

Abstract—Energy efficiency is becoming a major constraint in

processor designs. Every component of the processor should be

reconsidered to reduce wasted energy and area. Prefetching is an

important technique for tolerating memory latency. Prefetcher

designs have important impact on the energy efficiency of the

memory hierarchy. Stride prefetchers require little storage, but

cannot handle irregular access patterns. Delta correlation (DC)

prefetchers can handle complicated access patterns, but waste

storage because of storing multiple miss addresses for a stride

pattern. Moreover, DC prefetchers waste the bandwidth and

energy of the memory hierarchy because they cannot identify

whether an address has been prefetched and generate a large

number of redundant prefetches.

In this paper, we propose a storage and energy efficient data

prefetcher called stride/DC (S/DC) to combine the advantages of

stride and DC prefetchers. S/DC uses a pattern prediction table

(PPT) which stores two recent miss addresses in each entry to

capture stride patterns. PPT avoids recording multiple miss

addresses for a stride pattern, and thus improves the storage

efficiency. When handling stride patterns, each PPT entry

maintains a counter for obtaining the last prefetched address to

avoid generating redundant prefetches. When handling other

patterns, S/DC compares the new predicted address with earlier

generated addresses in the prefetch queue and filters the

redundant ones. In addition, to expand the filtering scope, S/DC

uses a prefetch filter to store addresses evicted from the prefetch

queue. In this way, S/DC reduces the bandwidth requirements

and energy consumption of prefetching. Experimental results

demonstrate that S/DC achieves comparable performance with

only 24% of the storage and reduces 11.46% of the L2 cache

energy, as compared to the CZone/DC prefetcher.

I. INTRODUCTION

With the growing concerns about power and complexity,

energy efficiency is becoming a key constraint in processor

designs [1][2]. To optimize energy efficiency, all components

of the processor should be reconsidered to reduce wasted

energy and area. Prefetching [3][4] has been widely used in

processors to tolerate memory latency. Prefetcher designs

have important impact on the performance and energy of the

memory hierarchy [5]. The storage occupied by the prefetcher

to record history data incurs area and power consumption. On

the other hand, each cache miss will access the prefetcher and

potentially invokes multiple prefetches. Prefetch addresses

from consecutive misses may overlap and incur redundant

prefetches, which waste bandwidth and energy [6]. Therefore,

it is critical to reduce the occupied storage and redundant

prefetches in order to improve the energy efficiency.

Numerous hardware data prefetchers have been developed,

including sequential [3], stride [4][7][8], Markov [9] and delta

correlation (DC) [10][11] prefetchers. Stride prefetchers [7][8]

utilize a small reference prediction table (RPT) to record a last

miss address and a stride for each stride pattern, and maintain

status bits in each RPT entry for obtaining the last prefetched

address to avoid redundant prefetches [12]. Stride prefetchers

occupy little storage, but cannot handle irregular access

patterns. DC prefetchers [10][11] can handle both regular and

complicated patterns, and show advantages in performance

[13]. DC prefetchers use a global history buffer (GHB) to hold

recent miss addresses in FIFO order and link addresses of the

same local stream into lists. An index table (IT) is used to

identify local streams and point to the address lists in GHB.

Multiple GHB entries may be occupied to capture a stride

pattern, which can be represented by two consecutive miss

addresses, thus wasting the storage. Moreover, DC prefetchers

cannot identify whether an address has been prefetched, thus

issuing a large number of redundant prefetches.

In this paper, we propose the stride/DC (S/DC) prefetcher

which combines and refines ideas of stride and DC prefetchers

to achieve better performance and energy efficiency. S/DC

uses a pattern prediction table (PPT) to replace the IT. To

improve the storage efficiency, PPT records two recent miss

addresses in each entry to represent the stride pattern, which

prevents a stride pattern from occupying multiple GHB entries.

Meanwhile, each PPT entry maintains a 2-bit counter for

stride patterns to obtain the last prefetched address in order to

avoid redundant prefetches. When handling other patterns,

S/DC compares the new predicted address with earlier

generated addresses in the prefetch queue to filter the

redundant ones. Furthermore, a bit-vector prefetch filter

which approximately records addresses evicted from the

prefetch queue is used in S/DC to expand the filtering scope.

This paper makes the following contributions. First, S/DC

uses the PPT instead of the GHB to capture stride patterns.

PPT avoids recording more than two miss addresses for a

stride pattern to improve the storage efficiency. Compared

with the CZone/DC (C/DC) prefetcher [11], S/DC achieves

comparable performance with only 24% of the storage.

Second, S/DC filters redundant prefetches by recording the

last prefetched address for stride patterns and comparing the

new predicted address with earlier generated addresses in the

prefetch queue and prefetch filter for other patterns. Thus, it

reduces the bandwidth requirements and energy consumption

S/DC: A Storage and Energy Efficient Data Prefetcher

Xianglei Dang, Xiaoyin Wang, Dong Tong, Junlin Lu, Jiangfang Yi, Keyi Wang

Microprocessor Research & Development Center, Peking University, Beijing, China

{dangxianglei, wangxiaoyin, tongdong, lujunlin, yijiangfang, wangkeyi}@mprc.pku.edu.cn

This work was supported by the National High Technology Research and

Development Program of China (No. 2009ZX01029-001-002) and by the

China Postdoctoral Science Foundation (No. 20110490208).

978-3-9810801-8-6/DATE12/©2012 EDAA

of prefetching. Compared with C/DC, S/DC decreases the

percentage of redundant prefetches from 71.04% to 13.01%,

and thus reduces 11.46% of the L2 cache energy.

II. RELATED WORK

Many prefetching schemes have been proposed in the past.

The simplest one is sequential prefetching [3] which issues a

prefetch for the next block when a cache miss happens. Stride

prefetchers [7][8] capture sequences of addresses that differ

by a constant stride, and prefetch addresses that continue the

stride pattern. K cache blocks are prefetched when a stride

pattern is first captured, and then an additional cache block is

prefetched when a previously prefetched block is consumed

by the processor [12], where K is the prefetch degree.

Correlation prefetching schemes detect correlations among

miss addresses to handle complicated access patterns. Markov

prefetcher [9] captures repetitive subsequences in the global

miss address stream to predict irregular prefetch addresses. It

requires large correlation tables to be effective, which makes

it hard to implement [10]. The difference between consecutive

addresses in the miss address stream comprises the delta

stream. Delta correlation (DC) prefetchers [10][11] capture

repetitive subsequences in the delta stream to generate

prefetch addresses. DC prefetchers use the most recent delta

pair (two consecutive deltas) as the correlation key to search

the delta stream in reverse order for the same delta pair. If a

match is found, prefetch addresses can be computed by the

current miss address and the deltas following the match. A

recent study shows that DC prefetchers are the top performers

among the ten prefetching schemes [13].

To improve the predictability, it is common to divide the

global miss address stream into multiple local streams and

capture repetitive access patterns in each local stream [14].

The global stream can be split by the program counter (PC) of

memory instructions [7][10] or concentration zones (CZones)

[8][11]. The physical memory is divided into fixed size ranges

called CZones according to the higher order bits of miss

addresses [11]. CZones are suitable for prefetchers in low

levels of the memory hierarchy since PCs are generally

invisible to them. Since out-of-order processors can tolerate

most of the short-latency misses [10][11], our proposed S/DC

is designed to prefetch into the last level cache (in our case the

L2) and uses CZones to divide the global stream.

Redundant prefetches waste the bandwidth and energy, and

even incur performance loss due to the resource competition.

A recent work [6] uses miss status holding registers (MSHRs)

and a Bloom filter to filter redundant prefetches. In this paper,

we implement multiple filtering mechanisms based on the

structure of S/DC to eliminate redundant prefetches.

III. MOTIVATION

To optimize a processor for energy efficiency, the design

choice of each component should be reconsidered. First, low

power design is recommended to save energy while achieving

comparable performance. Thus, wasted storage and redundant

operations should be eliminated. Second, existing resources

should be used effectively to improve performance without

increasing energy. DC prefetchers [10][11] show advantages

in performance, but perform poorly in energy efficiency due to

wasted storage and redundant prefetches, which motivates us

to propose a novel energy efficient prefetcher.

DC prefetchers contain an IT and a GHB. Each IT entry

represents a local stream and contains the Tag of the stream

and the Ptr that points into the list of miss addresses belonging

to this stream in GHB. GHB stores recent miss addresses in

FIFO manner, and links entries that belong to the same IT

entry by pointers to capture repetitive access patterns.

Generally, GHB stores all the miss addresses belonging to

an IT entry under the limitation of capacity. Therefore, several

GHB entries may be occupied to capture a stride pattern which

can be represented by two consecutive miss addresses, thus

wasting the storage. We evaluate the occupancy of GHB by

stride patterns in the C/DC prefetcher [11], as show in Fig. 1.

The results show that on average 53.28% of GHB entries are

occupied by stride patterns. If each IT entry is extend with two

recent miss address fields to represent a stride pattern, GHB

entries wasted by stride patterns can be saved. Thus, GHB are

only used for other patterns and its size can be reduced to save

energy and area. When handling other patterns, these two

fields can work together with GHB. They record most recent

miss addresses, and shift earlier miss addresses into GHB.

The reason why DC prefetchers issue a large number of

redundant prefetches is that they cannot identify whether an

address has been prefetched [6]. Therefore, the key to reduce

redundant prefetches is recording earlier issued addresses and

comparing the new predicted addresses with them to eliminate

the redundant ones. For stride patterns, a counter can be stored

in each IT entry to compute the last prefetched address, thus

avoiding redundant prefetches. For other patterns, the new

predicted addresses can be compared with earlier generated

addresses in the prefetch queue to filter the redundant ones. To

expand the filtering scope, additional structure can be used to

record addresses evicted from the prefetch queue.

IV. STRIDE/DELTA CORRELATION (S/DC) PREFETCHER

In this section, we propose the design and implementation

of S/DC. To improve the storage efficiency, S/DC uses a PPT

which records two consecutive miss addresses in each entry to

capture stride patterns, thus preventing a stride pattern from

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
z
ip

2

v
o

rt
e
x

p
e
rl

b
m

k

v
p

r

g
c
c

m
c
f

c
ra

ft
y

g
a

p

e
o

n

g
z
ip

p
a

rs
e
r

tw
o

lf

a
m

m
p

a
p

p
lu

a
p

si

a
rt

e
q

u
a

k
e

g
a

lg
e
l

lu
c
a

s

m
e
sa

m
g
ri

d

si
x

tr
a

c
k

fa
c
e
re

c

sw
im

w
u

p
w

is
e

A
V

G

Percentage of GHB Entries Occupied by Stride Patterns

Fig. 1. Percentage of GHB entries occupied by stride patterns

occupying multiple GHB entries. Meanwhile, PPT reduces

redundant prefetches when handling stride patterns by storing

a counter in each entry to compute the last prefetched address.

When handling other patterns, S/DC uses the prefetch queue

and prefetch filter to store earlier generated prefetch addresses

together in order to eliminate redundant prefetches.

A. Architecture

S/DC is designed to prefetch into the L2 cache, and divides

miss addresses into local streams according to CZones. The

structure of the proposed S/DC is shown in Fig. 2. Next, we

introduce each of the key components in detail.

PPT utilizes the fully or set associative structure and each

entry contains six fields, as shown in Fig. 2. The Tag is used to

identify different CZones. Two most recent miss indexes of

the CZone are stored in the LastIdx1 and LastIdx0, which are

enough to represent stride patterns. When handling other DC

patterns, earlier miss addresses are shifted into GHB and the

Ptr points to the head of the address list in GHB. The State of

the entry may be INV, INIT, STRIDE and DELTA, which will

be introduced in section IV.B. The Cnt is a 2-bit saturation

counter which records the match times of the stride pattern.

GHB is a FIFO-like circular buffer that holds recent miss

addresses shifted from PPT in chronological order, as shown

in Fig. 2. Since the tag bits of miss addresses can be found in

PPT, GHB only needs to store the index bits in the MissIdx

field. The Ptr field stores pointers which chain the GHB

entries that belong to the same CZone into address lists. The

LastIdx1 and LastIdx0 in the PPT entry and the address list in

GHB comprise the miss address stream. The delta stream is

computed in sequential manner when searching the address

stream, and stored in the delta buffer in reverse order to

generate the prefetch addresses when a DC pattern is captured.

Prefetch queue is a 32-entry FIFO-like circular buffer that

holds recent generated prefetch addresses and issues them to

the L2 cache in sequential manner, as shown in Fig. 2. Each

entry contains three fields. The Addr field stores the prefetch

address. The V and Issued fields are the status of the address.

Only valid and unissued addresses can be sent to the L2 cache.

Issued addresses are only used to filter redundant prefetches.

Prefetch filter is a bit-vector that is indexed with the output

of the exclusive-or operation of the lower and higher order bits

of the cache block address, as shown in Fig. 2. When an issued

prefetch address is replaced from the prefetch queue, the filter

is accessed with that address and the corresponding bit is set.

Prefetch filter is used as a supplement to the prefetch queue to

eliminate redundant prefetches.

To keep prefetched blocks from modifying the original L2

demand miss address stream, a prefetch bit is added to each L2

cache block [3][11]. This bit is set when a prefetched block is

written into the L2 cache. When an access hits a cache block

with a set prefetch bit, the prefetch bit is cleared and the hit

address is used to access the S/DC as if it was a L2 miss.

B. Main Flow of Prefetching

When a L2 miss occurs (or an access hits a prefetched but

not yet accessed cache block), the tag bits of the miss address

are used to search the PPT. Fig. 3 shows the state machine of

the PPT entry. If the tag fails to match any of the valid tags

currently held in the PPT, the miss is not considered to belong

to any of the known CZones and an INV entry or the least

recently used (LRU) entry is allocated in the PPT. The Tag

and LastIdx1 fields are updated with the tag and index of the

miss address, and then the state of the entry changes to INIT.

Subsequent misses with the same tag are considered to belong

to the same CZone and cause the update of the entry.

In INIT state, when a subsequent miss occurs, the LastIdx1

is shifted into the LastIdx0 and updated with the index of the

new miss address. And then the Cnt is cleared. Afterwards, the

entry enters STRIDE state.

In STRIDE state, when a subsequent miss occurs, the last

and new strides are computed by the LastIdx0, the LastIdx1

and the new miss index. If the new stride is identical with the

last stride, a stride pattern is captured and the Cnt is increased.

If the Cnt is 1, it means the stride pattern is first captured and a

number of prefetches determined by the prefetch degree are

issued; otherwise a prefetch for the next unprefetched cache

block is issued. The LastIdx1 is shifted into the LastIdx0 and

updated with the new miss index. The entry stays at STRIDE

state and no address is inserted into the GHB. If the new stride

differs from the last stride, the access pattern is not a stride

stride
patterns

INITINV

STRIDEDELTA

first allocated

an
o

th
er

m
is

s

re
al

lo
ca

te
d

stride patterns

other patterns

rea
llo

ca
ted

other
patterns

Fig. 3. The state machine of the PPT entry

Tag LastIdx1 State

Pattern Prediction Table (PPT)

LastIdx0 Cnt

B 20 STRIDE16 1

A 11 INIT0 0

C 66 DELTA61 0

INV

Ptr

MissIdx

49

54

Ptr

56

59

Delta

2

5

2

3

2

5

Global History
Buffer (GHB)

47

Delta Buffer

5

2

3

2

5

2

Prefetch
Function

Addr

Prefetch Queue

IssuedV

Filtering
Redundant
Prefetches

0

1

0

1

0

Prefetch
Filter

OffsetIndexTag

Hit?

Miss

Address

to L2 Cache

Fig. 2. The structure of the proposed S/DC prefetcher

pattern. If the Cnt is not 0, Cnt discarded addresses computed

by the LastIdx0 and the last stride are inserted into the GHB to

restore the original miss stream. And then the LastIdx0 is

shifted into the GHB and the new miss index is shifted into the

LastIdx1. The ptr is also updated. Afterwards, the entry enters

DELTA state to detect other DC patterns.

In DELTA state, when a subsequent miss occurs, the key

delta pair is computed by the LastIdx0, the LastIdx1 and the

new miss index. If the two deltas of the delta pair are the same,

then a stride pattern is captured. The LastIdx1 and LastIdx0

are updated, while the Cnt is set to 1. And then the entry enters

STRIDE state to issue prefetches. Otherwise, the entry stays at

DELTA state. The LastIdx0 is shifted into the GHB and the

new miss index is shifted into the LastIdx1. S/DC uses the key

delta pair to search the miss address stream in reverse order. If

a match is found, prefetch addresses are computed by the

current miss address and the deltas stored in the delta buffer.

C. Redundant Prefetch Filtering Mechanisms

S/DC presents three filtering mechanisms for different

access patterns. For stride patterns, S/DC uses the Cnt in each

PPT entry to compute the last prefetched address, and thus

only issues prefetches for unprefetched cache blocks to avoid

redundant prefetches. For other patterns, S/DC uses the new

predicted address to search the prefetch queue and prefetch

filter simultaneously before issuing a prefetch. If a match is

found in either of the two structures, the prefetch is redundant

and discarded. To limit false-positive matches caused by the

exclusive-or operation, the prefetch filter is reset periodically

(every 100 accesses to the prefetch filter in this paper).

V. EXPERIMENTS

In this section, we evaluate the performance and energy of

S/DC using the SimpleScalar Alpha [15] simulator which is

extended with the Wattch [16] power model. We use SPEC

CPU2000 benchmarks [17] for evaluation. For each program,

a representative sample of 100 million instructions selected by

the SimPoint [18] is run with reference inputs. Table 1

summarizes the configuration of the baseline processor model

which is a typical 4-issue superscalar processor. We propose

three versions (S/DC_conf0, S/DC_conf1 and S/DC_conf2)

of S/DC to separately evaluate the effectiveness of the PPT,

the prefetch queue and the prefetch filter. The CZone/stride

prefetcher, namely stream prefetcher (SP) [4][8], and the

CZone/DC (C/DC) [11] prefetcher are used for comparison.

The parameters of the above prefetchers are presented in

Table 2. The prefetch degree is set to 4 for all the prefetchers.

A. Storage Efficiency and Performance

S/DC uses the PPT to capture stride patterns in order to

avoid recording more than two miss addresses for a stride

pattern, thus reducing the storage without lowering the

performance. To quantify the effectiveness, we choose five

GHB options (32-, 64-, 128-, 256- and 512-entry) to evaluate

the performance improvement of C/DC and S/DC with respect

to the baseline processor, as shown in Fig. 4 and Fig. 5. The

results indicate that both the performance of C/DC and S/DC

are improved as the GHB size increases, and S/DC always

outperforms C/DC with the same GHB size. As the GHB size

decreases, the advantage of S/DC is growing, since S/DC can

prevent stride patterns from occupying GHB entries. As for

S/DC, performance is slightly lowered from 256- to 512-entry

GHB. This is because 512-entry GHB holds more stale data

than 256-entry GHB and stale data incurs useless prefetches

and cache pollution in a few programs.

In particular, S/DC(64-entry GHB) achieves comparable

performance with C/DC(512-entry GHB), as shown in Fig. 4

and Fig. 5. We divide the 32-bit address into 16-bit Tag,

11-bit Index and 5-bit Offset and compare the storage of C/DC

Table 1. The configuration of the baseline processor

Feature Parameters

Pipeline 8 stages, 4-issue/decode/commit, 1GHz

Instruction Window 128-entry

Load/Store Queue 64-entry

L1 I/DCache 64KB, 4-way, 32-byte line, 2 cycles

L2 Cache 2MB, 16-way, 32-byte line, 12 cycles

Main Memory 200-cycle latency

Table 2. The configuration of prefetchers

Method Parameters

SP 32-entry reference prediction table (RPT)

C/DC 32-entry index table (IT), 512-entry GHB

S/DC_conf0 32-entry PPT, 64-entry GHB, no other filtering

mechanism

S/DC_conf1 32-entry PPT, 64-entry GHB, filtering through

the prefetch queue

S/DC_conf2 32-entry PPT, 64-entry GHB, filtering through

the prefetch queue and prefetch filter

37%

38%

39%

40%

41%

42%

43%

32 64 128 256 512

IP
C

 S
p

e
e
d

u
p

(F

P
,

G
M

E
A

N
)

GHB Size

C/DC(FP) S/DC(FP)

Fig. 5. Performance comparison of C/DC and S/DC (FP programs)

8.2%

8.3%

8.4%

8.5%

8.6%

8.7%

8.8%

32 64 128 256 512IP
C

 S
p

e
e
d

u
p

(I

N
T

,
G

M
E

A
N

)

GHB Size

C/DC(INT) S/DC(INT)

Fig. 4. Performance comparison of C/DC and S/DC (INT programs)

and S/DC in this situation, as shown in Table 3. The results

indicate that S/DC achieves comparable performance with

about 24% of the storage as compared to C/DC.

We show the performance improvement of the different

prefetchers over the baseline processor in Fig. 6 and Fig. 7. On

average, the performance speedup of SP, C/DC(512-entry

GHB), S/DC(64-entry GHB) and S/DC(256-entry GHB) is

7.64%, 8.61%, 8.64% and 8.75% for INT programs, and

21.54%, 42.21%, 42.23% and 42.70% for FP programs. The

results demonstrate that C/DC and S/DC can further improve

the performance in all programs except mcf by handling both

regular and complicated access patterns as compared to SP.

For mcf, 2MB L2 cache fits the working set and repetitive

access patterns mostly hit the L2 cache. Therefore, the

prefetch accuracy of C/DC and S/DC is low, which causes a

great deal of cache pollution and lowers the performance.

When we evaluate mcf with 512KB L2 cache, the results show

that C/DC and S/DC can improve the performance of the

baseline processor observably (about double the performance).

Compared with C/DC(512-entry GHB), S/DC(64-entry GHB)

evaluated in the following parts of this paper achieves

comparable or better performance with only 24% of the

storage in most of the programs, and S/DC(256-entry GHB)

achieves comparable or better performance in all programs.

B. Redundant Prefetches and Energy

S/DC implements three filtering mechanisms through the

PPT, prefetch queue and prefetch filter to eliminate redundant

prefetches, thus reducing the bandwidth requirements and

energy consumption of prefetching. Fig. 8 and Fig. 9 show the

prefetch times of the five prefetchers, including new and

redundant prefetches, normalized to the prefetch times of

C/DC. On average, the percentage of redundant prefetches of

SP, C/DC, S/DC_conf0, S/DC_conf1 and S/DC_conf2 is

13.06%, 70.35%, 34.68%, 17.23% and 17.07% for INT

programs, and 9.19%, 71.69%, 41.40%, 10.34% and 9.26%

for FP programs. The results indicate that both the C/DC and

S/DC issue more prefetches and redundant prefetches than SP

to achieve higher performance. Compared with C/DC, S/DC

significantly reduces the redundant prefetches through the

three filtering mechanisms while issuing comparable new

prefetches. In particular, S/DC_conf0 only avoids generating

redundant prefetches when handling stride patterns, and

S/DC_conf1 can further eliminate most of the redundant

prefetches generated when handling other DC patterns. In

S/DC_conf2, the prefetch filter is added as a supplement to the

prefetch queue to further discard redundant prefetches. The

results demonstrate that the prefetch filter is less effective than

the prefetch queue, because prefetches generally overlap with

recent rather than earlier issued prefetches. On the other hand,

false-positive matches of the prefetch filter may lower the

performance, so it is an optional mechanism in S/DC.

When a prefetch is issued by the prefetcher, the L2 cache is

Table 3. Storage comparison of C/DC and S/DC

Prefetcher Organization Capacity

C/DC

(512)

IT (16-bit Tag + 9-bit Ptr)×32
~1.35KB

GHB (11-bit MissIdx + 9-bit Ptr)×512

S/DC

(64)

PPT (16-bit Tag + 11-bit LastIdx1 +

11-bit LastIdx0 + 2-bit State +

2-bit Cnt + 6-bit Ptr)×32 ~0.32KB

GHB (11-bit MissIdx + 6-bit Ptr)×64

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o

r
m

a
li

z
e
d

 P
r
e
fe

tc
h

 T
im

e
s

(I
N

T
)

New Prefetches Redundant Prefetches

Fig. 8. Redundant prefetches of the five prefetchers (from left to right: SP,

C/DC, S/DC_conf0, S/DC_conf1 and S/DC_conf2, INT programs)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o

r
m

a
li

z
e
d

 P
r
e
fe

tc
h

 T
im

e
s

(F
P

)

New Prefetches Redundant Prefetches

Fig. 9. Redundant prefetches of the five prefetchers (from left to right: SP,

C/DC, S/DC_conf0, S/DC_conf1 and S/DC_conf2, FP programs)

-15%

0%

15%

30%

45%

60%

75%

90%

105%

IP
C

 S
p

e
e
d

u
p

(I

N
T

)

SP

C/DC(512)

S/DC(64)

S/DC(256)

Fig. 6. Performance speedup of the four prefetchers (INT programs)

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

IP
C

 S
p

e
e
d

u
p

(F

P
)

SP

C/DC(512)

S/DC(64)

S/DC(256)

Fig. 7. Performance speedup of the four prefetchers (FP programs)

accessed first to check if the prefetch address is already in the

cache. From Fig. 8 and Fig. 9, we can see that S/DC reduces

the overall number of prefetches by discarding a large number

of redundant prefetches, indicating that the number of L2

cache accesses issued by the prefetcher is also decreased, so

S/DC can reduce the energy of the L2 cache. To quantify the

effectiveness, we evaluate the L2 cache energy (including

dynamic and leakage energy) of the five prefetchers,

normalized to the L2 cache energy of the baseline processor,

as shown in Fig. 10 and Fig. 11. On average, SP, C/DC,

S/DC_conf0, S/DC_conf1 and S/DC_conf2 reduces the L2

cache energy by 5.89%, 1.99%, 3.97%, 5.57% and 5.55% for

INT programs, and 6.48%, -7.40%, 6.23%, 12.57% and

12.64% for FP programs. Compared with C/DC, S/DC_conf2

reduces the L2 cache energy by an average of 11.46% for all

programs. The results demonstrate that S/DC can significantly

reduce the bandwidth requirements and energy consumption

of prefetching by filtering redundant prefetches.

VI. CONCLUSION

In this paper, we propose a storage and energy efficient data

prefetcher called S/DC. To improve the storage efficiency,

S/DC presents the PPT which stores two consecutive miss

addresses in each entry to represent the stride pattern, and thus

avoids recording more than two miss addresses for a stride

pattern. Meanwhile, PPT stores a counter in each entry to

compute the last prefetched address for stride patterns to

avoid redundant prefetches. To reduce redundant prefetches

when prefetching other patterns, S/DC compares the new

predicted address with earlier generated addresses in the

prefetch queue and filters the redundant ones. Furthermore, to

expand the filtering scope, S/DC uses a bit-vector prefetch

filter which approximately records addresses evicted from the

prefetch queue to further reduce redundant prefetches.

Our experimental results demonstrate that S/DC achieves

comparable performance with only 24% of the storage as

compared to the C/DC prefetcher. Furthermore, compared

with C/DC, S/DC can reduce the percentage of redundant

prefetches and the number of L2 cache accesses significantly,

thus reducing the bandwidth requirements for accessing the

L2 cache and decreasing the L2 cache energy.

REFERENCES

[1] S. Borkar, and A. A. Chien, "The future of microprocessors",

Communications of the ACM, vol. 54, no. 5, pp. 67-77, May 2011.

[2] O. Azizi, A. Mahesri, et al., "Energy-performance tradeoffs in

processor architecture and circuit design: A marginal cost analysis," in

Proceedings of the 37th Annual International Symposium on

Computer Architecture, pp. 26-36, June 2010.

[3] S. P. Vanderwiel, and D. J. Lilja, “Data prefetch mechanisms,” ACM

Computing Surveys, vol. 32, no. 2, pp. 174-199, June 2000.

[4] H. Q. Le, W. J. Starke, et al., “IBM POWER6 microarchitecture,” IBM

Journal of Research and Development, vol. 51, no. 6, pp. 639–662,

November 2007.

[5] Y. Guo, P. Narayanan, et al., “Energy-efficient hardware data

prefetching,” IEEE Transactions on Very Large Scale Integration

Systems, vol. 19, no. 2, pp. 250-263, February 2011

[6] M. Dimitrov, and H. Zhou, “Combining local and global history for

high performance data prefetching,” Journal of Instruction-Level

Parallelism, vol.13, pp. 1-14, 2011.

[7] T. F. Chen, and J. L. Baer, “Effective hardware-based data prefetching

for high-performance processors,” IEEE Transactions on Computers,

vol. 44, no. 5, pp. 609-623, May 1995.

[8] S. Palacharla, and R. E. Kessler, “Evaluating stream buffers as a

secondary cache replacement,” in Proceedings of the 21st Annual

International Symposium on Computer Architecture, pp. 24-33, 1994.

[9] D. Joseph, and D. Grunwald, “Prefetching using Markov predictors,” in

Proceedings of the 24th Annual International Symposium on

Computer Architecture, pp. 252-263, June 1997.

[10] K. J. Nesbit, and J. E. Smith, “Data cache prefetching using a global

history buffer,” in Proceedings of the 10th International Symposium

on High-Performance Computer Architecture, pp. 90-97, 2004.

[11] K. Nesbit, A. Dhodapkar, and J. E. Smith, “AC/DC: An adaptive data

cache prefetcher,” in Proceedings of the 13th International

Conference on Parallel Architectures and Compilation Techniques,

pp. 135-145, September-October 2004.

[12] S. Iacobovici, L. Spracklen, et al., “Effective stream-based and

execution-based data prefetching,” in Proceedings of the 18th Annual

International Conference on Supercomputing, pp. 1-11, 2004.

[13] D. G. Perez, G. Mouchard, and O. Temam, “MicroLib: A case for the

quantitative comparison of micro-architecture mechanisms,” in

Proceedings of the 37th Annual International Symposium on

Microarchitecture, pp. 43-54, December 2004.

[14] P. Díaz and M. Cintra, “Stream chaining: Exploiting multiple levels of

correlation in data prefetching,” in Proceedings of the 36th Annual

International Symposium on Computer Architecture, pp. 81-92, 2009.

[15] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure for

computer system modeling,” IEEE Computer, vol. 35, no. 2, pp. 59-67,

February 2002.

[16] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for

architectural-level power analysis and optimizations,” in Proceedings

of the 27th International Symposium on Computer Architecture, pp.

83-94, June 2000.

[17] J. L. Henning, “SPEC CPU2000: Measuring CPU performance in the

new millennium,” IEEE Computer, vol. 33, no. 7, pp. 28-35, July 2000.

[18] E. Perelman, G. Hamerly, and B. Calder, “Picking statistically valid

and early simulation points,” in Proceedings of the 12th International

Conference on Parallel Architectures and Compilation Techniques,

pp. 244–255, September 2003.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
N

o
r
m

a
li

z
e
d

 L
2

 C
a

c
h

e
 E

n
e
r
g

y
 (

IN
T

) SP C/DC S/DC_conf0 S/DC_conf1 S/DC_conf2

Fig. 10. L2 cache energy of the five prefetchers (INT programs)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o

r
m

a
li

z
e
d

 L
2

 C
a

c
h

e
 E

n
e
r
g

y
 (

F
P

)

SP C/DC S/DC_conf0 S/DC_conf1 S/DC_conf2

Fig. 11. L2 cache energy of the five prefetchers (FP programs)

