
Energy-Efficient Branch Prediction with
Compiler-Guided History Stack

Mingxing Tan, Xianhua Liu, Zichao Xie, Dong Tong, Xu Cheng
Microprocessor Research and Development Center, Peking University, Beijing, China

{tanmingxing, liuxianhua, xiezichao, tongdong, chengxu}@mprc.pku.edu.cn

Abstract—Branch prediction is critical in exploring instruction
level parallelism for modern processors. Previous aggressive
branch predictors generally require significant amount of hard-
ware storage and complexity to pursue high prediction accuracy.
This paper proposes the Compiler-guided History Stack (CHS),
an energy-efficient compiler-microarchitecture cooperative tech-
nique for branch prediction. The key idea is to track very-long-
distance branch correlation using a low-cost compiler-guided
history stack. It relies on the compiler to identify branch corre-
lation based on two program substructures: loop and procedure,
and feed the information to the predictor by inserting guiding
instructions. At runtime, the processor dynamically saves and
restores the global history using a low-cost history stack structure
according to the compiler-guided information. The modification
on the global history enables the predictor to track very-long-
distance branch correlation and thus improves the prediction
accuracy. We show that CHS can be combined with most of
existing branch predictors and it is especially effective with
small and simple predictors. Our evaluations show that the
CHS technique can reduce the average branch mispredictions by
28.7% over gshare predictor, resulting in average performance
improvement of 10.4%. Furthermore, it can also improve those
aggressive perceptron, OGEHL and TAGE predictors.

I. INTRODUCTION

Energy efficiency is the new fundamental limiter of modern
processor performance [3], so modern chip multiprocessor
architecture tends to use several less aggressive cores to
achieve high throughput and energy efficiency. Recent research
[11] shows that the energy consumed in the instruction fetch
path is becoming a large overhead. Accurate branch prediction
can improve both the performance and energy efficiency by
reducing pipeline flushes and invalid speculative operations in
the instruction fetch path. To purse accurate branch prediction,
a number of aggressive branch predictors [13], [18], [19] are
proposed. However, the aggressive branch predictor itself may
consume a large number of energy because of its large storage
and complex control logics. For example, recently proposed
perceptron predictors [13], [12] and PPM-based predictors
[5], [19], [20] generally require 64K∼256Kbits storage and
complex training algorithm. These aggressive predictors can
achieve relatively high prediction accuracy, but they signifi-
cantly increase the hardware complexity [16] and the energy
consumption [2]. As a result, these aggressive predictors can
be hardly adopted in modern energy-efficient processors.

This work was supported in part by the National High Technology Research
and Development Program of China under Grant No. 2009ZX01029-001-002.

Recently, some researchers propose to improve branch
prediction accuracy based on simple and small predictors
by optimizing the global branch history. Branch history is
successfully used in branch prediction because branches often
correlate with previously executed branches [7], [16]. Gen-
erally, longer branch history enables the predictor to view a
larger window of previously executed branches and learn based
on the correlation with those branches. However, previous
techniques such as skewed history [15] and artificial global
history [6], [16] generally cannot track very-long-distance
branch correlation. This is because tracking very-long-distance
branch correlation requires the high-level program substructure
information, which can be hardly captured at runtime.

In this paper, we propose an energy-efficient compiler-
microarchitecture cooperative technique, called Compiler-
guided History Stack (CHS), which improves branch predic-
tion accuracy by enabling the predictor to tracking very-long-
distance branch correlation using a low-cost history stack. It
relies on the compiler to identify branch correlation based on
two high-level program substructures: loop and procedure. In
these program substructures, two correlated branches can be
very-long-distance because of the large number of unrelated
branches in the unrelated code regions, so the predictor can
hardly track such correlation at runtime. However, we show
that it is straightforward for the compiler to identify such very-
long-distance branch correlation based on high-level program
substructure information. With the help of the compiler-guided
information, the processor dynamically saves and restores the
global branch history using a low-cost history stack structure,
and then uses the updated branch history to track very-long-
distance branch correlation. We show that the CHS technique
is low-cost, requiring only 512-bit storage and a simple control
logic, so it can be easily implemented in modern processors.

Our CHS technique can be combined with most of existing
branch predictors including gshare predictor [14], perceptron
predictor [13], OGEHL predictor [18] and TAGE predictor
[19], [20]. However, it is especially effective with smaller,
simpler predictors, allowing those predictors to be competitive
with more expensive and complex variants. When working
with the simple and highly effective gshare predictor, our
technique significantly reduces the branch Misprediction Per
Kilo Instructions (MPKI) by 28.7% and improves the average
performance by 10.4%. Even when working with the state-
of-the-art aggressive TAGE predictor, our technique can still
further reduce MPKI by 8.4%.978-3-9810801-8-6/DATE12/ c⃝2012 EDAA

move_s search_root (...) {

if ((root_score > alpha) && !time_exi)
{

post_fail_thinking(root_score, &moves[i]);
...

}
if (root_score > alpha)

{
if (root_score < beta)
{

Pv[ply-1][ply-1] = moves[i];

for (j = ply; j < pv_length[ply]; j++)
pv[ply-1][j] = pv[ply][j];

pv_length[ply-1] = pv_length[ply];
}

}
if (root_score >= beta)

void push_slidE (int target) {

do {
if (board[target] == npiece)
{

add_move(target, 0);

}
} while (board[target] != frame);

static int bishop_mobility(int square){

for (diridx = 0; diridx < 4; diridx++)
{

for (l = square+dir[diridx];
board[l] == npiece;
l +=dir[diridx])

m++;

}

B1

B4

B3

B2

save history

restore history

save history

restore history

save history

restore history

save history

restore history

Fig. 1. Code examples showing very-long-distance branch correlation due to loops and procedure calls. Examples are taken from 458.sjeng benchmark.

II. MOTIVATION

Longer branch history can improve the prediction accuracy
by tracking more distant branch correlation, but it usually
requires more hardware cost. Furthermore, the large number
of unrelated branches in loops and procedures can make the
branch correlation be very-long-distance. Figure 1 shows some
code examples taken from 458.sjeng benchmark in SPEC
CPU 2006 suite [22]. The two branches B1 and B2 in the
left example have strong correlation with each other, i.e.,
if B1 is resolved as ‘taken’ then B2 must be ‘taken’ too.
Unfortunately, the procedure ‘post fail thinking’ contains a lot
of unrelated branches, resulting in that branch predictors can
hardly track the very-long-distance correlation between B1 and
B2. Similarly, branches B3 and B4 also have strong correlation
with each other, but the large number of unrelated branches
in the for-loop statement causes a long distance between the
two correlated branches. The two examples on the right also
show such very-long-distance branch correlation due to the
large number of unrelated branches in loops or procedures.

Branch

Predictor
taken?

Compiler-guided

History Stack

save
history

Global History

Branch PC

restore
history

Branch
instructions

Guiding
instructions

Fig. 2. Overview structure of our CHS-based predictor.

The very-long-distance branch correlation can be hardly
tracked by traditional branch predictors even using large
storage. However, it is straightforward for the compiler to
identify such branch correlation. Based on this observation,
we propose the CHS technique as shown in Figure 2. It
uses a low-cost compiler-guided history stack to track very-
long-distance branch correlation by dynamically saving and
restoring the global history. The history stack is operated using
guiding instructions inserted by the compiler. For example, to
track the correlation between B1 and B2 in Figure 1, two
guiding instructions are inserted around the procedure call of
‘post fail thinking’. When B2 is fetched, the history of B1

has been restored into the global history, so the predictor can
use the updated global history to aid branch prediction.

III. RELATED WORK

Branch prediction is well studied in a great number of
works [24], [14], [13], [18], [19]. Yeh and Patt [24] firstly
propose the Global History Register (GHR) to track global
branch correlation in their two-level predictor. The benefits of
the GHR are further demonstrated by gselect/gshare predictors
[14]. Traditional counter-based predictors usually track short-
distance correlation using 10∼15 bits GHR. Generally, longer
branch history enables branch correlation with more distant
branches, so recent aggressive predictors tend to adopt more
complicated hardware to track longer history. Michaud et al.
[15] propose the gskew predictor, which uses more than 20
bits of branch history to index multiple prediction tables.
Jimenez et al. [13] propose the perceptron predictor, which
uses 34 bits of global history to train a simple neural network.
Perceptron predictor can be extended to utilize more than 50
bits of global history with larger storage [12]. Seznec [18]
proposes the OGEHL predictor to make use of geometric
history lengths ranging from 100 to 200. Seznec [19], [20]
further proposes the TAGE predictor, which can use more
than 600 bits of branch history. Although these aggressive
predictors can achieve high prediction accuracy, they also
significantly increase hardware storage and complexity, thus
deterring their adoption in modern processors [16].

Besides more complicated predictors, some researchers try
to improve the branch correlation by applying some optimiza-
tions to the global history. Yeh and Patt [24] point out that
branches usually have strong correlation with the global branch
history. Evers et al. [7] further point out that even though many
branches are highly correlated with a small number of prior
branches, the predictability may hardly be captured. Gao and
Sair [8] reuse existing return address stack to exploit intra-
procedure branch correlation. Porter and Tullsen [16] observe
that not all regions of control flow are correlated with recently
executed branches. Based on this observation, they propose
various artificial modifications on the global history for single-
thread [16] and multithread execution [6]. Recently, Sazeides
et al. [17] propose the affectors and affectees, which rely
on the compiler to eliminate unrelated branch history. Our
technique differs from these works in that it mainly enables the
predictor to track very-long-distance branch correlation rather
than simply eliminates unrelated branch history.

IV. COMPILER-GUIDED HISTORY STACK (CHS)

A. Overview of CHS Technique

CHS relies on the cooperation between the compiler and the
microarchitecture. First of all, the compiler identifies the very-
long-distance branch correlation based high-level program
substructures and explicitly inserts guiding instructions to in-
dicate such correlation. At runtime, when a guiding instruction
is executed, the processor uses a low-cost history stack to
dynamically save and restore the global history according to
the compiler-guided information. Subsequently when a branch
instruction is fetched, the predictor uses the modified global
branch history to aid branch prediction.

B. Compiler Support

The compiler identifies very-long-distance correlation based
on two program substructures: loops and procedure calls.
1) Loops

Loops are detected using the traditional Dominator-Join
graph based algorithm [23]. Figure 3 (a) and (b) show an
example for a loop control flow graph (CFG). Given such
a loop, the CHS compiler collects all preceding (Pred-) and
succeeding (Succ-) branches of the loop. For each succeeding
branch, the compiler finds its affectors and affectees using
the algorithm proposed in [17]. If most of the affectors and
affectees are preceding branches, meaning that succeeding
branches have strong correlation with preceding branches, then
the compiler inserts guiding instructions around the loop.

As shown in Figure 3(b), a loop may contain multiple
entering edges and some of edges come from blocks inner the
loop. In such a case, a preheader block is created immediately
before the header block and all entering edges coming from
outer loop are redirected to the preheader block. Similarly, a
tail block is created after the loop exit point. Both preheader
and tail block will be executed exactly once no matter how
many times the loop iterates. At last, the compiler inserts a
guide save history instruction into the preheader block and a
guide restore history instruction into the tail block.
2) Procedure Calls

Procedure calls can be categorized as direct calls or indirect
calls, which can be easily identified by the compiler. Figure 3
(c) and (d) show an example of procedure call. The compiler
performs data dependence analysis based on affectors and
affectees [17]. If succeeding branches have strong correlation
with preceding branches, then the compiler inserts two guiding
instructions: a guide save history before the procedure call
and a guide restore history after the procedure call.
3) Guiding Instructions

The compiler hints the branch predictor using two guiding
instructions: guide save history and guide restore history.
These guiding instructions can be implemented by reusing
reserved bits in ISA instructions. In our simulation, guiding
instructions are implemented by operating a reserved system
register. Assuming sr is a reserved system register, setting sr
to 0 represents executing the guide save history, while setting
sr to 1 represents the guide restore history.

BB1

BB2 BB3

BB4

guide_save_history

guide_restore history

(a) loop CFG (b) transformed loop CFG

Pred-branches

Succ-branches

BB1

BB2 BB3

BB4

Pred-branches

Succ-branches

BB1

call proc

BB1

guide_save_history

call proc

guide_retsore_history

(c) procedure call (d) transformed
procedure call CFG

Succ-branches
Succ-branches

Pred-branches
Pred-branchesheader

header

preheader

tail

Fig. 3. Transformation of loops and procedure calls.

Ideally, the guide restore history should be executed before
the corresponding branch instructions are fetched, but it may
be violated because of the pipeline latency. To execute the
guide restore history earlier, we adopt two optimizations.
First, guiding instructions are scheduled to increase the dy-
namic distance to their corresponding branch instructions.
Second, since guiding instructions are independent with other
instructions and their executions have no effect on program
correctness, the processor can actually execute their saving
and restoring operations at the decode stage.

C. CHS-Based Branch Predictor

Generally, the CHS technique can be combined with most
of existing branch predictors. In this section, we introduce the
gshare-CHS predictor, which combines CHS with the highly
effective gshare predictor [14], [1], [10].
1) Branch Predictor Structure

Figure 4 shows the hardware structure of gshare-CHS
predictor. The predictor mainly consists of four components:

• BTB (Branch Target Buffer) contains all target addresses
of conditional and indirect branches.

• PHT (Pattern History Table) contains a serial of saturated
2-bit counters, which is used to predict branch direction.

• GHR (Global History Register) contains the global
branch history, which is used to generate PHT index.

• CHS (Compiler-guided History Stack) contains the
compiler-identified very-long-distance branch correlation.

Compared with the original gshare predictor, the gshare-
CHS predictor adds an extra CHS component. The CHS
component is a low-cost circular stack buffer, which is op-
erated using guiding instructions. If the guiding instruction
indicates to save branch history (guide save history), then the
GHR is pushed into CHS; otherwise it indicates to restore
branch history (guide restore history) and the top entry of
CHS is popped out for GHR modification. Since the CHS is
implemented as a circular buffer, a simple TOS (Top of Stack)
pointer is enough to maintain the push and pop semantics.

Besides the CHS structure, it also requires a simple control
logic consisting of an adder gate to operate the CHS structure
and a shifter gate to update the GHR. Note that our technique
does not affect the prediction and update flow, so it does not
add extra latency to the instruction fetch path.

baddr

baddr + 4

1

0

+
taken?

011101000100

predicted

target

guide_save_history

guide_retore_history

...

counter
counter

counter

PHT

...

history

history

CHS
history

GHR

...

target
target
target

target

BTB

Fig. 4. Hardware structure of gshare-CHS predictor.

2) Operation on CHS Structure
The CHS structure is operated using guiding instructions, as

shown in Figure 5. The code example contains three branches:
B1, B2 and B3. Although B3 has strong correlation with B1

and B2, the correlation is disrupted by the for-loop statement.
Since the for-loop iterates multiple times, the dynamic distance
between B2 and B3 can be very long, so traditional predictors
can hardly track such correlation. Figure 5(b) shows how our
technique tracks such very-long-distance branch correlation:

(1) Before entering the for-loop, a guide save history in-
struction is executed, which pushes GHR into CHS. Since the
current GHR contains the resolved outcome of B1 and B2,
the branch history bits of B1 and B2 are saved into CHS.

(2) On the loop exit point, the loop has iterated many times.
Since GHR is filled by those unrelated loop history, the branch
history bits of B1 and B2 are discarded from GHR.

(3) When the guide restore history instruction is executed,
the processor pops out the CHS top entry and updates GHR
based on it. In other words, the discarded branch history bits
of B1 and B2 are restored into GHR. Note that setting the
whole GHR to CHS top entry may hurt prediction accuracy if
subsequent branches depend on some of the branches in the
for-loop statement, so the processor actually updates the GHR
by concatenating the original GHR with the CHS top entry.

(4) When B3 is fetched, the processor looks up PHT at the
index computed by hashing GHR and branch address. Since
branch history of B1 and B2 has been restored into GHR, the
predictor can accurately predict the outcome of B3 based on
the very-long-distance branch correlation of B1 and B2.

The GHR may be not updated by guiding instructions at the
time of branch prediction because of the pipeline latency. In
such cases, our technique performs the same as the original
predictor. Note that guiding instructions are actually executed
at the decode stage, so such cases seldom happen. However,
the wrong-path guiding instructions can push invalid history
into CHS at the decode stage. To achieve better accuracy, we
can repair CHS by referring to the RAS repair mechanism
[21], but it will complicate the hardware. Since such cases are
rare (< 2%), we don’t repair CHS in our simulation.
3) Hardware Cost and Complexity

The hardware cost of our technique mainly comes from
the CHS structure and the control logic. In our simulation,

if (a > 0) //B1

if (b < 0) //B2

guide_save_history

for (i=0; i<N; i++)

guide_restore_history

if (a > b) //B3

save history

restore history

(a) code example

1

2

3

4

B1 B2 B3
loop history bits

1 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 1

B1 B2

010001111011

110001010110

100010001111

011110110011

GHR

Compiler-guided

History Stack (CHS)

(b) save and restore the global history based on CHS

branch history

1 1 1 0 1 1 0 1 1 0 1 1 0 1 0

GHRbranch history

?

B1 B2 B3

1 0 1 0 0 0 1 1 1 1 0 1 1 1 0 1 0

GHRbranch history

?

top

guide_save_history

guide_restore_history

1

2

3

push

pop

Fig. 5. An example to illustrate the operation on CHS.

the CHS is configured as a 512-bit stack buffer, featuring
32 entries and each entry contains 16 bits. The control logic
mainly consists of an adder and a shifter. In conclusion, we
show that the CHS technique requires only small storage and a
simple control logic, so it is very applicable to modern energy-
efficient processors.

V. EXPERIMENTAL METHODOLOGY

We extend the SimpleScalar/Alpha 3.0 tool set [4] to evalu-
ate the CHS technique. TABLE I shows the parameters of the
baseline processor. The baseline processor uses a 32K-entry
gshare predictor and 4K-entry BTB for branch prediction.
Perceptron [13], OGEHL [18] and TAGE [19], [20] predictors
are also implemented in the baseline processor. All branch
mispredictions are resolved in the commit stage.

The CHS technique is evaluated using 4 SPEC CPU2000
INT benchmarks and 5 SPEC CPU2006 INT benchmarks [22].
We choose those benchmarks in SPEC INT 2000 and 2006
suites that gain at least 8% performance improvement with
a perfect branch predictor. We use the SimPoint to find a
representative simulation region for each benchmark using the
reference input data set. Each benchmark is run for 100M
instructions. TABLE II shows the characteristics of simulated
SimPoint for each benchmark.

We extend GCC-4.2 [9] to provide the compiler support.
All benchmarks are compiled with the -O2 optimization level.

TABLE I: BASELINE PROCESSOR CONFIGURATION

Front End 4 instruction per cycle; fetch ends at the first
predicted taken branch or indirect jump instruction

Execution 4-wide decode/issue/execute/commit;
Core 512-entry ROB; 128-entry LSQ
Branch 32K-entry gshare predictor; 4K-entry, 4-way BTB with
Predictor LRU replacement; 32-entry return address stack;

15 cycle minimal branch misprediction penalty
On-chip 16KB, 4-way, 1-cycle L1 D-cache and L1 I-cache;
Caches 1MB, 8-way, 10-cycle unified L2 cache;

All caches have 64B block size with LRU replacement
Memory 150-cycle latency (first chunk), 15-cycle (rest)

TABLE II: CHARACTERISTICS OF EVALUATED BENCHMARKS

gzip mcf parser twolf gcc06 gobmk hmmer sjeng astar AVG
Static number of branches 190 95 632 208 7391 3976 179 1188 178 1560
Dynamic number of branches(K) 9553 23000 14262 9157 16539 12857 12483 15180 11276 13812
Branch MPKI 10.0 13.9 6.1 8.1 8.1 17.6 11.6 15.1 21.6 12.4
Branch prediction accuracy (%) 88.9 93.4 95.2 90.5 94.5 86.1 90.6 89.5 72.0 89.0
base IPC 1.41 1.15 1.53 1.33 1.29 0.97 1.34 1.03 0.69 1.169

TABLE III: STATISTICS OF EXECUTED GUIDING INSTRUCTIONS (G INSTRUCTION)

gzip mcf parser twolf gcc06 gobmk hmmer sjeng astar AVG
Number of static g instruction 72 26 166 35 210 87 19 190 25 92
Number of dynamic g instruction 850K 1512K 2874K 1003K 2493K 764K 84K 1384K 140K 1233K

VI. RESULTS

A. Performance of CHS-based Branch Prediction

In general, our CHS technique can benefit most when
working with small and simple branch predictors. In this
section, we firstly evaluate the performance and characteristics
of the CHS technique by combing it with gshare predictor.
We choose gshare predictor as the baseline predictor because
it is a simple, small and highly effective predictor, and it has
been widely used in commercial processors [1], [10]. Further
evaluations on aggressive predictors will be discussed later.

gz
ip mc

f

pa
rse
r

tw
olf

gc
c0
6

go
bm
k

hm
me
r

sje
ng

as
tar

AV
G

0

2

4

6

8

10

12

14

16

18

20

22

B
ra

nc
h

M
PK

I

 gshare
 gshare-CHS

gz
ip mc

f

pa
rse
r

tw
olf

gc
c0
6

go
bm
k

hm
me
r

sje
ng

as
tar

AV
G

0
2
4
6
8

10
12
14
16
18
20
22
24
26

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
ts

Fig. 6. Performance of gshare-CHS branch prediction: Branch MPKI (top)
and Performance improvement (bottom).

Figure 6 shows the performance of gshare-CHS predictor.
On average, the CHS technique significantly reduces branch
MPKI by 28.7% over the baseline gshare predictor, resulting
in average performance improvement of 10.4%.

The CHS technique improves the gshare predictor for two
reasons. First, it enables the predictor to track very-long-
distance branch correlation. The original gshare predictor uses
15-bit GHR as input, so branch correlation whose distance is
longer than 15 will be discarded. On the contrary, the CHS
technique tracks those very-long-distance branch correlation
by dynamically saving and restoring branch history using
the compiler-guided history stack. Second, the technique also
reduces aliasing by eliminating history noise caused by those
unrelated branches. Since aliasing is a significant source

of mispredictions in gshare predictor [15], it also improves
branch prediction by reducing aliasing.

B. Impact of Guiding Instructions
TABLE III shows the statistics of executed guiding in-

structions. On average, each program runs 92 static guiding
instructions and 1233K dynamic guiding instructions in the
simulated region. Since we run 100M instructions for each
program, the percentage of dynamic guiding instructions is
about 1.2%. Note that results in Figure 6 have counted the ex-
tra overhead for executed guiding instructions. The outstanding
performance has shown guiding instructions are very effective.

C. CHS on Different Predictor Sizes
Figure 7 shows the performance of the CHS technique with

different predictor sizes. Results show that the benefits of
the CHS technique are most substantial when working with
small predictors. This is because small predictors can only
track short history, leaving a large number of distant branch
correlation to be tracked by the CHS technique. However, even
when working with 128K-entry PHT structure, it still reduces
MPKI by 24% and improves performance by 9.4%.

2K 4K 8K 16K 32K 64K 128K
0

5

10

15

20

25

30

35

40

Im
pr
ov

em
en

ts

 MPKI reduction
 IPC improvement

Fig. 7. CHS performance on different predictor sizes.

D. CHS on Different CHS Sizes
TABLE IV shows the performance of the CHS technique on

different CHS sizes. Generally, it performs better with large
CHS structure because large CHS structure can buffer more
very-long-distance branch correlation and have less aliasing.
As the number of CHS entries increases from 16 to 128, the
average MPKI reduction increases from 26% to 32%, resulting
in performance improvement from 9.6% and 11.4%.

TABLE IV: CHS PERFORMANCE ON DIFFERENT CHS SIZES

CHS entries 16 32 64 128
MPKI reduction 25.9% 28.7% 30.3% 31.8%

Performance improvement 9.6% 10.4% 11.0% 11.4%

gz
ip mc

f

pa
rse
r

tw
olf

gc
c0
6

go
bm
k

hm
me
r

sje
ng

as
tar

AV
G

0
2
4
6
8

10
12
14
16
18
20

B
ra

nc
h

M
PK

I
 perceptron
 perceptron-CHS

gz
ip mc

f

pa
rse
r

tw
olf

gc
c0
6

go
bm
k

hm
me
r

sje
ng

as
tar

AV
G

0
2
4
6
8

10
12
14
16
18
20

B
ra

nc
h

M
PK

I

 OGEHL
 OGEHL-CHS

gz
ip mc

f

pa
rse
r

tw
olf

gc
c0
6

go
bm
k

hm
me
r

sje
ng

as
tar

AV
G

0
2
4
6
8

10
12
14
16
18
20

B
ra

nc
h

M
PK

I

 TAGE
 TAGE-CHS

Fig. 8. CHS performance on perceptron(left), OGEHL(middle) and TAGE (right) predictors.

TABLE V: CONFIG OF PERCEPTRON,OGEAL AND TAGE PREDICTOR.

perceptron 64KB, featuring a 1024-entry perceptrons table.
Each entry contains 64 weights wj , using 64-bit GHR as input.

OGEHL 64Kbits, including 8 predictor tables. Tables are indexed
with hash functions of 200-bit GHR, path history and PC.

TAGE 64Kbits, including 7 tagged tables and 1 bimodal table. Tables
are indexed with hashing of 200-bit GHR, path history and PC.

E. CHS on Aggressive Branch Predictors

We also evaluate the CHS technique on three aggressive
branch predictors: perceptron predictor [13], OGEHL predictor
[18] and TAGE predictor [19], [20]. TABLE V shows the
configuration for these branch predictors. Note that the CHS
technique only modifies the global branch history in these
predictors, leaving path history and branch PC unaffected.

Figure 8 shows the branch MPKI reduction of the CHS
technique on the three aggressive predictors. On average, the
CHS technique can further reduce the average branch MPKI by
18% over perceptron predictor, 11% over OGEHL predictor,
and 8.4% over TAGE predictor. Results show that the CHS
technique can also improve these aggressive branch predictors
by tracking very-long-distance branch correlation.

TABLE VI shows the comparison of CHS on gshare, per-
ceptron, OGEHL, and TAGE predictors. The CHS technique
can improve all of these predictors, but it is more effective
when working with the simple gshare predictor. Especially, our
low-cost CHS technique can significantly reduce the gshare
MPKI from 12.4 to 9.67, which makes it very competitive with
those aggressive perceptron, OGEHL and TAGE predictors.

VII. CONCLUSION

In this paper, we proposed and evaluated the CHS tech-
nique, an energy-efficient compiler-microarchitecture coop-
erative technique for branch prediction. It improves branch
prediction accuracy by tracking very-long-distance branch
correlation using a low-cost compiler-guided history stack.
Unlike previous techniques, the CHS technique requires only
small hardware storage and a simple control logic, so it is very
applicable for modern energy-efficient processors. We show
that the CHS technique can be combined with most of existing
branch predictors and it is especially effective with smaller,
simpler predictors, allowing those predictors to be competitive
with more expensive and complex variants. Evaluations show
that it can reduce the average MPKI by 28.7% and improve
performance by 10.4% over the baseline gshare predictor.
Furthermore, it can also improve those aggressive perceptron,
OGEHL and TAGE predictors.

TABLE VI: COMPARISON OF CHS ON DIFFERENT BRANCH PREDICTORS.

MPKI Performance
Original CHS Reduction Original CHS Improvement

gshare 12.4 9.67 29% 1.169 1.292 10.4%
perceptron 10.1 8.54 18% 1.286 1.371 6.7%
OGEHL 9.12 8.21 11% 1.340 1.388 3.5%
TAGE 8.69 8.01 8.4% 1.355 1.398 3.2%

REFERENCES

[1] ARM. Cortex-a9 technical reference manual, version r3p0, 2008.
[2] A. Baniasadi and A. Moshovos. Sepas: A highly accurate energy-

efficient branch predictor. In ISLPED’04, pages 38–43, 2004.
[3] S. Borkar and A. A. Chien. The future of microprocessors. Communi-

cations of the ACM, vol.54(5):67–77, 2011.
[4] D. Burger and T. M. Austin. The simplescalar tool set, version 2.0.

SIGARCH Comput. Archit. News, vol.25(3):13–25, 1997.
[5] I.-C. K. Chen, J. T. Coffey, and T. N. Mudge. Analysis of branch

prediction via data compression. In ASPLOS-VII, pages 272–281, 1996.
[6] B. Choi, L. Porter, and D. M. Tullsen. Accurate branch prediction for

short threads. In ASPLOS-XIII, pages 125–134, 2008.
[7] M. Evers, S. J. Patel, R. S. Chappell, and Y. N. Patt. An analysis of

correlation and predictability: what makes two-level branch predictors
work. In ISCA-25, pages 52–61, 1998.

[8] F. Gao and S. Sair. Exploiting intra-function correlation with the global
history stack. In SAMOS-5, pages 213–223, 2005.

[9] GCC. The gnu compiler collection. http://gcc.gnu.org/.
[10] S. Gochman et al. The intel pentium m processor: Microarchitecture

and performance. Intel Technology Journal, vol.7(2), 2003.
[11] R. Hameed et al. Understanding sources of inefficiency in general-

purpose chips. In ISCA-37, pages 37–47, 2010.
[12] D. A. Jiménez. Piecewise linear branch prediction. In ISCA-32, pages

382–393, 2005.
[13] D. A. Jiménez and C. Lin. Dynamic branch prediction with perceptrons.

In HPCA-7, pages 197–201, 2001.
[14] S. McFarling. Combining branch predictors. Technical Note TN-36,

Digital. Equipment Corporation Western Research Laboratories, 1993.
[15] P. Michaud, A. Seznec, and R. Uhlig. Trading conflict and capacity

aliasing in conditional branch predictors. In ISCA-24, 1997.
[16] L. Porter and D. M. Tullsen. Creating artificial global history to improve

branch prediction accuracy. In ICS-23, pages 266–275, 2009.
[17] Y. Sazeide, A. Moustakas, K. Constantinides, and M. Kleanthous. The

significance of affectors and affectees correlations for branch prediction.
In HiPEAC-3, pages 243–257, 2008.

[18] A. Seznec. Analysis of the o-geometric history length branch predictor.
In ISCA-32, pages 394–405, 2005.

[19] A. Seznec. The l-tage branch predictor. Journal of Instruction Level
Parallelism, vol.9, 2007.

[20] A. Seznec. A new case for the tage branch predictor. In MICRO-44,
2011.

[21] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark. Improving
prediction for procedure returns with return-address-stack repair mech-
anisms. In MICRO-31, pages 259–271, 1998.

[22] SPEC. Standard performance evaluation corporation. http://www.spec.org.
[23] V. C. Sreedhar, G. R. Gao, and Y.-F. Lee. Identifying loops using dj

graphs. ACM Transactions on Programming Languages and Systems,
vol.18(6):649–658, 1996.

[24] T.-Y. Yeh and Y. N. Patt. Two-level adaptive training branch prediction.
In MICRO-24, pages 51–61, 1991.

