the page, we could
designate different owners for the directory entry of each block
individually (or any granularity in between). Such a fine-grain
placement would require considerable changes in the overall
system operation. First, each TLB entry would have to store
multiple directory owners (one per placement-grain). In turn,
this would require a separate TLB trap for each sub-section of
the page that is accessed to extract the directory location for it.
Our results indicate that the system behaves well enough at the
page granularity; thus, employing finer-grain techniques is
unjustified.

An alternative implementation of Dynamic Directories
would be to reuse address bits for directory placement. This
could be achieved by simply guiding the selection of physical
addresses for each virtual page (i.e., some bits of the physical
address will also designate the directory owner). However,
such a technique would couple the memory allocation with the
directory placement. As a result, forcing the use of specific
address ranges could lead to address space fragmentation with
detrimental consequences to performance, and may complicate
other optimizations (e.g., page coloring for L1) that pose
conflicting address translation requests. Overloading address
bits could result in underutilizing the cache if the directory
placement bits overlap with the cache index, or similarly could
underutilize the DRAM banks, or the DRAM row buffer, or the
memory channels. Dynamic Directories avoid all these
problems by fully decoupling page allocation from directory
placement.

While pathological cases of uneven directory distribution
are possible, we didn't see any in our workloads, and we don't
expect to see any in commercial workloads either: their data are
typically universally shared with finely interleaved accesses
[5], so the pages should distribute evenly. It is important to
note here that it is simple to turn off Dynamic Directories in
pathological cases: one bit per page could indicate whether its

TABLE II. ARCHITECTURAL CONFIGURATION

CMP Size 16 cores

Processing Cores UltraSPARC III ISA; 2GHz, in-order cores, 8-

stage pipeline, 4-way superscalar

L1 Caches split I/D, 16KB 2-way set-associative, 2-cycle

load-to-use, 3 ports,

64-byte blocks, 32 MSHRs, 16-entry victim

cache

L2 NUCA Cache private 512KB per core, 16-way set-associative,

14-cycle hit

Main Memory 4 GB memory, 8KB pages, 45 ns access latency

Memory Controllers one controller per 4 cores, round-robin page

interleaving

Interconnect 2D folded torus [16], 32-byte links, 1-cycle link

latency, 2-cycle router, 1-flit control packets, 4-

flit data packets

Cache Coherence

Protocol

Four-state MOSI modeled after Piranha [8]

TABLE I. BENCHMARKS USED

Benchmark Application Description

S
ci

en
ti

fi
c

NAS appbt
Solves multiple independent systems

of equations

SPEC-CPU tomcatv
Vectorized mesh generation; parallel

version of 101.tomcatv from SPEC-FP

Other

Scientific

dsmc
Simulates the movement and collision

of gas particles

moldyn Molecular dynamics simulation

unstructured
Computational fluid dynamics

application

SPLASH-2

[19]

barnes
Barnes-Hut hierarchical N-body

simulation

fmm
Simulates particle interactions using

the Adaptive Fast Multipole Method

ocean

Simulates large-scale ocean

movements based on eddy and

boundary currents

watersp
Simulates the interactions of a system

of water molecules

M
a

p
-R

e
d

u
ce

Phoenix

[11]

lreg
Linear regression to find best fit line

for a set of points

hist
Histogram plot over a bitmap image

file

kmeans
K-Means clustering over random

cluster points and cluster centers

pca
Principal component analysis over a

2D-matrix

smatch String matching in a large text file

wcount Word count in a large text file

directory entries are managed by Dynamic Directories or by a
traditional method.

IV. EVALUATION METHODOLOGY

We motivate the deployment of Dynamic Directories
through an analysis of the sharing patterns of two different
categories of benchmark suites: Scientific and Map-Reduce,
which are described in Table I. The scientific benchmark suite
consists of a mixture of compute-intensive applications and
computational kernels. Phoenix consists of data-intensive
applications that use Map-Reduce. We analyze the data sharing
patterns across our application suite by collecting execution
traces of each workload using Flexus [6], a full-system cycle-
accurate simulator of multicores with non-uniform caches. The
traces cover the entire execution of the Map phase for Phoenix
applications (which constitutes the majority of execution time)
and three complete iterations for the scientific applications. The
workloads execute on a 16-core tiled CMP similar to Figure 1.
The architectural parameters of the simulated CMP are
depicted in Table II.

A. Analysis of Access Patterns

A core first searches for data in its local L2 cache. If it
misses, then a directory access for the corresponding block
follows. For each workload, Figure 3a shows the percentage of
misses to the local L2 cache on blocks that are accessed by
only one core during the execution of the program (1 shr, i.e.,
private blocks), accessed by few cores (2-4 shr), accessed by a
large number of cores (5-15 shr), and blocks that are
universally shared (16 shr). Each local L2 miss results in a
directory access.

As described in Section 3, placing the directory of private
blocks in the same tile with the core accessing these blocks will
eliminate two control messages for every local L2 miss. In
contrast, conventional address-interleaved directory placement
will co-locate the directory and the requestor only a small
fraction of the time. For the cases where the accesses are to
blocks with a few sharers (2-4), co-locating the directory with
one of the requesting cores will significantly increase the
probability that the directory and the requester are in the same
tile, which will also lead to the elimination of two messages.
As the number of sharers increases, this probability decreases;
in the case of universal sharing (16 shr), conventional address-
interleaved directory placement will always co-locate the
directory with one of the sharers, hence our proposed scheme
will provide no additional benefit.

Figure 3a shows that the scientific and Phoenix applications
exhibit a significant fraction of directory accesses for blocks
that are private or have a few sharers. Averaged across all 15
workloads, 35% of the directory accesses are for private data
and 33% of the accesses are for data shared among 2-4 cores.
However, there are some exceptions to this behavior: pca has a
large fraction of universally shared data. Nevertheless, our
analysis suggests that in a large majority of applications, the
most frequently accessed directories are either for private data
or for data with a few sharers, motivating the use of Dynamic
Directories.

Dynamic Directories determine the placement of a directory
at the page granularity (i.e., all the directory entries for the
blocks within a page are located in the same tile). Hence, the
sharing pattern at the page granularity determines the overall
performance of our scheme. Similar to Figure 3a, Figure 3b
shows the percentage of local L2 misses (i.e., directory
accesses) on blocks that are within pages accessed by some
number of cores during the execution of the workload.
Averaged across all 15 applications, 23% of the accesses are on
pages that are private and 13% of the accesses are on pages
with 2-4 sharers. Thus, operating at page granularity does not
introduce drastically more false sharing.

V. EXPERIMENTAL RESULTS

A. Simulation Framework

We evaluate Dynamic Directories using the SimFlex
multiprocessor sampling methodology [18]. Our samples are
drawn over an entire parallel execution (Map phase) of the
Phoenix workloads, and three iterations of the scientific
applications. We launch measurements from checkpoints with
warmed caches, branch predictors, TLBs, on-chip directories,
and OS page tables, then warm queue and interconnect state for
100,000 cycles prior to measuring performance for 200,000
cycles. We use the aggregate number of user instructions
committed per cycle as our performance metric, which is
proportional to overall system throughput [18].

(a)

(b)

Figure 3. (a) Access sharing pattern based on the number of sharers per

cache block. (b) Access sharing pattern based on the number of sharers per

page.

B. Power Model

In this work we have modeled the on-chip interconnection
power as opposed to the chip power dissipation. Hence, our
power savings are relative to the base power dissipation in the
interconnection network. The power-model consists of two
parts: modeling on-chip interconnect energy dissipation and
calculation of overall execution time. With this the power
dissipation for a given application (A) can be defined as:

A

A
A TimeExecution

EnergyctInterconne
Power

_
_

=

The on-chip interconnect of our base architecture is a 2D
folded torus. To calculate energy dissipation in the
interconnection fabric, we first calculate the total number of
hops (H) for each transaction over the network. The total
number of hops (H) of a transaction (T) is the sum of the hops
of all flits transmitted for the transaction. In our base
architecture, control packets are 1-flit wide whereas a data
packet consists of 4 flits (Table II). Next, we multiply the hop
count (H) by the energy dissipation per flit per hop (α) to
calculate the overall hop energy for each transaction (T). This
is summed up over all memory transactions (control and data)
to calculate the total interconnect energy.

∑=
TA HEnergy α.

We do not need to estimate the lump energy constant (α), as
we are interested in the relative power of Dynamic Directories
over the baseline, so the constant (α) cancels out.

C. Directory Placement Policy

To evaluate the effectiveness of the directory placement
policy, we compute the number of page accesses by the core
that was the first ever to access the page (FirstAcc), and
compare it against the accesses issued by the most frequent
accessor for the same page (MaxAcc). From a power
optimization standpoint and in the absence of directory
migration, MaxAcc would be the ideal directory location for
that page. As Figure 4 shows, allocating directory entries at the
tile of the first accessor is a good approximation of the ideal
scheme: the number of accesses issued by the first accessor is
very close to the number of accesses issued by the most
frequent accessor.

D. Comparison with Alternative Schemes

In addition to evaluating the power and performance impact
of our scheme, we also compare against Virtual Hierarchies

(VH), a directory migration technique proposed for server
consolidation by Marty et al. [9]. The VH technique
implements a two-level data coherence policy using a
hypervisor. VH assigns specific home tiles for each memory
region that have the same last bits in their block address; in
other words, all accesses that miss a local tile are directed
towards a home tile which is determined from a table indexed
by the last bits of the block address. The home tile then
sends/broadcasts the request to the appropriate owners. Since
the home tile assignment policy used by the authors is not
clearly indicated, we implement VH optimistically assuming
perfect home tile placement, where the tile that makes the most
accesses to a memory region is assigned to be the home tile for
that specific region of the addresses. This way, any tile that
accesses a block with the last few bits mapping to the memory
region will be directing its request to the home tile for that
region (upon a miss).

E. Energy Savings

Figure 5a presents the fraction of network energy saved by
Dynamic Directories and VH respectively. For each
application, the left and the middle bars indicate the energy
savings attained by Dynamic Directories at the granularity of
cache blocks and 8KB pages respectively. Dynamic Directories
reduce the network energy by 20.4% and 16.1% on average for
block- and page-granularity, respectively. As expected, the
block granularity shows higher energy savings compared to the
page granularity. However, as we describe in Section 5.2, such
an implementation would complicate the design considerably
(and will incur performance costs). The rightmost bar for each
application presents the results for VH; VH saves 3.9%
network energy on average. The power savings for both

Figure 4. Effectiveness of the Dynamic Directories placement policy.

0

5

10

15

20

25

30

35

40

A
p

p
b

t

B
a

rn
e

s

D
sm

c

F
m

m

M
o

ld
y

n

O
ce

a
n

T
o

m
ca

tv

U
n

st
ru

ct
u

re
d

W
a

te
rs

p

H
is

t

K
m

e
a

n
s

Lr
e

g

P
ca

S
m

a
tc

h

W
co

u
n

t

Scientific Workloads Phoenix

P
e

rc
e

n
t

N
e

tw
o

rk
 E

n
e

rg
y

 S
a

v
in

g
s

DynDir-BLK DynDir-8K Page Virtual Hierarchies

(a)

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

A
p

p
b

t

B
a

rn
e

s

D
sm

c

F
m

m

M
o

ld
y

n

O
c
e

a
n

T
o

m
c
a

t

U
n

st
ru

c
t

W
a

te
rs

p

H
is

t

K
m

e
a

n
s

L
re

g

P
C

A

S
m

a
tc

h

W
c
o

u
n

t

Scientific Workloads Phoenix

S
p

e
e

d
u

p
 o

v
e

r
P

ri
v

a
te

 N
U

C
A

(b)

Figure 5. (a) Network energy savings with Dynamic Directories at cache-

block (DynDir-BLK) and 8K-page (DynDir-8k) granularities, and Virtual

Hierarchies. (b) Speedup of Dynamic Directories over the baseline private

NUCA architecture.

Dynamic Directories and VH are largely achieved through a
reduction of control messages in the network.

In general, we note that the scientific applications attain
higher energy savings compared to Phoenix. Phoenix
applications exhibit a higher fraction of shared data accesses
(Section 4). As a result, Dynamic Directories are more useful
for the scientific workloads. In fact, we observe a strong
correlation between the sharing distribution (Figure 3b) and the
energy reduction (Figure 5a) for each of the studied
applications.

F. Performance Impact

Figure 5b shows the overall speedup of Dynamic
Directories compared to a baseline private NUCA architecture.
Interestingly enough, we observe that Dynamic Directories
slightly increase performance in 7 out of 15 applications, and
decrease performance in 2. Dynamic Directories improve
performance by up to 7% (Ocean), and by 1.3% on average,
while the maximum performance slowdown is 1.3% (PCA).
The performance is improved due to two reasons. First,
Dynamic Directories reduce the number of network packets,
which may eliminate congestion and hence reduce the overall
latency of network operations. Second, data transfers (on-chip
and off-chip) are faster because the access to a remote directory
is eliminated in many cases. Because the working set is large,
Dynamic Directories’ savings are realized mostly by off-chip
memory accesses. As the off-chip memory access latency is
already large, saving a small number of cycles does not
improve the performance considerably.

We attribute the slowdown exhibited by two of the
applications (PCA and Wcount) to the fact that Dynamic
Directories assign directories for a whole page to one tile. If it
fails to reduce the number of network packets, this assignment
can cause contention and hotspots. Especially for universally-
shared pages, it is likely that blocks are accessed by different
cores in nearly consecutive cycles, causing contention in the
directory tile, and increasing the directory’s response time. On
average, we observe that the positive and negative forces
cancel each other out, and Dynamic Directories have only a
negligible overall performance impact.

VI. CONCLUSION

As processor manufacturers strive to deliver higher
performance within the power and cooling constraints of
modern chips, they struggle to reduce the power and energy
consumption of the most insatiable hardware components.
Recent research shows that on-chip interconnection networks
consume 20% to 36% of a chip’s power, and their importance
is expected to rise with future process technologies. In this
paper, we observe that a large fraction of the on-chip
interconnect traffic stems from placing directory entries on chip
without regards to the data access and sharing patterns. Based
on this observation, we propose Dynamic Directories, a
distributed directory architecture that cooperates with the
operating system to place directory entries close to the most
active requestors of the corresponding cache blocks,
eliminating unnecessary network traversals and conserving
energy and power. The mechanisms we propose exploit already

existing hardware and operating system structures and events,
have negligible overhead, and are easy and practical to
implement. Through trace-driven and cycle-accurate simulation
on a range of scientific and Map-Reduce applications, we show
that Dynamic Directories reduce the power and energy
expended by the on-chip interconnect by up to 37% (16.4% on
average) while attaining a small improvement in performance
(1.3% on average).

REFERENCES

[1] M. Azimi, et al., "Integration challenges and trade-offs for tera-scale
architectures," Intel Technology Journal, vol. 11, pp. 173-184, 2007.

[2] J. Chang and G. S. Sohi, "Cooperative Caching for Chip
Multiprocessors," SIGARCH Comput. Archit. News, vol. 34, pp. 264-
276, 2006.

[3] S. Cho and L. Jin, "Managing distributed, shared L2 caches through OS-
level page allocation," 2006, pp. 455-468.

[4] B. Cuesta, et al., "Increasing the Effectiveness of Directory Caches by
Deactivating Coherence for Private Memory Blocks," in ISCA, San Jose,
CA, 2011, pp. 93-103.

[5] N. Hardavellas, et al., "Reactive NUCA: near-optimal block placement
and replication in distributed caches," in Proceedings of the 36th annual
international symposium on Computer architecture Austin, TX, 2009.

[6] N. Hardavellas, et al., "Simflex: A fast, accurate, flexible full-system
simulation framework for performance evaluation of server
architecture," ACM SIGMETRICS Performance Evaluation Review,
vol. 31, pp. 31-34, 2004.

[7] J. S. Kim, et al., "Energy characterization of a tiled architecture
processor with on-chip networks," in International Symposium on Low
Power Electronics and Design Seoul, Korea 2003.

[8] G. Kourosh, "Piranha: A Scalable Architecture Based on Single-Chip
Multiprocessing," ACM SIGARCH Computer Architecture News, vol.
28, pp. 282-293, 2000.

[9] M. Marty and M. Hill, "Virtual hierarchies to support server
consolidation," ACM SIGARCH Computer Architecture News, vol. 35,
pp. 46-56, 2007.

[10] S. Mukherjee, et al., "The Alpha 21364 network architecture," in IEEE
MICRO, 2002, pp. 26-35.

[11] C. Ranger, et al., "Evaluating mapreduce for multi-core and
multiprocessor systems," in HPCA, pp. 13–24.

[12] A. Ros, et al., "DiCo-CMP: Efficient cache coherency in tiled CMP
architectures," in IPDPS, 2008, pp. 1–11.

[13] L. Shang, et al., "Dynamic Voltage Scaling with Links for Power
Optimization of Interconnection Networks," in HPCA, Anaheim, CA,
2003.

[14] L. Shang, et al., "PowerHerd: dynamic satisfaction of peak power
constraints in interconnection networks," in ICS, 2003, p. 108.

[15] L. Shang, et al., "Thermal modeling, characterization and management
of on-chip networks," in IEEE MICRO, 2004, pp. 67-78.

[16] B. Towles and W. J. Dally, "Route packets, not wires: On-chip
interconnection networks.," presented at the 38th Design Automation
Conference (DAC), 2001.

[17] H. Wang, et al., "Power-driven design of router microarchitectures in on-
chip networks," in IEEE MICRO, 2003.

[18] T. Wenisch, et al., "SimFlex: statistical sampling of computer system
simulation," in IEEE MICRO, 2006, p. 18.

[19] S. C. Woo, et al., "The SPLASH-2 programs: characterization and
methodological considerations," in ISCA, S. Margherita Ligure, Italy,
1995, pp. 24-36.

[20] J. Zebchuk, et al., "A tagless coherence directory," in IEEE MICRO,
2009, pp. 423-434.

[21] M. Zhang and K. Asanovic, "Victim replication: Maximizing capacity
while hiding wire delay in tiled chip multiprocessors," in ISCA, 2005,
pp. 336-345.

