
PCASA: Probabilistic Control-Adjusted
Selective Allocation for Shared Caches

Konstantinos Aisopos†, Jaideep Moses‡, Ramesh Illikkal‡, Ravishankar Iyer‡, Donald Newell§

†Dept. of Electrical Engineering
 Princeton University

 Princeton, NJ

‡Intel Labs
Intel Corporation

Hillsboro, OR

§Server Product Group
AMD

Austin, TX

 Abstract—Chip Multi-Processors (CMPs) are designed with an
increasing number of cores to enable multiple and potentially
heterogeneous applications to run simultaneously on the same
system. However, this results in increasing pressure on shared
resources, such as shared caches. With multiple processor cores
sharing the same caches, high-priority applications may end up
contending with low-priority applications for cache space and
suffer significant performance slow-down, hence affecting the
Quality of Service (QoS).
 In datacenters, Service Level Agreements (SLAs) impose a
reserved amount of computing resources and specific cache space
per cloud customer. Thus, to meet SLAs, a deterministic capacity
management solution is required to control the occupancy of all
applications. In this paper, we propose a novel QoS architecture,
based on Probabilistic Selective Allocation (PSA), for priority-
aware caches. Further, we show that applying a control-theoretic
approach (Proportional Integral controller) to dynamically adjust
PSA provides accurate and fine-grained capacity management.

1. Introduction

 Chip Multi-Processors (CMPs) have become mainstream in
the marketplace and the trend is towards increasing the
computational resources. On the other hand, cores still share
platform resources, such as multiple levels of caching and
memory bandwidth. In the past, important applications were
given higher priority with priority-aware OS scheduling. In
other words, a high-priority (HP) application was given more
compute time than a low priority (LP) application. However,
since multiple cores are now available, the OS may schedule
LP and HP applications simultaneously. While this allows
more compute time for both applications, it may not translate
to higher performance, due to contention in the shared cache.
The burden of performance differentiation between HP and
LP priority applications now falls on the rest of the platform
where contention for shared resources takes place.
 In datacenters, Service Level Agreements (SLAs) impose a
reserved amount of computing resources and specific cache
space per cloud customer. Thus, datacenters need to provide
cache space guarantees to each application and protect it
from other streaming or thrashing applications concurrently
running in the same system. To address this problem,
researchers have proposed Quality of Service (QoS)
techniques, where the amount of cache capacity occupied by
each application is directly controlled based on counters
[2,3,9] or restricted via way partitioning [7,11]. However,

these approaches either add to the architecture complexity,
or do very coarse-grained capacity management.
 In this paper, we present PCASA, a low overhead QoS-
aware architecture based on Probabilistic Selective
Allocation (PSA). PSA takes advantage of the eviction
mechanism to control the occupancy of applications, by
probabilistically determining the rate at which lines become
MRU (the rest of the lines are marked as LRU). PSA is a
non-intrusive mechanism and easily implementable in real
platforms, but exhibits a lack of determinism. To address this
limitation, we utilize a control-theoretic approach, based on
a Proportional Integral controller (PI controller), to
dynamically adjust PSA at runtime and deterministically
meet occupancy targets. Our approach achieves accurate and
fine-grained control of shared resources not possible before
without the use of expensive hardware.
 This paper is organized as follows: Section 2 presents the
related work on QoS enforcement techniques for capacity
management. Section 3 introduces PCASA and details our PI
controller. Section 4 discusses our simulation infrastructure
and shows results through which we explain the trade-offs
for our mechanism. Finally, Section 5 concludes this paper.

2. Related Work

 Several capacity monitoring and enforcement mechanisms
have been recently proposed to allocate a specific amount of
cache resources based on application priorities, or other
objectives (maximizing the overall throughput, achieving
fairness among applications, etc). These mechanisms utilize
the following allocation schemes to enforce an occupancy
target to applications: way partitioning [7,11], capacity
counters in cache [3,9] or set [2,9] granularity. In this section,
we briefly describe these schemes and their trade-offs, and
then distinguish how our approach is different and novel.
 Way Partitioning [7,11] achieves very accurate but coarse-
grained capacity management. Each application is assigned a
number of ways to allocate to, thus the target occupancy for
each application must be a multiple of a way’s capacity. If
there are few ways, it is not possible to provide sufficient
granularity to support several priority levels. In addition,
when applications are underutilizing the ways assigned to
them, other applications cannot use these ways, which
potentially results in hurting the overall performance.

 978-3-9810801-8-6/DATE12/©2012 EDAA §This work was done while the author was working for Intel

Class A 40%
Class B 30%
Class C 20%
Class D 10%

Class A 100%

requested
occupancies

Class A 40%
Class B 30%
Class C 20%
Class D 10%

Class A 100%

 allocation
 probabilities

Last

Level

Cache

applications

 MRU fill
 yes

 no

 rand () allocation
 probability

<
allocation

upon
cache miss

 LRU fill

high
priority

low
priority

 Capacity Counters [2,3,9] keep track of applications’
occupancy in a per-cache line/per set granularity, and control
their occupancy by biasing the eviction mechanism to evict
cache lines of the applications exceeding their quota. This
requires all cache lines to be tagged with “owner” bits, for
the eviction logic to identify the application each line belongs
to and appropriately choose an over-quota victim. Occupancy
enforcement based on Capacity Counters is fine grained,
since the occupancy of each application can be restricted to
any value by controlling the number of its evicted lines.
 The uniqueness of PSA lies on the fact that it can achieve
fine-grained occupancy control with an implementation
overhead comparable to coarse-grained mechanisms (20x
less than fine-grained mechanisms). PSA tunes the LRU bits
whenever allocating/reading/writing a cache line; at that time
the application the line belongs to is known, thus there is no
need to tag it with “owner” bits, or incorporate any counter.
PSA does though keep track of the overall occupancy of each
application. Fortunately, this does not require additional bits
to identify the owner of every single cache line (as in
Capacity Counters), since low overhead monitoring
mechanisms are available to monitor an application’s overall
occupancy by sampling a small percentage (3%) of the cache,
as discussed in [12].
 Table 1 summarizes the granularity and hardware overhead
tradeoffs of the discussed QoS mechanisms, as estimated by
Intel. We assume 4 applications (2 bits to indicate the
“owner” application of a cache line). As shown in Table 1,
PSA achieves fine-grained granularity (any occupancy value
can be enforced), while its hardware overhead is 20x less
than Capacity Counters, since only 3% of cache lines
(sampled lines [12]) store the “owner” bits. The hardware to
implement the enforcement logic is negligible for all
enforcement mechanisms, since it is stateless combinational
logic with a few control inputs. We note here that
incorporating two additional bits in every cache line is
considered a very significant overhead by industry architects
and unlikely to be implemented in Intel’s future products.
 In this paper, we are not attempting a quantitative
comparison to explore the performance differentiation that
can be achieved with these techniques, since our primary
target is deterministic occupancy control to meet an SLA.
Instead, we show that PSA can achieve fine-grained and
highly accurate capacity management with 20x less hardware
overhead than any other fine-grained mechanism. Intel
estimates a total of 0.5 to 0.7% area overhead in the Last
Level Cache (LLC) die to implement PCASA in an actual
product (including additional bits, logic, PI controllers, and
wiring). In contrast, capacity counters incur a 20% area
overhead, due to tagging each cache line with “owner” bits.

3. PCASA: A Priority-Aware Architecture

 This section presents the PCASA architecture and its
components (Figure 1). This architecture introduces platform
priority classes: each application belongs to a priority class
and its priority class defines the percentage of the cache that
it is allowed to occupy. In the example of Figure 1,
applications are mapped to four priority classes, with each
specifying a requested (target) occupancy in the cache.

3.1 Baseline PCASA

 To restrict each priority class to the requested occupancy,
we introduce a probabilistic approach to control the
occupancy of its applications, by modifying their lines’
position in the LRU-stack during fills. In a regular cache
replacement policy, every cache fill marks the corresponding
cache line as MRU. Instead, we propose a probabilistic
replacement policy, called Probabilistic Selective Allocation
(PSA), where we probabilistically determine whether the
cache line will be marked as MRU or not in each fill. Each
class is assigned an allocation probability of 0%-100%. This
allocation probability corresponds to the chance the
applications of this class have to set the touched line as
MRU in each fill. The allocation probability each application
is assigned has a direct effect on its occupancy in the shared
cache. The higher the probability, the more lines will be set
to MRU, the less lines will be evicted, hence the more cache
space the application will occupy. As shown in Figure 1, this
mechanism is implemented as follows: a random number (0-
100) is generated in every fill (based on a linear feedback
shift register for instance); if this number is lower than the
allocation probability then the line is filled as MRU.
Otherwise, when the application fails to set the touched line
as MRU, the line is marked as LRU.

Table 1. Overhead and occupancy granularity comparison for QoS mechanisms
 area overhead (per cache line) granularity of

 occupancy target % lines additional bits
hardware to implement QoS
enforcement logic (estimation)

Way Partitioning multiple of total capacity/ways 0% no additional bits partitioning logic, masks (3Kgates)
Capacity Counters fine grained (any value) 100% owner bits (=2) LRU tuning logic (5Kgates)
PSA fine grained (any value) 3% owner bits (=2) LRU tuning logic and PI (5Kgates)

Figure 1. Baseline PCASA Architecture

Class A 10%
Class B 40%
Class C 30%
Class D 20%

Class A
 100

%

Class A 100%
Class B 10%
Class C 10%
Class D 0%

Class A 100%

Class A 40%
Class B 30%
Class C 20%
Class D 10%

Class A
 100

%

Last

Level

Cache

 MRU fill
 yes

 no

 rand () allocation
 probability

<

allocation
upon
cache miss

 LRU fill

set
sampling

PI

monitor cache
occupancy

of each class

 resulting
occupancies

PI

high
priority

low
priority

applications
requested
occupancies

allocation probabilities

Figure 3. PCASA Architecture incorporating PI controllers

Figure 2. PI controller to tune allocation probabilities

 In our baseline PCASA, the allocation probabilities match
the requested occupancy percentages. For example, if the
requested occupancy of an application is 30%, this implies
that its allocation probability will be 30%. However, filling
70% of its lines as LRU does not guarantee that these lines
will be replaced soon and the application will be limited to
30% of cache space. If the application has a larger memory
footprint compared to other applications concurrently
running, more lines have to be marked as LRU so that more
lines are evicted. The allocation probability that is required to
meet a specific occupancy target is not deterministic, as it
depends heavily on the access patterns and phases of all
workloads running in the system, thus needs to be calculated
on-the-fly. The solution we propose is to monitor each
priority class’ resulting occupancy at runtime and calculate
the difference of requested and resulting occupancy. This
difference is then used to dynamically adjust the allocation
probabilities to higher or lower values and restrict the
occupancy of each priority class on-the-fly to converge to the
requested value. To achieve this, we incorporate a
Proportional Integral controller to PCASA, which enables
accurate and fine-grained capacity management.

3.2. PCASA Incorporating a PI Controller

 Closed loop Proportional and Integral (PI) controllers are
used in applications ranging from temperature control to
sophisticated space robots. The controller takes some system
behavior as its requirement, monitors the system and applies
the necessary corrections in a closed-loop execution to
achieve the required behavior. The control output (PI output)
can be represented using the following equation:

 PI output = Kp * error + Ki *∑error

 The error is the deviation of the monitored value from the
desired setpoint. Based on the current error (proportional
part) and the aggregate error of previous measurements
(integral part), the control output is corrected to make the
system output converge to PI input. Kp and Ki are constants
determining the weights of the proportional and integral part.
 Recently, PI or PID controllers have been used for shared
resource management in the memory subsystem [11] and the
NoC [10]. In our implementation of the PI controller we used
cache occupancy as the desired setpoint (Figure 2). Our
architecture monitors the occupancy obtained through PSA
(with set sampling [12]) and derives the error as the deviation
from the requested occupancy. This error is then used by the
PI to compute the new allocation probabilities. This closed
loop of error detection and corrected allocation probabilities
will converge quickly to the optimal allocation probabilities
that provide the desired occupancies. To achieve this, we use
a PI controller per priority class, which performs the
following actions every 15ms: (1) adds the current error to
the sum of all previous error measurements (∑error), and (2)
re-calculates the probabilities using the equation
Kp * error + Ki * ∑error. We observed little sensitivity when

activating the PI every 1ms to 100ms, and thus chose 15ms
since it is conveniently comparable to the OS time-quanta.
 The hardware cost of a PI controller is minimal (2
registers, 3 FP 32bit adders, 2 FP 32bit multipliers). Its
output is restricted to [0,1] and it constantly provides the
allocation probability value to its corresponding class. Kp
and Ki determine how quickly PI converges and if it
stabilizes to the desired occupancy without oscillation. There
are two approaches to calibrate a PI controller: empirical and
theoretic. While theoretic approaches require process
modeling and can be complex, many PI controllers even in
the control theory domain are empirically tuned [13]. Our PI
controller was empirically calibrated, by extensively
studying the sensitivity of our system to Ki,Kp. We chose
(Kp,Ki)=(0.6,0.2) for modest speed of convergence and high
system stability. These values are the same across all
workloads and nearly constant across platforms.
 Figure 3 depicts how PCASA incorporates PI controllers.
The occupancy of each priority class is monitored using set
sampling [12] and the difference of the requested and
resulting occupancy is used as feedback to the corresponding
PI controller, which adjusts its allocation probability on-the-
fly to converge to the requested occupancy value. The figure

 Kp

 ∑

 -

PI output
(allocation
probability)

monitored
occupancy

 error

 Ki

 + $

PCASA Cache

PI input
(requested
occupancy)

demonstrates a scenario where LP applications have large
working sets, and thus exceed their requested occupancies for
baseline allocation probabilities (equal to the values of
requested occupancies). The PI controller detects this and
sets the highest allocation probability to HP class A (100%),
while lowering the allocation probabilities of other classes to
(10%,10%,0%), so that class A can utilize more cache space
to meet its occupancy target (40%).

3.3 Variants of Probabilistic Selective Allocation

 Although controlling the LRU stack of an application can
significantly decrease its occupancy, there may be cases of a
memory intensive LP application running concurrently with
less memory intensive HP applications, where the LP cannot
be restricted as much as we want. Once the PI sets the
allocation probability of the LP to 0% (all newly allocated
lines become LRU), the LP cannot be restricted further. In
order to deal with cases where 0% is not enough to prevent
the LP from utilizing cache space reserved for the HP
applications, we consider the following variations of PSA:
- Drop Fills: Fills may bypass the cache, as studied in [2];
this can be accomplished only if the cache hierarchy is non-
inclusive. However, many cache hierarchies (e.g. Intel’s
cache hierarchy) are strictly inclusive. Since this mechanism
is less interesting industrially, we do not evaluate it.
- K0H (Keep 0 on Hits): When hits occur to cache lines, the
LRU state also changes probabilistically, similar to fills. A
random number is generated and if the random number is
lower than the allocation probability, then the hit does not
update the state of the line (the line does not become MRU).
- 1WB (1-Way Buffer): When PSA fills a cache line as LRU,
it also restricts it to allocate to a limited number of ways (in
our implementation one specific way). This technique is
actually way partitioning on the top of PSA: lines that
probabilistically fail to become MRU, are further restricted
by a way mask to a specific way, in order to minimize their
interference with lines that probabilistically succeed to
become MRU. Consequently, once PI sets the allocation
probability to 0% to minimize the occupancy of an
application, in addition to all lines being filled as LRU, the
application will be restricted to one way.

4. Evaluation and Results

4.1 Performance Evaluation Framework

 In this section, we briefly describe the CMPSched$im [5]
simulation framework we used to evaluate PCASA.
CMPSched$im is an extension of CMP$im [4], a parallel
multi-core performance simulator. CMP$im utilizes the
PIN [6] binary instrumentation system to evaluate the
performance of single-threaded, multi-threaded, and multi-
programmed workloads on a single- or multi-core processor.
CMP$im models a simple processor pipeline and uses PIN to

dynamically feed instructions and memory addresses from
workloads executing in actual processor cores to simulated
cores. This way, CMP$im realistically simulates
concurrently executing workloads and avoids the I/O
overheads associated with large address trace files.
CMPSched$im has the added benefit of enabling the
execution of multiple applications per core, while the
scheduling is accurately captured by a real Linux scheduler,
Linsched [1]. In our experiments, we simulated Intel’s i3-
530 cache hierarchy without L1 caching (256KB 4-way
private L2, 4MB 16-way shared L3), since L1 caching only
slightly affected L3 contention (where we studied the
effectiveness of PCASA), while negatively impacting our
simulation speed.

4.2. Results and Analysis

4.2.1 Efficacy of PCASA in Achieving Occupancy Targets

 In this section, we present a case study where we evaluate
PSA, its variants, and the PI controller using CMPSched$im.
We start with a breadth exploration, where we simulate a
variety of SPEC benchmark pairs to demonstrate the
effectiveness of PCASA in enforcing a fixed “common case”
occupancy target. Then, we delve into a challenging
benchmark pair, to explore its sensitivity to meeting various
occupancy targets and its dynamic occupancy behavior.
 To get a good representation of the SPEC workload
spectrum, we have simulated over 25 pairs, but we
demonstrate 5 combinations (due to space restrictions),
which capture diversity in characteristics such as memory
intensiveness, memory sensitivity, and streaming nature
(Table 2). These pairs are a representative sample of our
experiments. In each pair, the first application is the HP that
is allowed to use all of the cache (100% allocation
probability) and the second application is the LP (restricted
application). For our breadth exploration, we have a fixed
occupancy target of 25% for the restricted application.
 In Figure 4, we plot the monitored occupancy of the
restricted application for these five pairs. For each pair, 8
bars are shown, corresponding to 8 different allocation
schemes. The first 4 are: Probabilistic Selective Allocation
(PSA), PSA with Keep Zero on Hits (K0H), PSA with 1-
Way Buffer (1WB), and PSA with both K0H and 1WB. The
following 4 bars correspond to the same allocation schemes
when integrating a PI controller.

(art, mcf) = (sensitive, sensitive)
(applu, wupwise) = (insensitive, sensitive)
(equake, twolf) = (streaming, insensitive)
(lucas, galgel) = (streaming, sensitive)
(swim, mgrid) = (streaming, streaming)

Table 2: Benchmark combinations

Figure 4. Effectiveness of PSA for a variety of SPEC workloads with LP requested occupancy of 25%

18%
11% 14% 10% 10%

1% 5% 6%
-2% -2% 2% 1% 0% 0% 0% 0% 1%

-4%
1%

-4% 0% 0% 0% 0% 3% -1% 4% 0% 1% 0% 1% 0% 1%
-5% -3% -5%

0% 0% 0% 0%

-50%

-30%

-10%

10%

30%

50%

0%

20%

40%

60%

80%

100%
PS

A

PS
A

+
K

0H

PS
A

+1
W

B

PS
A

+K
0H

+1
W

B

PS
A

PS
A

+
K

0H

PS
A

+1
W

B

PS
A

+K
0H

+1
W

B

PS
A

PS
A

+
K

0H

PS
A

+1
W

B

PS
A

+K
0H

+1
W

B

PS
A

PS
A

+
K

0H

PS
A

+1
W

B

PS
A

+K
0H

+1
W

B

PS
A

PS
A

+
K

0H

PS
A

+1
W

B

PS
A

+K
0H

+1
W

B

PS
A

PS
A

+
K

0H

PS
A

+1
W

B

PS
A

+K
0H

+1
W

B

PS
A

PS
A

+
K

0H

PS
A

+1
W

B

PS
A

+K
0H

+1
W

B

PS
A

PS
A

+
K

0H

PS
A

+1
W

B

PS
A

+K
0H

+1
W

B

PS
A

PS
A

+
K

0H

PS
A

+1
W

B

PS
A

+K
0H

+1
W

B

PS
A

PS
A

+
K

0H

PS
A

+1
W

B

PS
A

+K
0H

+1
W

B

no PI controller PI contoller no PI controller PI contoller no PI controller PI contoller no PI controller PI contoller no PI controller PI contoller

(art, mcf) = (100%,25%) (applu, wupwise) = (100%,25%) (equake, twolf) = (100%,25%) (lucas, galgel) = (100%,25%) (swim, mgrid) = (100%,25%)

O
ve

rf
lo

w

O
cc

up
an

cy

Requested Occupancy for (unrestricted benchmark, restricted benchmark) occupancy of restricted benchmark occupancy of unrestricted benchmark
%overflow No overflow baseline

A
llo

ca
tio

n
M

et
ho

d

Figure 5. Effectiveness of PSA for (art, mcf) with various requested occupancy

-3%

13%
18%

31%
35%

-11%

5%
11%

28%

6%
-3%

10%
14%

28%

6%

-11%

5%
10%

28%

6%
-3%

4%
10%

29%
36%

-3%
1% 1% 0%

6%
-3%

2% 5%
0%

6%
-3%

2%
6%

0%
6%

-50%

-30%

-10%

10%

30%

50%

0%

20%

40%

60%

80%

100%

10
0.

00
%

50

.0
0%

31

.2
5%

25

.0
0%

6.

25
%

0.

00
%

10
0.

00
%

50

.0
0%

31

.2
5%

25

.0
0%

6.

25
%

0.

00
%

10
0.

00
%

50

.0
0%

31

.2
5%

25

.0
0%

6.

25
%

0.

00
%

10
0.

00
%

50

.0
0%

31

.2
5%

25

.0
0%

6.

25
%

0.

00
%

10
0.

00
%

50

.0
0%

31

.2
5%

25

.0
0%

6.

25
%

0.

00
%

10
0.

00
%

50

.0
0%

31

.2
5%

25

.0
0%

6.

25
%

0.

00
%

10
0.

00
%

50

.0
0%

31

.2
5%

25

.0
0%

6.

25
%

0.

00
%

10
0.

00
%

50

.0
0%

31

.2
5%

25

.0
0%

6.

25
%

0.

00
%

PSA PSA + K0H PSA + 1WB PSA + K0H + 1WB PSA PSA + K0H PSA + 1WB PSA + K0H + 1WB

No PI controller PI controller

O
ve

rf
lo

w

O
cc

up
an

cy

Requested
Occupancy
for mcf

occupancy of mcf occupancy of art %overflow No overflow baseline

Allocation
Method

 The very first bar of (art, mcf) shows the occupancy of mcf,
when using PSA to restrict its occupancy to 25%. The
resulting occupancy is 43%. The secondary axis shows by
how much the resulting occupancy of the restricted
application was off (in terms of % occupancy). Since mcf had
a resulting occupancy of 43%, it had an overflow of 18%
(43% - 25%) and hence this mechanism was not as effective
for this pair. Also, PSA+K0H and PSA+1WB are not that
effective in containing mcf, resulting in an overflow of 10%
or more. Once the PI mechanism is used in conjunction with
PSA and its variants, we are able to achieve a higher
accuracy. The 4 next bars show how the same variants of
PSA perform when integrating a PI controller. With PI+K0H
or PI+1WB, a high degree of accuracy is achieved containing
the capacity overflow within 6%.
 As shown in Figure 4, other benchmark pairs meet their
occupancy targets without the need for a PI controller
(overflow or underflow contained in 5%). Art and mcf seems
to be the most challenging pair, since we observe the highest
differentiation between the requested and resulting values in
occupancy. PSA by itself, PSA with PI, or PSA with variants
without the PI, do not perform effectively for this pair. That
is because of the high degree of disparity in working sets

between the two applications. This problem occurs when a
restricted application (like mcf) has a very large working set
(or very high request rate) into the cache compared to the HP
application. Thus, the HP application does not operate at a
fast enough rate to evict the LP application’s lines, although
these are filled as LRU. In our experiments, we did observe a
few more pairs with similar behavior to (art, mcf), although
these are not the common case.
 In Figure 5, we delve deeper into the (art, mcf) example (in
depth exploration). We keep art as HP (no capacity
restrictions) and restrict the requested occupancy of mcf to
variable values (X-axis). Y-axis shows mcf’s actual resulting
occupancy in the cache. Note that 100% requested
occupancy represents the default behavior without QoS (both
applications set the touched line as MRU with 100%
probability). In this case, mcf and art end up occupying 53%
and 47% of the Last Level Cache (LLC) respectively.
 In the same figure, we observe that the more we attempt to
restrict the occupancy of mcf, the more inaccuracy we have.
Without using a dynamic PI based mechanism to adjust the
allocation probabilities at runtime, there’s a potential
occupancy inaccuracy up to 38% (for low occupancy target
values).

Figure 6. Occupancy dynamics for art-mcf running in a 4MB LLC (PSA+K0H+PI)

15

16
5

31
5

46
5

61
5

76
5

91
5

10
65

12

15

13
65

15

15

16
65

18

15

19
65

21

15

22
65

24

15

25
65

27

15

28
65

30

15

31
65

time (ms)

occupancy targets:
(art, mcf = 100%, 31.25%)

occupancy of mcf allocation probability of mcf

target occupancy

15

16
5

31
5

46
5

61
5

76
5

91
5

10
65

12

15

13
65

15

15

16
65

18

15

19
65

21

15

22
65

24

15

25
65

27

15

28
65

30

15

31
65

time (ms)

occupancy targets:
(art, mcf = 100%, 50%)

occupancy of mcf allocation probability of mcf

target occupancy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
15

16

5
31

5
46

5
61

5
76

5
91

5
10

65

12
15

13

65

15
15

16

65

18
15

19

65

21
15

22

65

24
15

25

65

27
15

28

65

30
15

31

65

oc
cu

pa
nc

y

time (ms)

occupancy targets:
(art, mcf) = (100%, 100%)

occupancy of mcf

 When a PI controller is incorporated with PSA+K0H, the
overflow and underflow are monitored dynamically and the
allocation probabilities are adjusted to achieve an accurate
occupancy within 1%. The 0% requested occupancy however
results in a 6% overflow, because of the underlying limitation
that we don’t have a mechanism to bypass the cache and
some lines do remain in cache though they are marked LRU.
 The last two allocation methods (PSA+1WB and
PSA+K0H+1WB) are also effective in containing the
overflow / underflow within 6%. However, they do require
the 1WB as an additional mechanism, which is unnecessary
since PSA+K0H with the PI controller already provides the
desired accuracy. We observed similar behavior for the rest
of the few challenging pairs we came across (not shown
here), thus we believe that PSA+K0H+PI is by itself a very
practical and effective mechanism for shared cache
management. Next, we show the dynamic occupancies over
time for mcf and art (for PSA+K0H+PI).

4.2.2 Occupancy Dynamics

 Figure 6(a) shows the occupancy dynamics for the first 3
seconds of the execution of art and mcf without QoS (100%
allocation probability for both applications). X-axis indicates
the time in 15ms granularity, while Y-axis depicts the
corresponding cache occupancy of mcf (in terms of
percentage). We note that art and mcf occupy 47% and 53%
of the cache (in respect) most of the time, corresponding to
the first bar (100%) in Figure 5. The occasional spikes in
occupancy (e.g. 2.1-2.5 seconds) are due to phase changes.
 In Figures 6(b) and 6(c), we observe how the occupancy
curve changes when enforcing an occupancy target with the
proposed PI controller (configuration is PSA+K0H+PI). In
Figure 6(b) the target occupancy for mcf is 31.25%, while in
6(c) it is 50% (dashed lines in subfigures). The continuous
line indicates the allocation probability that PI enforces in
order to achieve the desired occupancy. In 6(c), we observe
that PI raises allocation probability over 50% most of the
time to enable mcf to occupy more space than baseline PSA,
and achieve the 50% occupancy target. We also observe that
whenever the mcf’s occupancy exceeds 50% (e.g. 1.6-2.1
seconds), the allocation probability drops to further restrict
mcf. In contrast, in 6(b), where the target occupancy is lower

(31.25%), we observe that the allocation probability is
limited to less than 10% most of the time. Note that in
baseline PSA this value would be constantly 31.25%.

5. Conclusions

 Differentiated services and QoS are gaining importance
as Moore’s law increases the number of processing elements
in multicore systems. In this paper, we introduced PCASA, a
novel low-overhead QoS architecture using Probabilistic
Selective Allocation (PSA) for shared cache management in
multicore systems. We also demonstrated that when
integrating a control-theoretic Proportional Integral (PI)
controller into the system, PSA achieves highly accurate
occupancy enforcement to applications. At only 0.5-0.7%
area overhead, our solution can be utilized in datacenters to
satisfy Service Level Agreements (SLAs) and provide cache
space guarantees to cloud customer applications.

References

[1] J. Calandrino, D. Baumberger, T. Li, J. Young, S. Hahn, “Linsched-The
Linux Scheduler Simulator”, PDCCS, May 2008, New Orleans, Louisiana.
[2] R. Iyer, “CQoS: A Framework for Enabling QoS in Shared Caches of
CMP Platforms,” ICS, June 2004, Malo, France.
[3] R. Iyer, L. Zhao, F. Guo, R. Illikkal, D. Newell, Y. Solihin, L. Hsu and S.
Reinhardt, “QoS Policies and Architecture for Cache/Memory in CMP Platforms”,
ACM Sigmetrics, June 2007, San Diego, CA.
[4] A. Jaleel, R. S. Cohn, C.-K. Luk, B. Jacob, “CMP$im- A Pin-Based On-
The-Fly Multi-Core Cache Simulator”, MoBS, June 2008, Beijing, China.
[5] J. Moses et al, “CMPSched$im: Evaluating OS/CMP Interaction on
Shared Cache Management”, ISPASS, April 2009, Boston, MA.
[6] Pin - A Dynamic Binary Instrumentation Tool, rogue.colorado.edu/pin
[7] M. K. Qureshi, Yale N. Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches”, MICRO, December 2006, Orlando, FL.
[8] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. C. Steely Jr, and J. Emer,
“Adaptive Insertion Policies for Managing Shared Caches on CMPs”, PACT,
October 2008, Toronto, Canada.
[9] N. Rafique, W.-T. Lim, and M. Thottethodi, “Architectural Support for
Operating System-Driven CMP Cache Management”, PACT, September
2006, New York, NY.
[10] A. Sharifi, H. Zhao, M. Kandemir, “Feedback Control for Providing
QoS in NoC Based Multicores,” DATE, March 2010, Dresden, Germany.
[11] S. Srikantaiah, M. Kandemir, and Q. Wang, “SHARP control:
Controlled Shared Cache Management in Chip Multi-Processors,” MICRO,
December 2009, New York, NY.
[12] L. Zhao et al., “CacheScouts: Fine-Grain Monitoring of Shared Caches
in CMP Platforms”, PACT, September 2007, Brasov, Romania.
[13] K. Kiyong, R. Schaefer, “Tuning a PID Controller for a Digital
Excitation Control System,” IEEE Trans. Industry Applications, March 2005.

(b)

(c)

 (a)

