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Abstract—Motion artifacts interfere with electrocardiogram
(ECG) detection and information processing. In this paper, we
present an independent component analysis based technique to
mitigate these signal artifacts. We propose a new statistical
measure to enable an automatic identification and removal of
independent components, which correspond to the sources of
noise. For the first time, we also present a signal-dependent
closed-loop system for the quality assessment of the denoised
ECG. In one experiment, noisy data is obtained by the addition
of calibrated amounts of noise from the MIT-BIH NST database
to the AHA ECG database. Arrhythmia classification based on
a state-of-the-art algorithm with the direct use of noisy data
thus obtained shows sensitivity and positive predictivity values
of 87.7% and 90.0%, respectively, at an input signal SNR of -9
dB. Detection with the use of ECG data denoised by the proposed
approach exhibits significant improvement in the performance of
the classifier with the corresponding results being 96.5% and
99.1%, respectively. In a related lab trial, we demonstrate a
reduction in RMS error of instantaneous heart rate estimates
from 47.2% to 7.0% with the use of 56 minutes of denoised ECG
from four physically active subjects. To validate our experiments,
we develop a closed-loop, ambulatory ECG monitoring platform,
which consumes 2.17 mW of power and delivers a data rate of
33 kbps over a dedicated UWB link.

I. Introduction

Recent advances in mobile computing and energy-efficient

communication have enabled algorithms capable of efficient

and accurate processing of data [1]. Devices which monitor

dynamic physical systems, however, present large volumes of

data corrupt with a wide range of signal artifacts for analysis

by these algorithms; in ambulatory electrocardiogram moni-

toring, for instance, artifacts can result from the movement of

electrodes on the surface of the skin, power line interference,

muscle noise, and baseline-wander [2]. Direct processing of

noisy data thus hampers the performance of algorithms, which

rely on ambulatory ECG, such as those used for beat detec-

tion [3] and arrhythmia classification [2]. Efficient techniques

for the selective removal of artifact sources while retaining

useful signal components are thus essential to ensure accurate

performance of ECG processing algorithms.

In the literature, analog and digital filtering techniques have

demonstrated great success in the mitigation of noise in the

ECG data, which originates from several sources [2], [4].

Motion artifacts and muscle noise, however, present a unique

challenge to such signal-processing methods. Linear and non-

linear filters fail to effectively remove interference from these
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sources since they represent noise, which is within the same

time and frequency range as the ECG. Traditional filtering

techniques applied to the noisy recordings may thus eliminate

useful signal components and corrupt the spectral content, and

thus, the morphology of the ECG.

II. Background

Independent component analysis (ICA) is a method of blind

source separation, which relies on the property of linear su-

perposition of statistically independent signals. Its applicability

to biomedical data has recently gained interest [5]. However,

current ICA based ECG artifact mitigation algorithms rely on a

visual inspection of independent components to identify those

that correspond to the sources of noise [5]–[7]. Although some

recent methods try to automate the identification process [8],

[9], they are limited in their ability to function across the

range of ECG morphologies routinely seen in clinical practice,

as evidenced in standard patient databases. In this paper, we

propose a robust statistical metric to enable an automatic

separation of independent components, which belong to a

noise space. Further, we also present a signal-dependent metric

for an automatic quality assessment of the denoised ECG.

To the best of our knowledge, this is the first attempt in

the literature to enable such a closed-loop feedback. We

demonstrate the efficacy of the proposed technique by the use

of noisy ECG from extensive databases as well as from active

subjects in the lab.

A. Independent Component Analysis

In this section, we provide an overview of the ICA algorithm

and its applicability to denoise multi-lead ECG signals. Fig. 1

illustrates the algorithm. Given a set of k independent time

domain sources s = {s1(t), . . . , sk(t)}, linearly mixed to produce

m noisy measurements xn = {xn,1(t), . . . , xn,m(t)}, according to

the relationship
xn = As, (1)

where A is called the mixing matrix, the ICA algorithm

provides an estimate of the de-mixing matrix Ad [5], [10].

Fig. 1: Illustration of the ICA algorithm
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Fig. 2: TTQA facilitates an automatic elimination of noise components and a closed-loop assessment of artifact mitigation using ICA.

The set of source signals [also called independent components

(ICs)] can thus be recovered as s = Adxn. Further, in general,

A and Ad are non-stationary, non-square matrices and ideally

AAd = I.

Denoising electrocardiogram signals. In an ECG measure-

ment system, surface potentials on the body due to electrical

activity in the heart, along with the statistically independent

motion artifacts, and muscle noise correspond to the source

signal set s. A linear mixture of the sources is observed as

the surface ECG signal. The ICA algorithm thus makes use

of noisy measurements xn to estimate the independent signal

sources s and the de-mixing matrix Ad. In the denoising

process, a modified mixing matrix Â−1
d

is obtained by zeroing

out columns of Ad
−1 corresponding to noise sources in the

estimated set of ICs. Thus, the denoised ECG measurements

can be recovered as follows:

xd = Â−1
d s. (2)

B. Challenges in ICA-based Denoising of ECG Data

As is evident from the above process, there are two major

practical difficulties in denoising ECG signals using ICA.

1) First, it is non-trivial to automatically identify ICs in s,

which belong to a noise space.

2) Second, after zeroing out columns of A−1
d

, which corre-

spond to the noise components in s, there is no practical

metric to evaluate the quality of the denoised ECG.

The first challenge above stems from the varied range of

artifacts that can appear in the ECG; for example, electrode

motion noise appears as irregular disturbances, whereas, mus-

cle noise can manifest itself as a wide-band Gaussian interfer-

ence. The second difficulty arises since the electrical activity

of the heart at the epicardium is not directly measurable.

Thus, without access to the expected denoised signal, tradi-

tional metrics such as signal-to-noise ratio (SNR) or signal-

to-interference ratio (SINR) cannot be used. In this paper,

we propose techniques to overcome the above challenges

facilitating the process of practical ICA-based denoising.

The rest of the paper is organized as follows. In Sec. III,

we describe the sub-systems used in the proposed temporally-

tuned quality assessment (TTQA) algorithm. In Sec. IV, we

present a validation of the TTQA algorithm based on the

Physikalish-Technishe Bundesanstalt (PTB) diagnostic ECG

database [11]. We then present two case studies for the

application of TTQA, viz., arrhythmia detection in Sec. V,

followed by instantaneous heart rate (IHR) estimation in

Sec. VI. Finally, we conclude in Sec. VII.

III. Temporally-tuned Quality Assessment

In this section, we introduce sub-systems, which comprise

the TTQA algorithm. Fig. 2 summarizes the functionality of

TTQA in the process of ICA-based ECG denoising. On the

left, the figure shows a recording from channel MLII of a

subject performing 60 seconds each of jumping jacks and

hip twists after remaining stationary for 60 seconds. As is

illustrated in the figure, ICA is used to separate statistically

independent components in the ECG. After the separation

process, TTQA is used for an automatic identification of the

noise components, which are eliminated while simultaneously

evaluating its effect on the quality of the denoised ECG in an

iterative feedback loop. The resulting denoised recording thus

obtained is shown at the right.

A. Automatic Identification of Noise Components

A block diagram of the proposed TTQA algorithm imple-

mented in MATLAB is shown in Fig. 3. It comprises a

Kurtosis-VarMean based module for an automatic identifica-

tion of components that belong to a noise space followed by

a module for closed-loop temporal clustering.

Isolation of ICs. Prior to denoising by TTQA, principal

component analysis (PCA) is used for dimensionality reduc-

tion by orthogonal projection of the noisy data [10]. ICA

is then applied to separate the constituent ICs. If fs is the

sampling frequency of the noisy ECG, m frames of N fs

samples each, represented by xn, are processed at a time by

the PCA block (N samples from one frame are illustrated in

Fig. 3). ICA is then applied to separate k ICs in the noisy

ECG, which are represented by s in the block diagram. To

implement the ICA algorithm, the fastICA package [12] along

with ICASSO [13] is used.

IC denoising. The k ICs thus obtained are processed by the

Fig. 3: The TTQA algorithm comprises an automatic separation of
noise components based on kurtosis-VarMean followed by spectral
or morphological feature extraction for temporal clustering.



Kurtosis VarMean VarMed VarVar

value value index value index value index

IC#1 (noise) 0.0505 0.8248 0.0018 0.9323 0.0002 0.1734 0.0849

IC#2 (ECG) 0.0344 0.1111 0.0093 0.0592 0.0017 0.2132 0.0470

IC#3 (ECG) 0.3982 0.0419 0.2856 0.0043 0.4317 0.2713 0.4277

IC#4 (ECG) 0.5169 0.0221 0.7032 0.0043 0.5653 0.3421 0.4403

SINR of frame 13.54 dB 11.05 dB 11.05 dB

Table I: IC #2 is erroneously removed by the use of a Kurtosis-
VarVar based metric.

IC denoising block, which relies on thresholding a Kurtosis-

VarMean index to enable an automatic identification of com-

ponents, which belong to a noise space.

Kurtosis [K(s)] is a fourth-order cumulant and is zero for

Gaussian densities. It is defined as

K(s) = E(s4) − 3
[

E(s2)
]2

(3)

where E(·) is the expectation. Muscle noise, with a near

Gaussian distribution, has a K(s) value much smaller than the

ECG signal, and is thus clearly distinguishable. Although K(s)

is a useful metric to identify continuous noise, a secondary

measure is required to distinguish ICs, which originate from

additional sources of noise. The VarVar metric introduced in

[8] is ineffective for the identification of components, which

arise due to the electrode motion noise, such as those shown

in Fig. 2 and Table I. Electrode motion noise, represented by

IC#1, is the only noise component present in the exemplary

measurement shown in Table I.

The use of a Kurtosis-VarVar index (given by the ratio of

K(s) and VarVar), described in [8], leads to a faulty elimination

of IC#2 by greedy thresholding. We thus propose a new

secondary metric based on the variance of IC-segment means

(or VarMean, σ2
Y

), which exploits the quasi-periodic nature

of the ECG signal components. For every component si of

N fs samples obtained using m ECG leads, σ2
Y

corresponds

to the variance in the mean amplitude of N linearly spaced

one-second segments. In other words, suppose s′
it

and s̄′
it

represent a segment of fs samples derived from si prior to

time t ∈ 1, 2, . . . , T , and its mean amplitude, respectively. σ2
Y

corresponds to the variance of the set yi = {s̄
′
i1
, s̄′

i1
, . . . , s̄′

iT
}.

ICs which arise due to the ECG signal have a smaller

σ2
Y

value as compared to those that originate from electrode

Algorithm 1 Temporally-tuned Quality Assessment (TTQA)

Require: N ≥ 2 fs; calibration centroid fd,cal , 0

Ensure: min || fd,gc − fd,lc||
2 {MMSE}

1: s ← ICA(xn); fd,gc = fd,cal; MMSE = ∞ {Initialize}

2: L := SORT(K(s)/σY
2) {Sorted index list}

3: for j = 1 : length(L) do

4: Â−1
d
← 0 ∀ L < L( j) {Set null columns}

5: x′
d
= Â−1

d
s {Denoise}

6: f i
d,lc
← SFE(x′

d
) {or MFE(x′

d
)}

7: MSE = || f i
d,gc
− f i

d,lc
||2

8: if MSE < MMSE then

9: xd ← x′
d
; MMSE ← MSE; f i

d,gc
← G

(

f i
d,lc

)

{Update}

10: end if

11: end for

motion artifacts. This behavior is observed since the mean

amplitudes in adjacent segments of the quasi-periodic signal

components are in close proximity to one another. Their σ2
Y

value is thus near zero, which enables a clear distinction from

the ICs in the noise space. Consequently, clean ECG frames

are obtained by the use of a modified de-mixing matrix Âd

derived by zeroing out columns of Ad, which correspond

to the noise components (identified by the value of their

K(s)/σ2
Y

index being below a certain threshold). The K(s)/σ2
Y

indices for the denoised ECG frames are shown in Table I; a

comparison with the VarVar and VarMedian based indices is

also shown. The latter two metrics, in the earlier formulation,

correspond to s̄′
it

being equal to the variance and median of

sit, respectively, instead of the mean.

Feature extraction. After every iteration of the threshold-

based IC selection approach, m denoised frames, represented

by xd, are processed further for dimensionality reduction.

Either of the following two methods are used to obtain m

feature vectors corresponding to each of the m denoised ECG

leads: (1) morphological feature extraction (MFE), where the

average morphology of the denoised ECG signal, represented

by fs/3 samples around each beat isolated by a QRS detector,

forms a feature vector, or (2) spectral feature extraction (SFE),

where a feature vector is represented by the energy content in

several linearly spaced bins in the frequency range 0 − fs/2.

Temporal clustering. Following the feature extraction pro-

cess, a temporal clustering technique is used to assess the

quality of the denoised ECG in each iteration.

Feature vectors derived in the ith iteration, represented by m

local centroids f i
d,lc

, are correlated with m global centroids f i
d,gc

corresponding to the m clusters, which arise from each of the

m ECG channels. Morphology and spectral content of cardiac

signals vary gradually over time. Thus, in one approach, a new

localized signal-dependent metric for the automatic quality

assessment of the denoised ECG is obtained by assigning f i
d,gc

to be the mean value of a finite set of prior local centroids for

each channel. The mean square error (MSE) in an iteration

is defined by the sum of the Euclidean distance between the

centroids f i
d,gc

and f i
d,lc

for each of the m channels.

The threshold for the K(s)/σ2
Y

index (before the IC de-

noising block in Fig. 3) is gradually incremented in every

iteration starting from its minimum value in the each frame.

A greedy search algorithm thus identifies the correct value

of a threshold, which achieves the minimum MSE (MMSE)

solution. Thus, optimal denoising of the current frame is

Fig. 4: A Kurtosis-VarMean based index is more robust than that
based on Kurtosis-VarVar [8] and Kurtosis-VarMedian.
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Fig. 6: Increased frame size, spectral or temporal resolution of feature extraction does not indefinitely
improve denoising efficiency.

achieved by eliminating the set of ICs in the noise space while

retaining useful components in the expected signal space.

A pseudo-code for the self-tracking TTQA algorithm is

shown in Algorithm 1. After denoising a given frame, several

approaches, based on a transformation G applied to f i
d,lc

, could

be used to update f i
d,gc

. The trade-offs associated with three

strategies are discussed in Sec. IV-A. During the initialization

phase, a feature vector fd,CAL, which is derived from a clean

ECG signal forms a calibration seed for the global centroid.

IV. Experimental Results

The MIT-BIH noise stress test (NST) [14] database provides

typical recordings of noise in ambulatory ECG. Calibrated

amounts of noise from this database is added to 549 records

of 1 kHz ECG from 249 patients in the PTB database. Fig. 4

shows the ability of TTQA in denoising ECG data thus

obtained. It is observed that a K(s)/σ2
Y

-based index achieves

an SINR close to that attainable by eliminating the ICs using a

brute force search (denoted by Max. SNR). SINR in dB units

is defined as 20.log[P(xe)/P(xd − xe)], where P(·) represents

the power of the signal, and xe is the expected ECG signal,

which is available as a baseline for validation from the PTB

database (note that the expected signal is not accessible in a

practical application). From the figure, it is also observed that

the Kurtosis-VarMean based index is more robust than that

based on Kurtosis-VarVar and Kurtosis-VarMedian.

Fig. 5 shows that the morphological and spectral features

have a similar denoising performance. The denoising algo-

rithm is almost insensitive to the input signal SNR since

statistical independence exists even in the presence of large

amplitudes of noise. For the evaluations in Figs. 4 and 5, a four

second frame is used along with 5 leads (viz. I, II, III, aVR,

and aVL) of ECG from the PTB database.

Variation of system parameters. Fig. 6 (at the left) shows

a saturation in SINR gains with large frame sizes. Increased

spectral resolution by the use of a larger number of energy

bins does not show an improvement in the denoising efficiency

(center in Fig. 6). A similar behavior of diminishing returns

is observed with increased temporal resolution of the morpho-

logical features by the use of extra samples around the fiducial

points for f i
d,lc

(right of Fig. 6).

A. Denoising with a Dynamic Centroid.

After denoising a given frame, the global cluster centroids

are updated based on a finite set of prior local centroids. In

this section, we will explore the merits and demerits of the

following three global centroid update functions G:

f i
d,gc = G( fd,lc) =



























f i
d,lc
, if Markovian,

fd,cal, if static,
(

∑N
i=1 f i

d,lc

)

/N if dynamic.

(4)

The Markovian update process has a large error sensitivity

since a sub-optimally denoised frame leads to a cascade

of poorly denoised frames. In the static update function, a

calibration frame ( fd,cal or initialization frame with no artifacts

in the measured ECG) is used as a global template. Although

this alleviates the problem of error-propagation, it does not

accurately capture the evolving patient physiology. Thus, the

optimal TTQA employs a dynamic update function where the

global centroid is assigned to be the mean of the local centroid

of a finite set of N prior frames.

The loci of the centroid functions are illustrated in Fig. 7

using a sample patient (patient #122) from the PTB database.

Average results over the entire database, shown in Fig. 8,

validate the superiority of the dynamic centroid. Further,

dynamic update of f i
d,gc

thus results in a smaller mean MMSE

of 0.35 mV across 0.6 Million ECG frames of four seconds

each. This corresponds to a 25.9% and 29.4% improvement
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Table II: Arrhythmia classification [10] and beat detection [11] show
stronger resilience to noise after TTQA.

Evaluation on AHA database

SNR Q Se (%) Q +P (%) V Se (%) V +P (%) V FPR # QRS # VEB

Baseline 99.78 99.87 93.43 98.25 0.169 354324 32544

TTQA 99.78 99.87 93.43 98.51 0.150 354324 32620

-9 dB 90.56 90.64 84.79 89.41 0.266 321561 29609

TTQA 99.69 99.78 93.34 98.42 0.160 353981 32597

-3 dB 92.02 92.08 86.17 90.84 0.234 326742 30082

TTQA 99.71 99.81 93.38 98.45 0.150 354018 32598

0 dB 93.29 93.35 87.35 92.09 0.216 331273 30496

TTQA 99.72 99.83 93.39 98.45 0.150 354109 32602

+3 dB 94.31 94.38 88.32 93.10 0.210 334905 30830

TTQA 99.72 99.82 93.39 98.45 0.150 354046 32600

+9 dB 99.65 99.73 93.32 98.18 0.174 353952 32581

TTQA 99.75 99.86 93.42 98.29 0.150 354289 32613

over the use of Markovian and static centroids, respectively. A

smaller variance in the MMSE is also observed from Fig. 8.

V. Arrhythmia Classification and Beat Detection

In this section, we present a case study of arrhythmia classi-

fication, which demonstrates the ability of TTQA to preserve

morphological information in the denoised ECG. The perfor-

mance of a state-of-the-art, commercial arrhythmia detection

software [15] using the AHA database [16] is shown in

Table II. Results are presented according to the ANSI/AAMI

EC57 specification standard [17]. Using the original AHA

database, the sensitivity values for the classification of normal

(Q Se) and ventricular ectopic beats (V Se) are 99.78 and

93.43%, respectively. The corresponding positive predictivity

(+P) values are 99.87% and 98.5%, respectively. These results

are shown in Table II along with the false positive rate (V

FPR), the total number of ventricular ectopic (VEB), and

normal (QRS) beats detected by the classification software.

As a sanity check, TTQA did not degrade the classification

performance. Notice a small increase in predictivity and de-

crease in the false positives for the abnormal (VEB) beats.

This is shown in the second row of Table II.

In our evaluation experiments, it is observed that the perfor-

mance of the classification algorithm suffers heavily with the

direct use of noisy recordings obtained by the superposition

of signals from the MIT-BIH NST and the AHA databases.

Table II shows the degradations in the performance of the

classifier for input signal SNR values of -9 dB, -3 dB, 0

dB, +3 dB, and +9 dB. The detection results after TTQA are

also shown below the corresponding SNR values, respectively.

It is observed from the table that the classification accuracy

degrades with decreasing input signal SNR. Denoising the

ECG data by TTQA prior to classification, however, improves

the classifier accuracy significantly. A decrease of 2% in Se

or +P from the baseline is considered clinically significant.

This experiment shows that diagnostic-grade beat classification

accuracy is maintained by TTQA even in the presence of

severe motion artifacts.

VI. Instantaneous Heart Rate Estimation

In our experiments with the PTB and AHA databases in

the previous section, synthetic noise was added to create the

noisy ECG signals. In this section, we describe a second,

more realistic case-study, which demonstrates accurate IHR

estimation using TTQA-denoised ECG obtained directly from

subjects performing a set of pre-defined activities in the lab.

A. Evaluation platform

In this section, we describe the closed-loop evaluation platform

we built to demonstrate accurate ECG-based IHR estimation

after denoising by TTQA. Fig. 9 shows the sub-systems used

in the platform. There are five electrodes on the subject (viz.

RA,RL, LA, LL, and V) with three streams [viz. LA−RA, LL−

RA, and V − 0.33 × (LA + RA + LL)] transmitted over a

proprietary ultra-wide band (UWB) radio link. The medical

sub-system comprises an analog front-end (AFE) and an ADC

from Texas Instruments [18]. The data is sampled at 500 Hz

with 16-bits of resolution. An on board Actel Igloo FPGA

[19] enables MAC packetization and efficient encoding for

secure communication. The table on the right in Fig. 9 shows

the specifications of the evaluation platform. A receiver test

board is connected to a PC, which performs TTQA-based

denoising in MATLAB. Thus, the low-power platform enables

a continuous monitoring of ambulatory subjects and results in

clean recordings obtained after TTQA-based denoising.

For the IHR experiments, a pulse rate monitor device

from Nonin [20] is used to measure the expected IHR of

subjects performing routine activities using a parallel link over

Specification Comments

ECG config. 5-lead ECG (3 channels) TI ADS-1194

Sampling rate 500 Hz, 16b/sample Analog front-end + ADC

Sensor processing Encoding, MAC packetization Actel Igloo nano FPGA

Radio Proprietary UWB ASIC Pulse-position modulation

Data rate 8 × 132 Bytes per 256 ms Including application

= 33 kbps layer headers

Medical subsystem 2.53 mW: 2.17 mW(FPGA core) 90% flash freeze

power 0.36 mW(I/O) on FPGA

Battery 387 mAHr 2.5 days life (measured in lab)

(fast trickle charged) 24×7 continuous monitoring

Expected IHR Range: 18-321 BPM Nonin OnyxII 9560

(pulse monitor) Declared accuracy: ± 3% Bluetooth 2.0

Fig. 9: Table on the right shows specifications for the closed-loop IHR evaluation system. It comprises ECG acquisition by a low-power
sensor platform followed by TTQA processing on a PC. ECG-based IHR is compared against expected measurements from Nonin Onyx II.
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Fig. 10: Measures and estimates of IHR from four subjects performing routine activities show that TTQA-based denoising achieves accuracy
within an average upper bound of ± 10 bpm while estimates with noisy recordings have an average upper bound of ±52 bpm.

Bluetooth 2.0. The expected IHR represents the ground truth,

and is compared against the estimated IHR computed with

the direct use of noisy ECG as well as that computed with the

use of TTQA-denoised ECG. The IHR computation invokes

a QRS detector based on a widely accepted algorithm [21].

Distance between the resulting fiducial points (RR-interval) is

thus used to compute IHR according to the relationship, IHR

= 60/(RR-interval in seconds).

Fig. 10 shows the expected IHR measurements and esti-

mates derived from noisy ECG as well as those derived from

TTQA-denoised ECG obtained from four subjects with no

known prior pathological conditions. Each subject performed

seven tasks for 60 seconds each preceeded by 60 seconds of

inactivity. It is observed from the figure that TTQA-denoised

ECG enables accurate IHR estimation with an average upper

bound on the error being ±10 bpm (∆IHRMax
Den

). The corre-

sponding estimates with the direct use of noisy ECG results

in an average error bound of ±52 bpm (∆IHRMax
Noi

). The table

below summarizes the observed reduction in the average RMS

error from 47.7% to 7.0%.

Subject #1 Subject #2 Subject #3 Subject #4

∆IHRRMS
Noi

31.3 bpm 30.9 bpm 31.4 bpm 33.1 bpm

∆IHRRMS
Den

5.0 bpm 6.4 bpm 3.6 bpm 3.9 bpm

VII. Conclusions

ICA-based mitigation of artifacts in current ECG monitoring

systems is limited by (a) the inability to automatically identify

independent components, which correspond to the sources

of noise, and (b) the non-availability of a metric to assess

the quality of the denoised ECG. We presented a technique

to overcome the above limitations enabling a closed-loop

validation of the denoised ECG using an algorithm based

on temporal clustering. It was observed that the proposed

TTQA algorithm retains fidelity in the ECG morphology cor-

responding to the evolving patient physiology. We presented

a validation based on two case studies where we showed that

ECG-denoising by TTQA prior to arrhythmia detection and

instantaneous heart rate estimation improves the performance

of state-of-the-art algorithms, even in the presence of severe

motion artifacts.
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