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    Abstract—Chip Multi-Processors (CMPs) are designed with an 
increasing number of cores to enable multiple and potentially 
heterogeneous applications to run simultaneously on the same 
system. However, this results in increasing pressure on shared 
resources, such as shared caches. With multiple processor cores 
sharing the same caches, high-priority applications may end up 
contending with low-priority applications for cache space and 
suffer significant performance slow-down, hence affecting the 
Quality of Service (QoS).  
   In datacenters, Service Level Agreements (SLAs) impose a 
reserved amount of computing resources and specific cache space 
per cloud customer. Thus, to meet SLAs, a deterministic capacity 
management solution is required to control the occupancy of all 
applications. In this paper, we propose a novel QoS architecture, 
based on Probabilistic Selective Allocation (PSA), for priority-
aware caches. Further, we show that applying a control-theoretic 
approach (Proportional Integral controller) to dynamically adjust 
PSA provides accurate and fine-grained capacity management. 
 
1. Introduction 

      

   Chip Multi-Processors (CMPs) have become mainstream in 
the marketplace and the trend is towards increasing the 
computational resources. On the other hand, cores still share 
platform resources, such as multiple levels of caching and 
memory bandwidth. In the past, important applications were 
given higher priority with priority-aware OS scheduling. In 
other words, a high-priority (HP) application was given more 
compute time than a low priority (LP) application. However, 
since multiple cores are now available, the OS may schedule 
LP and HP applications simultaneously. While this allows 
more compute time for both applications, it may not translate 
to higher performance, due to contention in the shared cache. 
The burden of performance differentiation between HP and 
LP priority applications now falls on the rest of the platform 
where contention for shared resources takes place.  
   In datacenters, Service Level Agreements (SLAs) impose a 
reserved amount of computing resources and specific cache 
space per cloud customer. Thus, datacenters need to provide 
cache space guarantees to each application and protect it 
from other streaming or thrashing applications concurrently 
running in the same system. To address this problem, 
researchers have proposed Quality of Service (QoS) 
techniques, where the amount of cache capacity occupied by 
each application is directly controlled based on counters 
[2,3,9] or restricted via way partitioning [7,11]. However, 

these approaches either add to the architecture complexity, 
or do very coarse-grained capacity management.  
   In this paper, we present PCASA, a low overhead QoS-
aware architecture based on Probabilistic Selective 
Allocation (PSA). PSA takes advantage of the eviction 
mechanism to control the occupancy of applications, by 
probabilistically determining the rate at which lines become 
MRU (the rest of the lines are marked as LRU). PSA is a 
non-intrusive mechanism and easily implementable in real 
platforms, but exhibits a lack of determinism. To address this 
limitation, we utilize a control-theoretic approach, based on 
a Proportional Integral controller (PI controller), to 
dynamically adjust PSA at runtime and deterministically 
meet occupancy targets. Our approach achieves accurate and 
fine-grained control of shared resources not possible before 
without the use of expensive hardware. 
   This paper is organized as follows: Section 2 presents the 
related work on QoS enforcement techniques for capacity 
management. Section 3 introduces PCASA and details our PI 
controller. Section 4 discusses our simulation infrastructure 
and shows results through which we explain the trade-offs 
for our mechanism. Finally, Section 5 concludes this paper. 
 
2. Related Work 
 

   Several capacity monitoring and enforcement mechanisms 
have been recently proposed to allocate a specific amount of 
cache resources based on application priorities, or other 
objectives (maximizing the overall throughput, achieving 
fairness among applications, etc). These mechanisms utilize 
the following allocation schemes to enforce an occupancy 
target to applications: way partitioning [7,11], capacity 
counters in cache [3,9] or set [2,9] granularity. In this section, 
we briefly describe these schemes and their trade-offs, and 
then distinguish how our approach is different and novel.  
   Way Partitioning [7,11] achieves very accurate but coarse-
grained capacity management. Each application is assigned a 
number of ways to allocate to, thus the target occupancy for 
each application must be a multiple of a way’s capacity. If 
there are few ways, it is not possible to provide sufficient 
granularity to support several priority levels. In addition, 
when applications are underutilizing the ways assigned to 
them, other applications cannot use these ways, which 
potentially results in hurting the overall performance.  
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   Capacity Counters [2,3,9] keep track of applications’ 
occupancy in a per-cache line/per set granularity, and control 
their occupancy by biasing the eviction mechanism to evict 
cache lines of the applications exceeding their quota. This 
requires all cache lines to be tagged with “owner” bits, for 
the eviction logic to identify the application each line belongs 
to and appropriately choose an over-quota victim. Occupancy 
enforcement based on Capacity Counters is fine grained, 
since the occupancy of each application can be restricted to 
any value by controlling the number of its evicted lines.  
   The uniqueness of PSA lies on the fact that it can achieve 
fine-grained occupancy control with an implementation 
overhead comparable to coarse-grained mechanisms (20x 
less than fine-grained mechanisms). PSA tunes the LRU bits 
whenever allocating/reading/writing a cache line; at that time 
the application the line belongs to is known, thus there is no 
need to tag it with “owner” bits, or incorporate any counter. 
PSA does though keep track of the overall occupancy of each 
application. Fortunately, this does not require additional bits 
to identify the owner of every single cache line (as in 
Capacity Counters), since low overhead monitoring 
mechanisms are available to monitor an application’s overall 
occupancy by sampling a small percentage (3%) of the cache, 
as discussed in [12].  
   Table 1 summarizes the granularity and hardware overhead 
tradeoffs of the discussed QoS mechanisms, as estimated by 
Intel. We assume 4 applications (2 bits to indicate the 
“owner” application of a cache line). As shown in Table 1, 
PSA achieves fine-grained granularity (any occupancy value 
can be enforced), while its hardware overhead is 20x less 
than Capacity Counters, since only 3% of cache lines 
(sampled lines [12]) store the “owner” bits. The hardware to 
implement the enforcement logic is negligible for all 
enforcement mechanisms, since it is stateless combinational 
logic with a few control inputs. We note here that 
incorporating two additional bits in every cache line is 
considered a very significant overhead by industry architects 
and unlikely to be implemented in Intel’s future products. 
   In this paper, we are not attempting a quantitative 
comparison to explore the performance differentiation that 
can be achieved with these techniques, since our primary 
target is deterministic occupancy control to meet an SLA. 
Instead, we show that PSA can achieve fine-grained and 
highly accurate capacity management with 20x less hardware 
overhead than any other fine-grained mechanism. Intel 
estimates a total of 0.5 to 0.7% area overhead in the Last 
Level Cache (LLC) die to implement PCASA in an actual 
product (including additional bits, logic, PI controllers, and 
wiring). In contrast, capacity counters incur a 20% area 
overhead, due to tagging each cache line with “owner” bits. 

  
 
 
 
 
   

    
3. PCASA: A Priority-Aware Architecture  
  

    This section presents the PCASA architecture and its 
components (Figure 1). This architecture introduces platform 
priority classes: each application belongs to a priority class 
and its priority class defines the percentage of the cache that 
it is allowed to occupy. In the example of Figure 1, 
applications are mapped to four priority classes, with each 
specifying a requested (target) occupancy in the cache.  
   

3.1 Baseline PCASA    
     

   To restrict each priority class to the requested occupancy, 
we introduce a probabilistic approach to control the 
occupancy of its applications, by modifying their lines’ 
position in the LRU-stack during fills. In a regular cache 
replacement policy, every cache fill marks the corresponding 
cache line as MRU. Instead, we propose a probabilistic 
replacement policy, called Probabilistic Selective Allocation 
(PSA), where we probabilistically determine whether the 
cache line will be marked as MRU or not in each fill. Each 
class is assigned an allocation probability of 0%-100%. This 
allocation probability corresponds to the chance the 
applications of this class have to set the touched line as 
MRU in each fill. The allocation probability each application 
is assigned has a direct effect on its occupancy in the shared 
cache. The higher the probability, the more lines will be set 
to MRU, the less lines will be evicted, hence the more cache 
space the application will occupy. As shown in Figure 1, this 
mechanism is implemented as follows: a random number (0-
100) is generated in every fill (based on a linear feedback 
shift register for instance); if this number is lower than the 
allocation probability then the line is filled as MRU. 
Otherwise, when the application fails to set the touched line 
as MRU, the line is marked as LRU.  

Table 1. Overhead and occupancy granularity comparison for QoS mechanisms 
 area overhead (per cache line)              granularity of  

          occupancy target % lines additional bits 
hardware to implement QoS 
enforcement logic (estimation) 

Way Partitioning multiple of total capacity/ways 0% no additional bits partitioning logic, masks  (3Kgates) 
Capacity Counters fine grained (any value) 100% owner bits (=2)  LRU tuning logic  (5Kgates) 
PSA fine grained (any value) 3% owner bits (=2) LRU tuning logic and PI  (5Kgates) 

   

 

Figure 1. Baseline PCASA Architecture 
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Figure 3.  PCASA Architecture incorporating PI controllers 

Figure 2.  PI controller to tune allocation probabilities 

   In our baseline PCASA, the allocation probabilities match 
the requested occupancy percentages. For example, if the 
requested occupancy of an application is 30%, this implies 
that its allocation probability will be 30%. However, filling 
70% of its lines as LRU does not guarantee that these lines 
will be replaced soon and the application will be limited to 
30% of cache space. If the application has a larger memory 
footprint compared to other applications concurrently 
running, more lines have to be marked as LRU so that more 
lines are evicted. The allocation probability that is required to 
meet a specific occupancy target is not deterministic, as it 
depends heavily on the access patterns and phases of all 
workloads running in the system, thus needs to be calculated 
on-the-fly. The solution we propose is to monitor each 
priority class’ resulting occupancy at runtime and calculate 
the difference of requested and resulting occupancy. This 
difference is then used to dynamically adjust the allocation 
probabilities to higher or lower values and restrict the 
occupancy of each priority class on-the-fly to converge to the 
requested value. To achieve this, we incorporate a 
Proportional Integral controller to PCASA, which enables 
accurate and fine-grained capacity management. 
    
3.2. PCASA Incorporating a PI Controller 

     

   Closed loop Proportional and Integral (PI) controllers are 
used in applications ranging from temperature control to 
sophisticated space robots. The controller takes some system 
behavior as its requirement, monitors the system and applies 
the necessary corrections in a closed-loop execution to 
achieve the required behavior. The control output (PI output) 
can be represented using the following equation:  
  

                   PI output = Kp * error + Ki *∑error   
   

   The error is the deviation of the monitored value from the 
desired setpoint. Based on the current error (proportional 
part) and the aggregate error of previous measurements 
(integral part), the control output is corrected to make the 
system output converge to PI input. Kp and Ki are constants 
determining the weights of the proportional and integral part. 
   Recently, PI or PID controllers have been used for shared 
resource management in the memory subsystem [11] and the 
NoC [10]. In our implementation of the PI controller we used 
cache occupancy as the desired setpoint (Figure 2). Our 
architecture monitors the occupancy obtained through PSA 
(with set sampling [12]) and derives the error as the deviation 
from the requested occupancy. This error is then used by the 
PI to compute the new allocation probabilities. This closed 
loop of error detection and corrected allocation probabilities 
will converge quickly to the optimal allocation probabilities 
that provide the desired occupancies. To achieve this, we use 
a PI controller per priority class, which performs the 
following actions every 15ms: (1) adds the current error to 
the sum of all previous error measurements (∑error), and (2) 
re-calculates the probabilities using the equation                     
Kp * error + Ki * ∑error.  We  observed  little  sensitivity  when 

 
activating the PI every 1ms to 100ms, and thus chose 15ms 
since it is conveniently comparable to the OS time-quanta.  
   The hardware cost of a PI controller is minimal (2 
registers, 3 FP 32bit adders, 2 FP 32bit multipliers). Its 
output is restricted to [0,1] and it constantly provides the 
allocation probability value to its corresponding class. Kp 
and Ki determine how quickly PI converges and if it 
stabilizes to the desired occupancy without oscillation. There 
are two approaches to calibrate a PI controller: empirical and 
theoretic. While theoretic approaches require process 
modeling and can be complex, many PI controllers even in 
the control theory domain are empirically tuned [13]. Our PI 
controller was empirically calibrated, by extensively 
studying the sensitivity of our system to Ki,Kp. We chose 
(Kp,Ki)=(0.6,0.2) for modest speed of convergence and high 
system stability. These values are the same across all 
workloads and nearly constant across platforms. 
   Figure 3 depicts how PCASA incorporates PI controllers. 
The occupancy of each priority class is monitored using set 
sampling [12] and the difference of the requested and 
resulting occupancy is used as feedback to the corresponding 
PI controller, which adjusts its allocation probability on-the-
fly to converge to the requested occupancy value. The figure 
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demonstrates a scenario where LP applications have large 
working sets, and thus exceed their requested occupancies for 
baseline allocation probabilities (equal to the values of 
requested occupancies). The PI controller detects this and 
sets the highest allocation probability to HP class A (100%), 
while lowering the allocation probabilities of other classes to 
(10%,10%,0%), so that class A can utilize more cache space 
to meet its occupancy target (40%). 
  
3.3 Variants of Probabilistic Selective Allocation 
   

   Although controlling the LRU stack of an application can 
significantly decrease its occupancy, there may be cases of a 
memory intensive LP application running concurrently with 
less memory intensive HP applications, where the LP cannot 
be restricted as much as we want. Once the PI sets the 
allocation probability of the LP to 0% (all newly allocated 
lines become LRU), the LP cannot be restricted further. In 
order to deal with cases where 0% is not enough to prevent 
the LP from utilizing cache space reserved for the HP 
applications, we consider the following variations of PSA: 
- Drop Fills: Fills may bypass the cache, as studied in [2]; 
this can be accomplished only if the cache hierarchy is non-
inclusive. However, many cache hierarchies (e.g. Intel’s 
cache hierarchy) are strictly inclusive. Since this mechanism 
is less interesting industrially, we do not evaluate it.  
- K0H (Keep 0 on Hits): When hits occur to cache lines, the 
LRU state also changes probabilistically, similar to fills. A 
random number is generated and if the random number is 
lower than the allocation probability, then the hit does not 
update the state of the line (the line does not become MRU).  
- 1WB (1-Way Buffer): When PSA fills a cache line as LRU, 
it also restricts it to allocate to a limited number of ways (in 
our implementation one specific way). This technique is 
actually way partitioning on the top of PSA: lines that 
probabilistically fail to become MRU, are further restricted 
by a way mask to a specific way, in order to minimize their 
interference with lines that probabilistically succeed to 
become MRU. Consequently, once PI sets the allocation 
probability to 0% to minimize the occupancy of an 
application, in addition to all lines being filled as LRU, the 
application will be restricted to one way.   
     
4. Evaluation and Results      

   

4.1 Performance Evaluation Framework  
   

   In this section, we briefly describe the CMPSched$im [5] 
simulation framework we used to evaluate PCASA. 
CMPSched$im is an extension of CMP$im [4], a parallel 
multi-core performance simulator. CMP$im utilizes the     
PIN [6] binary instrumentation system to evaluate the 
performance of single-threaded, multi-threaded, and multi-
programmed workloads on a single- or multi-core processor. 
CMP$im models a simple processor pipeline and uses PIN to 

dynamically feed instructions and memory addresses from 
workloads executing in actual processor cores to simulated 
cores. This way, CMP$im realistically simulates 
concurrently executing workloads and avoids the I/O 
overheads associated with large address trace files. 
CMPSched$im has the added benefit of enabling the 
execution of multiple applications per core, while the 
scheduling is accurately captured by a real Linux scheduler, 
Linsched [1]. In our experiments, we simulated Intel’s i3-
530 cache hierarchy without L1 caching (256KB 4-way 
private L2, 4MB 16-way shared L3), since L1 caching only 
slightly affected L3 contention (where we studied the 
effectiveness of PCASA), while negatively impacting our 
simulation speed. 
    
4.2. Results and Analysis 

   
4.2.1 Efficacy of PCASA in Achieving Occupancy Targets  

   
   In this section, we present a case study where we evaluate 
PSA, its variants, and the PI controller using CMPSched$im. 
We start with a breadth exploration, where we simulate a 
variety of SPEC benchmark pairs to demonstrate the 
effectiveness of PCASA in enforcing a fixed “common case” 
occupancy target. Then, we delve into a challenging 
benchmark pair, to explore its sensitivity to meeting various 
occupancy targets and its dynamic occupancy behavior.  
   To get a good representation of the SPEC workload 
spectrum, we have simulated over 25 pairs, but we 
demonstrate 5 combinations (due to space restrictions), 
which capture diversity in characteristics such as memory 
intensiveness, memory sensitivity, and streaming nature 
(Table 2). These pairs are a representative sample of our 
experiments. In each pair, the first application is the HP that 
is allowed to use all of the cache (100% allocation 
probability) and the second application is the LP (restricted 
application). For our breadth exploration, we have a fixed 
occupancy target of 25% for the restricted application. 
   In Figure 4, we plot the monitored occupancy of the 
restricted application for these five pairs. For each pair, 8 
bars are shown, corresponding to 8 different allocation 
schemes. The first 4 are: Probabilistic Selective Allocation 
(PSA), PSA with Keep Zero on Hits (K0H), PSA with 1-
Way Buffer (1WB), and PSA with both K0H and 1WB. The 
following 4 bars correspond to the same allocation schemes 
when integrating a PI controller.  
                                   
                                          

(art, mcf) = (sensitive, sensitive) 
(applu, wupwise) = (insensitive, sensitive) 
(equake, twolf) = (streaming, insensitive) 
(lucas, galgel) = (streaming, sensitive) 
(swim, mgrid) = (streaming, streaming) 

   

Table 2: Benchmark combinations 



 
Figure 4.  Effectiveness of PSA for a variety of SPEC workloads with LP requested occupancy of 25% 
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Figure 5.  Effectiveness of PSA for (art, mcf) with various requested occupancy 
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   The very first bar of (art, mcf) shows the occupancy of mcf, 
when using PSA to restrict its occupancy to 25%. The 
resulting occupancy is 43%. The secondary axis shows by 
how much the resulting occupancy of the restricted 
application was off (in terms of % occupancy). Since mcf had 
a resulting occupancy of 43%, it had an overflow of 18% 
(43% - 25%) and hence this mechanism was not as effective 
for this pair. Also, PSA+K0H and PSA+1WB are not that 
effective in containing mcf, resulting in an overflow of 10% 
or more. Once the PI mechanism is used in conjunction with 
PSA and its variants, we are able to achieve a higher 
accuracy. The 4 next bars show how the same variants of 
PSA perform when integrating a PI controller. With PI+K0H 
or PI+1WB, a high degree of accuracy is achieved containing 
the capacity overflow within 6%. 
   As shown in Figure 4, other benchmark pairs meet their 
occupancy targets without the need for a PI controller 
(overflow or underflow contained in 5%). Art and mcf seems 
to be the most challenging pair, since we observe the highest 
differentiation between the requested and resulting values in 
occupancy. PSA by itself, PSA with PI, or PSA with variants 
without the PI, do not perform effectively for this pair. That 
is because of the high degree of disparity in working sets 

between the two applications. This problem occurs when a 
restricted application (like mcf) has a very large working set 
(or very high request rate) into the cache compared to the HP 
application. Thus, the HP application does not operate at a 
fast enough rate to evict the LP application’s lines, although 
these are filled as LRU. In our experiments, we did observe a 
few more pairs with similar behavior to (art, mcf), although 
these are not the common case. 
   In Figure 5, we delve deeper into the (art, mcf) example (in 
depth exploration). We keep art as HP (no capacity 
restrictions) and restrict the requested occupancy of mcf to 
variable values (X-axis). Y-axis shows mcf’s actual resulting 
occupancy in the cache. Note that 100% requested 
occupancy represents the default behavior without QoS (both 
applications set the touched line as MRU with 100% 
probability). In this case, mcf and art end up occupying 53% 
and 47% of the Last Level Cache (LLC) respectively.  
   In the same figure, we observe that the more we attempt to 
restrict the occupancy of mcf, the more inaccuracy we have. 
Without using a dynamic PI based mechanism to adjust the 
allocation probabilities at runtime, there’s a potential 
occupancy inaccuracy up to 38% (for low occupancy target 
values).  



 
Figure 6.  Occupancy dynamics for art-mcf running in a 4MB LLC (PSA+K0H+PI) 
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   When a PI controller is incorporated with PSA+K0H, the 
overflow and underflow are monitored dynamically and the 
allocation probabilities are adjusted to achieve an accurate 
occupancy within 1%. The 0% requested occupancy however 
results in a 6% overflow, because of the underlying limitation 
that we don’t have a mechanism to bypass the cache and 
some lines do remain in cache though they are marked LRU.  
   The last two allocation methods (PSA+1WB and 
PSA+K0H+1WB) are also effective in containing the 
overflow / underflow within 6%. However, they do require 
the 1WB as an additional mechanism, which is unnecessary 
since PSA+K0H with the PI controller already provides the 
desired accuracy. We observed similar behavior for the rest 
of the few challenging pairs we came across (not shown 
here), thus we believe that PSA+K0H+PI is by itself a very 
practical and effective mechanism for shared cache 
management. Next, we show the dynamic occupancies over 
time for mcf and art (for PSA+K0H+PI). 
    
4.2.2 Occupancy Dynamics 

    

   Figure 6(a) shows the occupancy dynamics for the first 3 
seconds of the execution of art and mcf without QoS (100% 
allocation probability for both applications). X-axis indicates 
the time in 15ms granularity, while Y-axis depicts the 
corresponding cache occupancy of mcf (in terms of 
percentage). We note that art and mcf occupy 47% and 53% 
of the cache (in respect) most of the time, corresponding to 
the first bar (100%) in Figure 5. The occasional spikes in 
occupancy (e.g. 2.1-2.5 seconds) are due to phase changes.  
   In Figures 6(b) and 6(c), we observe how the occupancy 
curve changes when enforcing an occupancy target with the 
proposed PI controller (configuration is PSA+K0H+PI). In 
Figure 6(b) the target occupancy for mcf is 31.25%, while in 
6(c) it is 50% (dashed lines in subfigures). The continuous 
line indicates the allocation probability that PI enforces in 
order to achieve the desired occupancy. In 6(c), we observe 
that PI raises allocation probability over 50% most of the 
time to enable mcf to occupy more space than baseline PSA, 
and achieve the 50% occupancy target. We also observe that 
whenever the mcf’s occupancy exceeds 50% (e.g. 1.6-2.1 
seconds), the allocation probability drops to further restrict 
mcf. In contrast, in 6(b), where the target occupancy is lower 

(31.25%), we observe that the allocation probability is 
limited to less than 10% most of the time. Note that in 
baseline PSA this value would be constantly 31.25%.  
  

5. Conclusions 
      

     Differentiated services and QoS are gaining importance 
as Moore’s law increases the number of processing elements 
in multicore systems. In this paper, we introduced PCASA, a 
novel low-overhead QoS architecture using Probabilistic 
Selective Allocation (PSA) for shared cache management in 
multicore systems. We also demonstrated that when 
integrating a control-theoretic Proportional Integral (PI) 
controller into the system, PSA achieves highly accurate 
occupancy enforcement to applications. At only 0.5-0.7% 
area overhead, our solution can be utilized in datacenters to 
satisfy Service Level Agreements (SLAs) and provide cache 
space guarantees to cloud customer applications.  
   

References    
     

[1] J. Calandrino, D. Baumberger, T. Li, J. Young, S. Hahn, “Linsched-The 
Linux Scheduler Simulator”, PDCCS, May 2008, New Orleans, Louisiana. 
[2] R. Iyer, “CQoS: A Framework for Enabling QoS in Shared Caches of 
CMP Platforms,” ICS, June 2004, Malo, France. 
[3] R. Iyer, L. Zhao, F. Guo, R. Illikkal, D. Newell, Y. Solihin, L. Hsu and S. 
Reinhardt, “QoS Policies and Architecture for Cache/Memory in CMP Platforms”, 
ACM Sigmetrics, June 2007, San Diego, CA. 
[4] A. Jaleel, R. S. Cohn, C.-K. Luk, B. Jacob, “CMP$im- A Pin-Based On-
The-Fly Multi-Core Cache Simulator”, MoBS, June 2008, Beijing, China.  
[5] J. Moses et al, “CMPSched$im: Evaluating OS/CMP Interaction on 
Shared Cache Management”, ISPASS, April 2009, Boston, MA.  
[6] Pin - A Dynamic Binary Instrumentation Tool, rogue.colorado.edu/pin 
[7] M. K. Qureshi, Yale N. Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition Shared 
Caches”, MICRO, December 2006, Orlando, FL.  
[8] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. C. Steely Jr, and J. Emer, 
“Adaptive Insertion Policies for Managing Shared Caches on CMPs”, PACT, 
October 2008, Toronto, Canada. 
[9] N. Rafique, W.-T. Lim, and M. Thottethodi, “Architectural Support for 
Operating System-Driven CMP Cache Management”, PACT, September 
2006, New York, NY. 
[10] A. Sharifi, H. Zhao, M. Kandemir, “Feedback Control for Providing 
QoS in NoC Based Multicores,” DATE, March 2010, Dresden, Germany. 
[11] S. Srikantaiah, M. Kandemir, and Q. Wang, “SHARP control: 
Controlled Shared Cache Management in Chip Multi-Processors,” MICRO,  
December 2009, New York, NY.  
[12] L. Zhao et al., “CacheScouts: Fine-Grain Monitoring of Shared Caches 
in CMP Platforms”, PACT, September 2007, Brasov, Romania.  
[13] K. Kiyong, R. Schaefer, “Tuning a PID Controller for a Digital 
Excitation Control System,” IEEE Trans. Industry Applications, March 2005. 

  

(b) 
  

(c) 
  

 (a) 


