
  

 

Abstract—Energy efficiency is becoming a major constraint in 

processor designs. Every component of the processor should be 

reconsidered to reduce wasted energy and area. Prefetching is an 

important technique for tolerating memory latency. Prefetcher 

designs have important impact on the energy efficiency of the 

memory hierarchy. Stride prefetchers require little storage, but 

cannot handle irregular access patterns. Delta correlation (DC) 

prefetchers can handle complicated access patterns, but waste 

storage because of storing multiple miss addresses for a stride 

pattern. Moreover, DC prefetchers waste the bandwidth and 

energy of the memory hierarchy because they cannot identify 

whether an address has been prefetched and generate a large 

number of redundant prefetches. 

In this paper, we propose a storage and energy efficient data 

prefetcher called stride/DC (S/DC) to combine the advantages of 

stride and DC prefetchers. S/DC uses a pattern prediction table 

(PPT) which stores two recent miss addresses in each entry to 

capture stride patterns. PPT avoids recording multiple miss 

addresses for a stride pattern, and thus improves the storage 

efficiency. When handling stride patterns, each PPT entry 

maintains a counter for obtaining the last prefetched address to 

avoid generating redundant prefetches. When handling other 

patterns, S/DC compares the new predicted address with earlier 

generated addresses in the prefetch queue and filters the 

redundant ones. In addition, to expand the filtering scope, S/DC 

uses a prefetch filter to store addresses evicted from the prefetch 

queue. In this way, S/DC reduces the bandwidth requirements 

and energy consumption of prefetching. Experimental results 

demonstrate that S/DC achieves comparable performance with 

only 24% of the storage and reduces 11.46% of the L2 cache 

energy, as compared to the CZone/DC prefetcher. 

I. INTRODUCTION 

With the growing concerns about power and complexity, 

energy efficiency is becoming a key constraint in processor 

designs [1][2]. To optimize energy efficiency, all components 

of the processor should be reconsidered to reduce wasted 

energy and area. Prefetching [3][4] has been widely used in 

processors to tolerate memory latency. Prefetcher designs 

have important impact on the performance and energy of the 

memory hierarchy [5]. The storage occupied by the prefetcher 

to record history data incurs area and power consumption. On 

the other hand, each cache miss will access the prefetcher and 

potentially invokes multiple prefetches. Prefetch addresses 

from consecutive misses may overlap and incur redundant 

prefetches, which waste bandwidth and energy [6]. Therefore, 

it is critical to reduce the occupied storage and redundant 

prefetches in order to improve the energy efficiency. 

Numerous hardware data prefetchers have been developed, 

including sequential [3], stride [4][7][8], Markov [9] and delta 

correlation (DC) [10][11] prefetchers. Stride prefetchers [7][8] 

utilize a small reference prediction table (RPT) to record a last 

miss address and a stride for each stride pattern, and maintain 

status bits in each RPT entry for obtaining the last prefetched 

address to avoid redundant prefetches [12]. Stride prefetchers 

occupy little storage, but cannot handle irregular access 

patterns. DC prefetchers [10][11] can handle both regular and 

complicated patterns, and show advantages in performance 

[13]. DC prefetchers use a global history buffer (GHB) to hold 

recent miss addresses in FIFO order and link addresses of the 

same local stream into lists. An index table (IT) is used to 

identify local streams and point to the address lists in GHB. 

Multiple GHB entries may be occupied to capture a stride 

pattern, which can be represented by two consecutive miss 

addresses, thus wasting the storage. Moreover, DC prefetchers 

cannot identify whether an address has been prefetched, thus 

issuing a large number of redundant prefetches. 

In this paper, we propose the stride/DC (S/DC) prefetcher 

which combines and refines ideas of stride and DC prefetchers 

to achieve better performance and energy efficiency. S/DC 

uses a pattern prediction table (PPT) to replace the IT. To 

improve the storage efficiency, PPT records two recent miss 

addresses in each entry to represent the stride pattern, which 

prevents a stride pattern from occupying multiple GHB entries. 

Meanwhile, each PPT entry maintains a 2-bit counter for 

stride patterns to obtain the last prefetched address in order to 

avoid redundant prefetches. When handling other patterns, 

S/DC compares the new predicted address with earlier 

generated addresses in the prefetch queue to filter the 

redundant ones. Furthermore, a bit-vector prefetch filter 

which approximately records addresses evicted from the 

prefetch queue is used in S/DC to expand the filtering scope. 

This paper makes the following contributions. First, S/DC 

uses the PPT instead of the GHB to capture stride patterns. 

PPT avoids recording more than two miss addresses for a 

stride pattern to improve the storage efficiency. Compared 

with the CZone/DC (C/DC) prefetcher [11], S/DC achieves 

comparable performance with only 24% of the storage. 

Second, S/DC filters redundant prefetches by recording the 

last prefetched address for stride patterns and comparing the 

new predicted address with earlier generated addresses in the 

prefetch queue and prefetch filter for other patterns. Thus, it 

reduces the bandwidth requirements and energy consumption 
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of prefetching. Compared with C/DC, S/DC decreases the 

percentage of redundant prefetches from 71.04% to 13.01%, 

and thus reduces 11.46% of the L2 cache energy. 

II. RELATED WORK 

Many prefetching schemes have been proposed in the past. 

The simplest one is sequential prefetching [3] which issues a 

prefetch for the next block when a cache miss happens. Stride 

prefetchers [7][8] capture sequences of addresses that differ 

by a constant stride, and prefetch addresses that continue the 

stride pattern. K cache blocks are prefetched when a stride 

pattern is first captured, and then an additional cache block is 

prefetched when a previously prefetched block is consumed 

by the processor [12], where K is the prefetch degree. 

Correlation prefetching schemes detect correlations among 

miss addresses to handle complicated access patterns. Markov 

prefetcher [9] captures repetitive subsequences in the global 

miss address stream to predict irregular prefetch addresses. It 

requires large correlation tables to be effective, which makes 

it hard to implement [10]. The difference between consecutive 

addresses in the miss address stream comprises the delta 

stream. Delta correlation (DC) prefetchers [10][11] capture 

repetitive subsequences in the delta stream to generate 

prefetch addresses. DC prefetchers use the most recent delta 

pair (two consecutive deltas) as the correlation key to search 

the delta stream in reverse order for the same delta pair. If a 

match is found, prefetch addresses can be computed by the 

current miss address and the deltas following the match. A 

recent study shows that DC prefetchers are the top performers 

among the ten prefetching schemes [13]. 

To improve the predictability, it is common to divide the 

global miss address stream into multiple local streams and 

capture repetitive access patterns in each local stream [14]. 

The global stream can be split by the program counter (PC) of 

memory instructions [7][10] or concentration zones (CZones) 

[8][11]. The physical memory is divided into fixed size ranges 

called CZones according to the higher order bits of miss 

addresses [11]. CZones are suitable for prefetchers in low 

levels of the memory hierarchy since PCs are generally 

invisible to them. Since out-of-order processors can tolerate 

most of the short-latency misses [10][11], our proposed S/DC 

is designed to prefetch into the last level cache (in our case the 

L2) and uses CZones to divide the global stream. 

Redundant prefetches waste the bandwidth and energy, and 

even incur performance loss due to the resource competition. 

A recent work [6] uses miss status holding registers (MSHRs) 

and a Bloom filter to filter redundant prefetches. In this paper, 

we implement multiple filtering mechanisms based on the 

structure of S/DC to eliminate redundant prefetches. 

III. MOTIVATION 

To optimize a processor for energy efficiency, the design 

choice of each component should be reconsidered. First, low 

power design is recommended to save energy while achieving 

comparable performance. Thus, wasted storage and redundant 

operations should be eliminated. Second, existing resources 

should be used effectively to improve performance without 

increasing energy. DC prefetchers [10][11] show advantages 

in performance, but perform poorly in energy efficiency due to 

wasted storage and redundant prefetches, which motivates us 

to propose a novel energy efficient prefetcher. 

DC prefetchers contain an IT and a GHB. Each IT entry 

represents a local stream and contains the Tag of the stream 

and the Ptr that points into the list of miss addresses belonging 

to this stream in GHB. GHB stores recent miss addresses in 

FIFO manner, and links entries that belong to the same IT 

entry by pointers to capture repetitive access patterns. 

Generally, GHB stores all the miss addresses belonging to 

an IT entry under the limitation of capacity. Therefore, several 

GHB entries may be occupied to capture a stride pattern which 

can be represented by two consecutive miss addresses, thus 

wasting the storage. We evaluate the occupancy of GHB by 

stride patterns in the C/DC prefetcher [11], as show in Fig. 1. 

The results show that on average 53.28% of GHB entries are 

occupied by stride patterns. If each IT entry is extend with two 

recent miss address fields to represent a stride pattern, GHB 

entries wasted by stride patterns can be saved. Thus, GHB are 

only used for other patterns and its size can be reduced to save 

energy and area. When handling other patterns, these two 

fields can work together with GHB. They record most recent 

miss addresses, and shift earlier miss addresses into GHB.  

The reason why DC prefetchers issue a large number of 

redundant prefetches is that they cannot identify whether an 

address has been prefetched [6]. Therefore, the key to reduce 

redundant prefetches is recording earlier issued addresses and 

comparing the new predicted addresses with them to eliminate 

the redundant ones. For stride patterns, a counter can be stored 

in each IT entry to compute the last prefetched address, thus 

avoiding redundant prefetches. For other patterns, the new 

predicted addresses can be compared with earlier generated 

addresses in the prefetch queue to filter the redundant ones. To 

expand the filtering scope, additional structure can be used to 

record addresses evicted from the prefetch queue. 

IV. STRIDE/DELTA CORRELATION (S/DC) PREFETCHER 

In this section, we propose the design and implementation 

of S/DC. To improve the storage efficiency, S/DC uses a PPT 

which records two consecutive miss addresses in each entry to 

capture stride patterns, thus preventing a stride pattern from 
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Fig. 1. Percentage of GHB entries occupied by stride patterns  



  

occupying multiple GHB entries. Meanwhile, PPT reduces 

redundant prefetches when handling stride patterns by storing 

a counter in each entry to compute the last prefetched address. 

When handling other patterns, S/DC uses the prefetch queue 

and prefetch filter to store earlier generated prefetch addresses 

together in order to eliminate redundant prefetches. 

A. Architecture 

S/DC is designed to prefetch into the L2 cache, and divides 

miss addresses into local streams according to CZones. The 

structure of the proposed S/DC is shown in Fig. 2. Next, we 

introduce each of the key components in detail.  

PPT utilizes the fully or set associative structure and each 

entry contains six fields, as shown in Fig. 2. The Tag is used to 

identify different CZones. Two most recent miss indexes of 

the CZone are stored in the LastIdx1 and LastIdx0, which are 

enough to represent stride patterns. When handling other DC 

patterns, earlier miss addresses are shifted into GHB and the 

Ptr points to the head of the address list in GHB. The State of 

the entry may be INV, INIT, STRIDE and DELTA, which will 

be introduced in section IV.B. The Cnt is a 2-bit saturation 

counter which records the match times of the stride pattern.  

GHB is a FIFO-like circular buffer that holds recent miss 

addresses shifted from PPT in chronological order, as shown 

in Fig. 2. Since the tag bits of miss addresses can be found in 

PPT, GHB only needs to store the index bits in the MissIdx 

field. The Ptr field stores pointers which chain the GHB 

entries that belong to the same CZone into address lists. The 

LastIdx1 and LastIdx0 in the PPT entry and the address list in 

GHB comprise the miss address stream. The delta stream is 

computed in sequential manner when searching the address 

stream, and stored in the delta buffer in reverse order to 

generate the prefetch addresses when a DC pattern is captured. 

Prefetch queue is a 32-entry FIFO-like circular buffer that 

holds recent generated prefetch addresses and issues them to 

the L2 cache in sequential manner, as shown in Fig. 2. Each 

entry contains three fields. The Addr field stores the prefetch 

address. The V and Issued fields are the status of the address. 

Only valid and unissued addresses can be sent to the L2 cache. 

Issued addresses are only used to filter redundant prefetches. 

Prefetch filter is a bit-vector that is indexed with the output 

of the exclusive-or operation of the lower and higher order bits 

of the cache block address, as shown in Fig. 2. When an issued 

prefetch address is replaced from the prefetch queue, the filter 

is accessed with that address and the corresponding bit is set. 

Prefetch filter is used as a supplement to the prefetch queue to 

eliminate redundant prefetches.  

To keep prefetched blocks from modifying the original L2 

demand miss address stream, a prefetch bit is added to each L2 

cache block [3][11]. This bit is set when a prefetched block is 

written into the L2 cache. When an access hits a cache block 

with a set prefetch bit, the prefetch bit is cleared and the hit 

address is used to access the S/DC as if it was a L2 miss. 

B. Main Flow of Prefetching 

When a L2 miss occurs (or an access hits a prefetched but 

not yet accessed cache block), the tag bits of the miss address 

are used to search the PPT. Fig. 3 shows the state machine of 

the PPT entry. If the tag fails to match any of the valid tags 

currently held in the PPT, the miss is not considered to belong 

to any of the known CZones and an INV entry or the least 

recently used (LRU) entry is allocated in the PPT. The Tag 

and LastIdx1 fields are updated with the tag and index of the 

miss address, and then the state of the entry changes to INIT. 

Subsequent misses with the same tag are considered to belong 

to the same CZone and cause the update of the entry.  

In INIT state, when a subsequent miss occurs, the LastIdx1 

is shifted into the LastIdx0 and updated with the index of the 

new miss address. And then the Cnt is cleared. Afterwards, the 

entry enters STRIDE state. 

In STRIDE state, when a subsequent miss occurs, the last 

and new strides are computed by the LastIdx0, the LastIdx1 

and the new miss index. If the new stride is identical with the 

last stride, a stride pattern is captured and the Cnt is increased. 

If the Cnt is 1, it means the stride pattern is first captured and a 

number of prefetches determined by the prefetch degree are 

issued; otherwise a prefetch for the next unprefetched cache 

block is issued. The LastIdx1 is shifted into the LastIdx0 and 

updated with the new miss index. The entry stays at STRIDE 

state and no address is inserted into the GHB. If the new stride 

differs from the last stride, the access pattern is not a stride 

stride 
patterns

INITINV

STRIDEDELTA

first allocated

an
o

th
er

 

m
is

s

re
al

lo
ca

te
d

stride patterns

other patterns

rea
llo

ca
ted

other 
patterns

 
Fig. 3. The state machine of the PPT entry 
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pattern. If the Cnt is not 0, Cnt discarded addresses computed 

by the LastIdx0 and the last stride are inserted into the GHB to 

restore the original miss stream. And then the LastIdx0 is 

shifted into the GHB and the new miss index is shifted into the 

LastIdx1. The ptr is also updated. Afterwards, the entry enters 

DELTA state to detect other DC patterns. 

In DELTA state, when a subsequent miss occurs, the key 

delta pair is computed by the LastIdx0, the LastIdx1 and the 

new miss index. If the two deltas of the delta pair are the same, 

then a stride pattern is captured. The LastIdx1 and LastIdx0 

are updated, while the Cnt is set to 1. And then the entry enters 

STRIDE state to issue prefetches. Otherwise, the entry stays at 

DELTA state. The LastIdx0 is shifted into the GHB and the 

new miss index is shifted into the LastIdx1. S/DC uses the key 

delta pair to search the miss address stream in reverse order. If 

a match is found, prefetch addresses are computed by the 

current miss address and the deltas stored in the delta buffer. 

C. Redundant Prefetch Filtering Mechanisms 

S/DC presents three filtering mechanisms for different 

access patterns. For stride patterns, S/DC uses the Cnt in each 

PPT entry to compute the last prefetched address, and thus 

only issues prefetches for unprefetched cache blocks to avoid 

redundant prefetches. For other patterns, S/DC uses the new 

predicted address to search the prefetch queue and prefetch 

filter simultaneously before issuing a prefetch. If a match is 

found in either of the two structures, the prefetch is redundant 

and discarded. To limit false-positive matches caused by the 

exclusive-or operation, the prefetch filter is reset periodically 

(every 100 accesses to the prefetch filter in this paper). 

V. EXPERIMENTS 

In this section, we evaluate the performance and energy of 

S/DC using the SimpleScalar Alpha [15] simulator which is 

extended with the Wattch [16] power model. We use SPEC 

CPU2000 benchmarks [17] for evaluation. For each program, 

a representative sample of 100 million instructions selected by 

the SimPoint [18] is run with reference inputs. Table 1 

summarizes the configuration of the baseline processor model 

which is a typical 4-issue superscalar processor. We propose 

three versions (S/DC_conf0, S/DC_conf1 and S/DC_conf2) 

of S/DC to separately evaluate the effectiveness of the PPT, 

the prefetch queue and the prefetch filter. The CZone/stride 

prefetcher, namely stream prefetcher (SP) [4][8], and the 

CZone/DC (C/DC) [11] prefetcher are used for comparison. 

The parameters of the above prefetchers are presented in 

Table 2. The prefetch degree is set to 4 for all the prefetchers. 

A. Storage Efficiency and Performance 

S/DC uses the PPT to capture stride patterns in order to 

avoid recording more than two miss addresses for a stride 

pattern, thus reducing the storage without lowering the 

performance. To quantify the effectiveness, we choose five 

GHB options (32-, 64-, 128-, 256- and 512-entry) to evaluate 

the performance improvement of C/DC and S/DC with respect 

to the baseline processor, as shown in Fig. 4 and Fig. 5. The 

results indicate that both the performance of C/DC and S/DC 

are improved as the GHB size increases, and S/DC always 

outperforms C/DC with the same GHB size. As the GHB size 

decreases, the advantage of S/DC is growing, since S/DC can 

prevent stride patterns from occupying GHB entries. As for 

S/DC, performance is slightly lowered from 256- to 512-entry 

GHB. This is because 512-entry GHB holds more stale data 

than 256-entry GHB and stale data incurs useless prefetches 

and cache pollution in a few programs. 

In particular, S/DC(64-entry GHB) achieves comparable 

performance with C/DC(512-entry GHB), as shown in Fig. 4 

and Fig. 5. We divide the 32-bit address into 16-bit Tag, 

11-bit Index and 5-bit Offset and compare the storage of C/DC 

Table 1. The configuration of the baseline processor 

Feature Parameters 

Pipeline 8 stages, 4-issue/decode/commit, 1GHz 

Instruction Window 128-entry 

Load/Store Queue 64-entry 

L1 I/DCache 64KB, 4-way, 32-byte line, 2 cycles 

L2 Cache 2MB, 16-way, 32-byte line, 12 cycles 

Main Memory 200-cycle latency 

 
Table 2. The configuration of prefetchers 

Method Parameters 

SP 32-entry reference prediction table (RPT) 

C/DC 32-entry index table (IT), 512-entry GHB 

S/DC_conf0 32-entry PPT, 64-entry GHB, no other filtering 

mechanism 

S/DC_conf1 32-entry PPT, 64-entry GHB, filtering through 

the prefetch queue  

S/DC_conf2 32-entry PPT, 64-entry GHB, filtering through 

the prefetch queue and  prefetch filter 
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and S/DC in this situation, as shown in Table 3. The results 

indicate that S/DC achieves comparable performance with 

about 24% of the storage as compared to C/DC. 

We show the performance improvement of the different 

prefetchers over the baseline processor in Fig. 6 and Fig. 7. On 

average, the performance speedup of SP, C/DC(512-entry 

GHB), S/DC(64-entry GHB) and S/DC(256-entry GHB) is 

7.64%, 8.61%, 8.64% and 8.75% for INT programs, and 

21.54%, 42.21%, 42.23% and 42.70% for FP programs. The 

results demonstrate that C/DC and S/DC can further improve 

the performance in all programs except mcf by handling both 

regular and complicated access patterns as compared to SP. 

For mcf, 2MB L2 cache fits the working set and repetitive 

access patterns mostly hit the L2 cache. Therefore, the 

prefetch accuracy of C/DC and S/DC is low, which causes a 

great deal of cache pollution and lowers the performance. 

When we evaluate mcf with 512KB L2 cache, the results show 

that C/DC and S/DC can improve the performance of the 

baseline processor observably (about double the performance). 

Compared with C/DC(512-entry GHB), S/DC(64-entry GHB) 

evaluated in the following parts of this paper achieves 

comparable or better performance with only 24% of the 

storage in most of the programs, and S/DC(256-entry GHB) 

achieves comparable or better performance in all programs.  

B. Redundant Prefetches and Energy 

S/DC implements three filtering mechanisms through the 

PPT, prefetch queue and prefetch filter to eliminate redundant 

prefetches, thus reducing the bandwidth requirements and 

energy consumption of prefetching. Fig. 8 and Fig. 9 show the 

prefetch times of the five prefetchers, including new and 

redundant prefetches, normalized to the prefetch times of 

C/DC. On average, the percentage of redundant prefetches of 

SP, C/DC, S/DC_conf0, S/DC_conf1 and S/DC_conf2 is 

13.06%, 70.35%, 34.68%, 17.23% and 17.07% for INT 

programs, and 9.19%, 71.69%, 41.40%, 10.34% and 9.26% 

for FP programs. The results indicate that both the C/DC and 

S/DC issue more prefetches and redundant prefetches than SP 

to achieve higher performance. Compared with C/DC, S/DC 

significantly reduces the redundant prefetches through the 

three filtering mechanisms while issuing comparable new 

prefetches. In particular, S/DC_conf0 only avoids generating 

redundant prefetches when handling stride patterns, and 

S/DC_conf1 can further eliminate most of the redundant 

prefetches generated when handling other DC patterns. In 

S/DC_conf2, the prefetch filter is added as a supplement to the 

prefetch queue to further discard redundant prefetches. The 

results demonstrate that the prefetch filter is less effective than 

the prefetch queue, because prefetches generally overlap with 

recent rather than earlier issued prefetches. On the other hand, 

false-positive matches of the prefetch filter may lower the 

performance, so it is an optional mechanism in S/DC. 

When a prefetch is issued by the prefetcher, the L2 cache is 

Table 3. Storage comparison of C/DC and S/DC 

Prefetcher Organization Capacity 

C/DC 

(512) 

IT (16-bit Tag + 9-bit Ptr)×32     
~1.35KB 

GHB (11-bit MissIdx + 9-bit Ptr)×512   

S/DC 

(64) 

PPT (16-bit Tag + 11-bit LastIdx1 +  

11-bit LastIdx0 + 2-bit State +   

2-bit Cnt + 6-bit Ptr)×32     ~0.32KB 

GHB (11-bit MissIdx + 6-bit Ptr)×64     
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Fig. 8. Redundant prefetches of the five prefetchers (from left to right: SP, 

C/DC, S/DC_conf0, S/DC_conf1 and S/DC_conf2, INT programs) 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

N
o

r
m

a
li

z
e
d

 P
r
e
fe

tc
h

 T
im

e
s 

(F
P

)

New Prefetches Redundant Prefetches

 
Fig. 9. Redundant prefetches of the five prefetchers (from left to right: SP, 
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accessed first to check if the prefetch address is already in the 

cache. From Fig. 8 and Fig. 9, we can see that S/DC reduces 

the overall number of prefetches by discarding a large number 

of redundant prefetches, indicating that the number of L2 

cache accesses issued by the prefetcher is also decreased, so 

S/DC can reduce the energy of the L2 cache. To quantify the 

effectiveness, we evaluate the L2 cache energy (including 

dynamic and leakage energy) of the five prefetchers, 

normalized to the L2 cache energy of the baseline processor, 

as shown in Fig. 10 and Fig. 11. On average, SP, C/DC, 

S/DC_conf0, S/DC_conf1 and S/DC_conf2 reduces the L2 

cache energy by 5.89%, 1.99%, 3.97%, 5.57% and 5.55% for 

INT programs, and 6.48%, -7.40%, 6.23%, 12.57% and 

12.64% for FP programs. Compared with C/DC, S/DC_conf2 

reduces the L2 cache energy by an average of 11.46% for all 

programs. The results demonstrate that S/DC can significantly 

reduce the bandwidth requirements and energy consumption 

of prefetching by filtering redundant prefetches. 

VI. CONCLUSION 

In this paper, we propose a storage and energy efficient data 

prefetcher called S/DC. To improve the storage efficiency, 

S/DC presents the PPT which stores two consecutive miss 

addresses in each entry to represent the stride pattern, and thus 

avoids recording more than two miss addresses for a stride 

pattern. Meanwhile, PPT stores a counter in each entry to 

compute the last prefetched address for stride patterns to 

avoid redundant prefetches. To reduce redundant prefetches 

when prefetching other patterns, S/DC compares the new 

predicted address with earlier generated addresses in the 

prefetch queue and filters the redundant ones. Furthermore, to 

expand the filtering scope, S/DC uses a bit-vector prefetch 

filter which approximately records addresses evicted from the 

prefetch queue to further reduce redundant prefetches.  

Our experimental results demonstrate that S/DC achieves 

comparable performance with only 24% of the storage as 

compared to the C/DC prefetcher. Furthermore, compared 

with C/DC, S/DC can reduce the percentage of redundant 

prefetches and the number of L2 cache accesses significantly, 

thus reducing the bandwidth requirements for accessing the 

L2 cache and decreasing the L2 cache energy. 
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Fig. 10. L2 cache energy of the five prefetchers (INT programs)  
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Fig. 11. L2 cache energy of the five prefetchers (FP programs)  


