
A New SBST Algorithm for Testing the Register
File of VLIW Processors
Davide Sabena, Matteo Sonza Reorda, Luca Sterpone

Dipartimento di Automatica e Informatica
Politecnico di Torino

Torino, Italy

Abstract—Feature size reduction drastically influences
permanent faults occurrence in nanometer technology devices.
Among the various test techniques, Software-Based Self-Test
(SBST) approaches have been demonstrated to be an effective
solution for detecting logic defects, although achieving complete
fault coverage is a challenging issue due to the functional-based
nature of this methodology. When VLIW processors are
considered, standard processor-oriented SBST approaches result
deficient since not able to cope with most of the failures affecting
VLIW multiple parallel domains. In this paper we present a
novel SBST algorithm specifically oriented to test the register
files of VLIW processors. In particular, our algorithm addresses
the cross-bar switch architecture of the VLIW register file by
completely covering the intrinsic faults generated between the
multiple computational domains. Fault simulation campaigns
comparing previously developed methods with our solution
demonstrate its effectiveness. The results show that the developed
algorithm achieves a 97.12% fault coverage which is about twice
better than previously developed SBST algorithms. Further
advantages of our solution are the limited overhead in terms of
execution cycles and memory occupation.

Keywords- Testing, software-based self test, Very Long
Instruction Word Processors, Fault Simulation.

I. INTRODUCTION
The continuous aggressive reduction of semiconductor

fabrication process permits today the implementation of SoCs
with multimillion transistors operating at gigahertz
frequencies and integrating on a single chip several hundreds
of modules, computational cores and memory blocks. Thanks
to the reduced feature size, SoC performances are extremely
enhanced. However, due to the highly stressed production
process, phenomena like metal migration or aging of the
circuit may increase the occurrence of permanent faults. On
the other hand, testability is progressively limited due to the
aggressive deep-submicron geometries which may also
provoke the appearance of new kinds of defects.

Traditional usage of Automatic Test Equipment (ATE) for
SoC tests is a valid method for deploying at-speed tests able to
obtain high test quality; however, since extremely expensive,
it cannot always be considered an economically affordable
solution. In the last decade, several Software-Based Self-Test
(SBST) techniques have been proposed following this
approach [1] [2]. The basic idea of SBST is to generate test-
patterns by executing program sequences, where processor
instructions are used to test the processor’s functionality.

Various SBST methodologies have been proposed as an
effective or additional solution for the manufacturing test of
processors or SoCs. One of the main advantages of SBST is its
non-intrusiveness, since it does not require any extra
hardware; therefore, cost is reduced, and any critical path
delay penalty is avoided, while allowing at-speed testing.
SBST methods have been applied to a large set of processors
and SoCs [3]. Among the various microprocessor
architectures, Very Long Instruction Word (VLIW) processors
have been demonstrated to be the most viable solution for
several embedded applications characterized by high
performance, low cost and low power consumption. Thanks to
their architecture, VLIW solutions achieve a very good
exploitation of the available instruction level parallelism
(ILP). Nowadays, VLIW manufacturing is on-going in several
semiconductor companies and the problem of testing their
functional architecture is increasing relevant.

A key feature of VLIW processors is the instruction format;
in fact VLIW architectures are characterized by grouping
several instructions into large macro-instructions called
bundles, where each instruction within the bundle is executed
in parallel distinct computational units referred as
computational domains. VLIW processors are then organized
in clusters formed by several computational domains (i.e.
generally four or eight). On one hand ILP allows to improve
performances, on the other hand it creates instruction
interdependence that must be taken into account. This issue is
generally solved by software compilers which should be
suitable designed in order to address interdependence between
different computational domains. A key hardware component
which supports the ILP execution is the register file. The
VLIW register file is characterized by several multiported
registers for a single VLIW processor cluster [4]. It is one of
the most resource consuming module of a VLIW processor,
since the number of read and write ports in each multiported
register increases with the number of computational domains
and consequently results in an exponential increase in
resources [5]. Internally, the register file has the architecture
of a complex cross-bar switch, where each computational
domain can write to each single register, and the content of
each single register may be transferred to whatever
computational domain [6].

Several SBST approaches have been developed in order to
address VLIW processors: most of them rely on software

978-3-9810801-8-6/DATE12/©2012 EDAA

techniques where the approaches adopt suitable instructions
belonging to the processors instruction set to apply the test-
patterns, generated off-line by an automatic test pattern
generator (ATPG) tool based on the internal components
structure. Although effective, these methods have several main
drawbacks: first of all, they delegate the pattern generation to
an external ATPG, which drastically increases the total test
time; secondly, they are applied at the software level before
the compiler execution, therefore the generated assembly code
it is not always fully compliant with the existing testing
constraints; finally, these approaches are all based on a limited
version of the VLIW architecture where each computational
domain may read / write data only from a given set of registers
within the register file [11]. Therefore, most of the faults
really affecting the behavior of the VLIW processors are not
covered by these methods. In this paper we propose a new
SBST algorithm specifically oriented to test the typical
register files embedded in VLIW processors. The proposed
method does not require any hardware change or addition to
the processor architecture. Moreover, since the method is
totally functional-based, it does not require the usage of any
external ATPG in order to generate the input stimuli.

The main contribution of the developed test method to the
advancement of state-of-the-art techniques in the area is the
first algorithm able to effectively test a multi-port cross-bar
switch embedded into a VLIW register file following an SBST
approach. The proposed algorithm has small requirements in
terms of memory (to store the test code) and the execution
time is very limited. The developed test algorithm is applied at
the post-compiler level, therefore it has an extended testing
capability with respect to approaches applied before the
compile time since it has full control on the execution code.
The developed SBST algorithm has been evaluated on a
realistic VLIW platform based on the Delft University r-VEX
VLIW Processor which allows to implement the great part of
features generally embedded within industrially manufactured
VLIW architectures [6]. The results we achieved clearly
demonstrate the efficiency of our approach, since by fault
simulation analysis on the VLIW register file we achieved a
fault coverage on stuck-at faults higher than 97 %.

The paper is organized as follows. Section II describes the
related works on software-based self-test techniques
specifically oriented to VLIW processor. Section III gives an
overview of the VLIW data path architecture while Section IV
outlines the proposed test algorithm. Experimental results and
their analysis are presented in Section V. Finally, conclusions
and future works are described in Section VI.

II. RELATED WORK
Popular techniques to test processor chips and processor-

based System-On-Chip (SoCs) are Built-In Self-Test (BIST)
and Software-Based Self-Test (SBST). The methodologies
that require external hardware to perform the test are
infeasible without the use of multimillion dollar Automatic
Test Equipment (ATE); this is due to the increasing gap
between ATE frequencies and SoC operating frequencies
which makes external at-speed testing problematic and

expensive (at-speed testing is needed because some failures
can be detected only when the test is performed at the
operating frequency of the device). Moreover, external test
often involves long time and significant efforts to introduce
the required hardware and may be characterized by long test
application times [1]. To avoid these drawbacks self-test
methodologies can effectively be adopted. In the literature
there are many papers related to methods for the functional
self-test of processors, but few of them refers to the test of
Very Long Instruction Word (VLIW) processors.

BIST moves the testing task from external resources (ATE)
to internal hardware: additional hardware and software are
integrated into the circuit to allow it to perform self-testing.
The use of this technique leads to lower cost of test and
shorter tests time, maintaining or improving the fault
coverage, at the cost of additional silicon area.

Another way for on-chip testing is SBST that is a non
intrusive methodology since it adopts existing processor
resources and instructions to perform self-testing. The
advantage of this technology is that it uses only the processor
functionality and instruction set for both Test pattern
Generation and Output Data Evaluation, and thus does not
introduce any hardware overhead in the design [8]. However,
software-based methods suffer from long program sequences
to achieve high coverage of the device under test.

Recently, many techniques have been developed to test a
generic superscalar processor [1], [7], [9] and the results
obtained show that SBST is a valid and low cost methodology.
Moreover, up to now, there are few SBST techniques that
refer to VLIW processors, mainly due to the fact that the
approaches developed for superscalar processors are not easily
implementable on this architecture.

A methodology combining functional test and Built-In Self-
Test and Repair for regular data path structures within VLIW
processors is described in [11]. In this approach fault detection
and localization are performed by software and then a
hardware reconfiguration using redundant units is exploited.
In this methodology Software-Based Self-Test guarantees high
fault coverage; however, the VLIW core used as a test vehicle
presents some peculiarities that differentiate it from the most
common VLIW processors; the main one refers to the register
file: in fact, for each cluster within the processor there is a
separate register file and there are not registers shared by all
clusters. This implies that this processor does not include a
structure that connects all functional units to all registers (i.e. a
crossbar); this is an important constraint, since a crossbar is a
significant structure in terms of area and the related faults are
numerous and difficult to detect using the SBST methodology.

Another technique developed to test VLIW processors
combines scan and SBST in order to obtain a good diagnostic
resolution at low hardware overhead [10]. The peculiarity of
this approach, aimed at detecting faults in the functional units
of the processor, is that the same test patterns are loaded
directly into the fetch registers of all computational domain.
The proper functioning of each domain is tested by comparing
the test response of all domain, that should be the same in the
fault-free case. This solution involves a hardware overhead of

about 6% and requires that the processor runs in a special self-
test mode.

III. BACKGROUND ON THE R-VEX VLIW ARCHITECTURE
A generic VLIW processor may have different numbers of

functional units (FUs). Generally, the VLIW processor
architecture is parametric, so that different options such as the
number and type of the functional units, the number of multi-
ported registers (i.e. the size of the register file), the width of
the memory buses and the type of different accessible FUs can
be modified depending on the application’s requirements [12].
In the present work, we addressed on the Delft Reconfigurable
VLIW processor (r-VEX) which includes all the features of
the generic VLIW processors existing on the market [5]. The
r-VEX processor is based on 32-bit data registers with the
main processor architecture based on 4 FUs organized in four
different computational domains. The r-VEX main processor
architecture consists of four stages pipeline organization:
fetch, decode, execute and write-back stages. The fetch unit
fetches a VLIW instruction from the attached instruction
memory and splits it into four syllables that are passed to the
decode unit. In this stage, registers used as operands are
fetched from the register file. The actual operations take place
either in the execution unit, or in one of the parallel
branch/control (CTLR) or load/store memory (MEM) units.
The arithmetic logic unit (ALU) functions and multiplier
(MUL) operations are performed in the execution stage, while
CTRL unit manages branch operations. Vice versa the MEM
unit handles all data memory load and store operations. All
write activities are performed by the write-back unit at the
same time. These operations are performed in specific
computational domains, since ALU operations (A) are
performed by all the execution units, while CTRL (B) and
MEM (S) operations are executed only by the first and fourth
computational units and MUL operations are executed by the
second and third units. The data are stored in two different
register files: the general register file (GR) and the branch
register file (BR). The two register files are included into the
Decode unit, where the register input and output lines are
controlled respectively by an input and an output cross-bar
switch. The data memory stores the results of the execution.

Figure 1. The VLIW processor data path.

As outlined in the previous sub-section, the VLIW data path

includes the operational register file and all the functional
modules. Starting from the fetch stage the VLIW instructions
are splitted into four different computational domain that will
be executed in parallel. The computational domain division is
maintained in all the processing units.

In order to using the r-VEX processor as a test vehicle for
our experiments, we synthesized and implemented it on a
standard ASIC gate library. In order to develop a suitable
SBST algorithm, it is important to understand which
components of the processor have the largest contribution to
the overall processor fault list [8]. As shown in [5] and [13],
the register file of the r-VEX VLIW processor occupies the
large percentage of logic resources of the entire VLIW
architecture. In details, when the number of registers within
the register file increases, the register file resource area
exponentially increases. For example, a register file having 32
or 64 registers requires 40% or 59% of the overall VLIW area
respectively. This is mainly due to the high number of general
purpose registers and to the logic circuitry necessary to
provide their accessibility: indeed, registers are shared by all
computational domains of the VLIW processor and several
multi read and write ports are necessary with respect to
traditional processor register files. This confirms that the
register file of a VLIW processor is one of the components
with the largest differences if compared to those of superscalar
processors [5]. For this reasons we focused our efforts on this
module.

IV. THE PROPOSED SBST ALGORITHM
The key characteristics of our SBST algorithm for VLIW

processors are essentially two: the first is that in order to
develop the test routine, it considers each component of the
processor as a single independent unit, the second feature is
that the test development is based only on the Instruction Set
Architecture (ISA) of the VLIW processor. In this section we
first describe the details of the register file and outlines some
basic idea for testing it, then we focus on the description of the
developed SBST algorithm.

A. Register File

The register file implemented within the r-VEX VLIW

processor consists of 64 32-bit wide registers; 3 of them are
special register: r0.0 is constant always settled at ‘0’, r0.1 is
the stack register, and r0.63 is the link register. The rest of the
registers are general-purpose. Each general-purpose register
can be accessed by each computational domain of the r-VEX
VLIW processor. In details, a single computational domain
has one write-port to access to the register file to store a data
in a register; and two read-ports by which it can read from two
different registers at the same clock cycle as illustrated in
Figure 2. This implies that within the register file there is a
write address decoder, a read address decoder and two read-
ports for each domain. This architecture is taken into account
in our developed test methodology in order to achieve high
fault coverage.

This structure, corresponding to a cross-bar can be
implemented through a set of 2-to-1 multiplexers (for data
output) and 1-to-2 demultiplexers (for data input); this allows
to implement a cross-bar switch architecture where each
domain’s data input can be stored in whatever register, and
can be read by whatever domain’s read-port. In order to fully
test this particular structure of the register file each register
must be accessed for at least a read and a write operation by
each of the four VLIW domains; moreover, with regard to
reading operations, all registers must be accessed by
read_port_1 and read_port_2 of each domain as shown in the
pseudo code depicted in Figure 3. In this way, all the possible
register datapaths inside the register file are exercised.
Moreover, it is necessary that each register is assigned with a
value and then with the complemented value in order to
guarantee that each possible stuck-at fault in the register bits is
detected. Therefore, considering that the r-VEX VLIW
processor has four domains, 8 write operations and 16 read
operations are necessary for each register.

Figure 2. Structure of Register file with focus on domain 1.

B. The proposed SBST algorithm

The SBST algorithm we propose is intended to be

implemented in assembly code. For convenience, in this
section we formalize it describing the pseudo-code of the main
procedure. The algorithm essentially focuses on the generation
of test instructions for addressing the register file crossbar
switches architecture. Since the crossbar switches are
generally implemented using multiplexers and demultiplexer
modules, which physical implementation depends on the
selected technology, it is important to analyze the physical
implementation of this components in order to cope with the
internal stuck-at faults. The method we used to assign values
to register were developed inspiring from the methodology
previously developed in [1]. The main procedure, which is
illustrated in Figure 3, consists of two parts, in each part, half
of the registers are under test while the others are used to
manage the test execution. This allows using all the VLIW
registers without adding external hardware resources in order
to support the test execution. The two parts are executed for a
given number of phases, in our cases eight times according to

the register file functional analysis illustrated in the previous
section. For each phase execution, the logic value assigned to
the registers changes.

The logic value assignment is performed by the function
assign_value_to_reg_R_R that, on the basis of the
received parameters, selects which type of assignment has to
be used. For instance, considering the register assignment
rules, illustrated in Table I, if the phase A1 is considered, the
set of registers r0.0 to r0.31 are assigned as illustrated in
Figure 4.

//part 1
assign_value_to_reg_R0_R31(Phase);
for (each domain D){

for (each register R ε(R0…R31){
for (each read_port P){

read value V of register R using domain D and
read_port P;

use V to compute a signature S;
}

}
store S in memory;

}
//part 2
assign_value_to_reg_R32_R63(Phase);
for (each domain D){

for (each register R ε(R0…R31){
for (each read_port P){

read value V of register R using domain D and
read_port P;

use V to compute a signature S;
}

}
store S in memory;
}

Figure 3. The pseudo-code of the proposed algorithm.

The eight types of logic value assignment performed are
illustrated in Table I where each row of the table represents a
single macro-instruction of the r-VEX VLIW processor: the
first instruction is executed by the first domain, the second by
the second domain and so on. These executions are performed
during the same clock cycle. Please notice that within each
macro-instruction the order of the registers is changed
between phase A1, B1, C1 or D1, whereas the data assigned to
the registers are the same. Vice versa, the difference between
phase A1 and A2, or between B1 and B2, or C1 and C2, or D1 and
D2 are the data used to assign the registers, that in phases A2,
B2, C2 and D2 are complemented respect to A1, B1, C1 and D1.

It is mandatory that the main procedure is performed with
this eight types of assignment in order to exploit all possible
datapaths within the register file, using first a value and then
the complemented one. This procedure allows effectively
covering stuck-at faults affecting the crossbar switches
circuitry. The procedure is based on the idea that n-to-1
multiplexers are generally decomposed and implemented by
smaller muxes ordered in a tree structure [1]; therefore, in
order to minimize the probability that a fault occurred in a
crossbar cannot be traced it is important that the registers are
assigned following the rules reported in Table I. In particular,
it is mandatory that registers encoded with a bit string having
Hamming distance equal to 1 are assigned with different logic
values, in order to detect stuck-at faults that occur on the

selection of a register in both writing or reading operations.
Since the register index in encoded with 6 bits, 8 different
logic values are used. They are represented with
A,B,C,D,E,F,G,H where B=NOT(A), D=NOT(C),
F=NOT(E) and H=NOT(G) and A≠C≠E≠G. The actual
values for A, C, E and G are not important.

0] -------------------------
mov $r0.32,01010101010101010101010101010101 #A
mov $r0.33,10101010101010101010101010101010 #B
1] -------------------------
mov $r0.34,00110011001100110011001100110011 #C
mov $r0.35,11001100110011001100110011001100 #D
2] -------------------------
mov $r0.36,00001111000011110000111100001111 #E
mov $r0.37,11110000111100001111000011110000 #F
3] -------------------------
mov $r0.38,00000000111111110000000011111111 #G
mov $r0.39,11110000111100001111000011110000 #H
4] -------------------------
mov $r0.0 = $r0.32 #A
mov $r0.1 = $r0.33 #B
mov $r0.2 = $r0.33 #B
mov $r0.3 = $r0.32 #A
5] -------------------------
mov $r0.4 = $r0.34 #C
mov $r0.5 = $r0.35 #D
mov $r0.6 = $r0.35 #D
mov $r0.7 = $r0.34 #C
6] -------------------------
…
8] -------------------------
mov $r0.24 = $r0.38 #G
mov $r0.25 = $r0.39 #H
mov $r0.26 = $r0.39 #H
mov $r0.27 = $r0.38 #G
9] -------------------------
mov $r0.28 = $r0.36 #E
mov $r0.29 = $r0.37 #F
mov $r0.30 = $r0.37 #F
mov $r0.31 = $r0.36 #E
10] -------------------------

Figure 4. Assembly code example used during the register file logic value
assignment.

TABLE I. LOGIC VALUE REGISTER ASSIGNMENT RULES FOR THE FIRST
TWO MACRO-INSTRUCTIONS

Phase A1 Phase B1 Phase C1 Phase D1
R0 = A
R1 = B
R2 = B
R3 = A

R1 = B
R0 = A
R3 = A
R2 = B

R2 = B
R3 = A
R0 = A
R1 = B

R3 = A
R2 = B
R1 = B
R0 = A

R4 = C
R5 = D
R6 = D
R7 = C

R5 = D
R4 = C
R7 = C
R6 = D

R6 = D
R7 = C
R4 = C
R5 = D

R7 = C
R6 = D
R5 = D
R4 = C

Phase A2 Phase B2 Phase C2 Phase D2
R0 = B
R1 = A
R2 = A
R3 = B

R1 = A
R0 = B
R3 = B
R2 = A

R2 = A
R3 = B
R0 = B
R1 = A

R3 = B
R2 = A
R1 = A
R0 = B

R4 = C
R5 = D
R6 = D
R7 = C

R5 = C
R4 = D
R7 = D
R6 = C

R6 = C
R7 = D
R4 = D
R5 = C

R7 = C
R6 = D
R5 = D
R4 = C

 Once the initialization is executed, a set of permutations are
performed in order to stimulate the access to the register files

in all the possible access permutations. In Figure 5 an example
of assembly code is reported by which it is possible to read a
register with all read_ports of the selected domain.
Particularly, considering the domain 1 and the register r0.0 we
notice that this register is used as operand 1 in the first
instruction of the macro-instruction 1 and then as operand 2 in
the first instruction of macro-instruction 2. Therefore, the
register r0.0 is accessed by all the read_ports of domain 1.
This procedure must be repeated for each register in order to
consider all paths.

 1] -------------------------
xor $r0.34 = $r0.0, $r0.1
xor $r0.35 = $r0.2, $r0.3
xor $r0.36 = $r0.4, $r0.5
xor $r0.37 = $r0.6, $r0.7

 2] -------------------------
xor $r0.34 = $r0.1, $r0.0
xor $r0.35 = $r0.3, $r0.2
xor $r0.36 = $r0.5, $r0.4
xor $r0.37 = $r0.7, $r0.6

 3] -------------------------

Figure 5. Assembly code by which is possible to read r0.0 using the two
read_port of the first domain.

Finally, in order to minimize the number of memory

accesses and therefore limiting the length of the whole test
program, the proposed algorithm compute a signature
calculation using a small LFSR algorithm implemented in few
assembly instructions. The implemented LFSR algorithm
avoid logic fault masking.

The major advantage of the proposed algorithm is that it is
designed to be adopted to test a generic register file for VLIW
processors and it not specific for the register file of the r-VEX
processor. This is due to the fact that the algorithm is fully
parametric and can be used to test a register file with different
number of read- and write- ports and a different number of
computational domains.

V. EXPERIMENTAL RESULTS
We analyzed the efficiency of the proposed SBST

algorithm by performing several fault simulation campaign
injecting stuck-at faults into the r-VEX VLIW model. We
firstly analyzed the structure of the register file in order to
identify the instructions that properly excite this component
operations and the instructions for controlling and observing
the registers.

A. Fault simulation results

Fault simulation is performed with respect to the stuck-at
fault model. The results of the fault simulation experiments,
related to the register file, are reported in Table II, where for
each test program, we showed the duration in terms of number
of clock cycle and reached fault coverage. The whole fault list
is composed of 259,716 faults.

The test program 1 consists of a simple assignment of all
registers with a value and then with a complemented value;
the coverage reached using this basic method is very low. The
test program 2 implements a test methodology developed to
test a generic register file of a superscalar processor. It is

possible to notice that there are problems similar to those of
the previous algorithm, although the coverage is increased, it
still remains overall low. This is mainly due to use of the write
and read ports that, using a generic techniques cannot be fully
tested.

TABLE II. FAULT SIMULATION RESULTS

Algorithm Coverage # Clock Cycles

Test Program 1 35.74% 130

Test Program 2 [1] 56.26% 190

Test Program 3 72.44% 477

Test Program 4 91.49% 949

Test Program 5 95.44% 849

Test Program 6 95.71% 1050

Our SBST Algorithm 97.12% 760

The test program 3 makes write operations exploiting all

possible datapaths; however it has the drawback that each
register is read by only one read port of each domain: in this
manner the coverage slightly increases. In the test program 4
we took into account the need of using all the read_port, thus
increasing the coverage by 19.5%. The test program 5
improves the previous ones by including the assignment
methodology derived from the approaches reported in [1];
special registers r0.63 and r0.1 are also covered. The test
program 6 uses eight different values assigned to the registers
in order to guarantee that registers whose index has a
Hamming distance equal to 1 are assigned with different logic
values. Finally, we wrote the last program according to the
proposed algorithm described in Section IV. Please note the
corresponding reduction in the test duration, due to the
optimizations introduced by the algorithm. When analyzing
the faults that remain untested, it is important to note that the
large part of them are located on the reset signal of the 2,272
Flip-Flops composing the register file, and this signal cannot
be controlled via software access, resulting in a 0.87% of
faults that are untestable. Moreover, another feature that
avoids that the coverage reaches the maximum is the register
r0.0, which by its nature cannot be written.

VI. CONCLUSIONS AND FUTURE WORKS
In this paper, we first showed that the register file is a

significant and critical component for most VLIW processors
in terms of testing, and then presented an SBST algorithm
specifically developed to test it.. The algorithm provides an
advancement with respect to state-of-the-art techniques in the
area, since it is the first algorithm able to effectively test cross-
bar switch-based register files embedded into VLIW
processors. The proposed algorithm has a small impact in
terms of memory used to store the test code and the execution
time is drastically limited with respect to other solutions. It
extends test capabilities with respect to previously developed

approaches since it is applied after the compile-time, therefore
having full control on the execution code. We checked the
effectiveness of this algorithm on a real VLIW platform based
on the r-VEX VLIW processor [6]. The obtained results
clearly demonstrate the efficiency of our algorithm, since we
achieved a fault coverage on stuck-at faults higher than 97%.
As future works we plan to better evaluate the performances
of the proposed solution and to investigate its applicability to
on-line testing and to evaluate the fault coverage with respect
to transition delay faults.

REFERENCES

[1] Nektarios Kranitis, Antonis Paschalis, Dimitri Gizopoulos,
George Xenoulis, Software-based self testing of embedded
processors, IEEE Transaction on Computers, vol. 54, no. 4, pp.
461 – 475, April, 2005.

[2] Psarakis, M.; Gizopoulos, D.; Sanchez, E.; Reorda, M.S.,
Microprocessor software-based self-testing, Design & Test of
Computers, vol. 27, no. 3, pp. 4 – 19, June 2010.

[3] N. Kranitis, A. Merentitis, G. Theodorou, A. Paschalis, D.
Gizopoulos, Hybrid-SBST Methodology for Efficient Testing of
Processor Cores, Design & Test of Computers, Vol. 25, no. 1,
pp. 64 – 75, February 2008.

[4] J. A. Fisher, P. Faraboschi and C. Young, Embedded
Computing: A VLIW Approach to Architecture, Compilers and
Tools, Morgan Kaufmann, pp. 671, 2004.

[5] S. Wong, F. Anjam and F. Nadeem, Dynamically
Reconfigurable Register File for a Softcore VLIW Processor,
IEEE International Conference on Design, Automation and Test
in Europe, pp. 962 – 972, March, 2010.

[6] S. Wong, T. Van As, G. Brown, σ-VEX: A reconfigurable and
extensible softcore VLIW processor, International Conference on
ICECE Technology, pp. 369 – 372, December, 2010.

[7] M. Schölzel, HW/SW Co-Detection of Transient and Permanent
Faults with Fast Recovery in Statistically Scheduled Data Paths,
International Conference on Design, Automation and Test in
Europe (DATE), pp. 723 – 728, March, 2010.

[8] Krstic, A.; Wei-Cheng Lai; Kwang-Ting Cheng; Chen, L.; Dey,
S.; Embedded software-based self-test for programmable core-
based designs, Design & Test of Computers, vol. 19, no. 4, pp.
18 – 27, August, 2002.

[9] Kranitis, N.; Gizopoulos, D.; Paschalis, A.; Zorian, Y.,
Instruction-based self-testing of processor cores, VLSI Test
Symposium, pp. 223 – 228, August, 2002.

[10] Ulbricht, M.; Scholzel, M.; Koal, T.; Vierhaus, H.T, A new
Hierarchical Built-In Self-Test with On-Chip Diagnosis for
VLIW processors, Design and Diagnostic of Electronic Circuits
and Systems (DDECS), pp. 143 – 146, April, 2011.

[11] Koal, T.; Vierhaus, H.T., A Software-based self-test and
hardware reconfiguration solution for VLIW processors, Design
and Diagnostic of Electronic Circuits and Systems (DDECS),
pp. 40 – 43, April, 2010.

[12] J. Liu, B. Bell, T. Troug, Analysis and Characterization of Intel
Itanium Instruction Bundles for Improving VLIW Processor
Performance, International Multy-Symposium on Computer and
Computational Sciences (IMSCCS’06), vol. 1, pp. 389 – 396,
June, 2006.

[13] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas and J. Foster, An
FPGA-based VLIW Processor with Custom Hardware
Execution, in Proceedings of the ACM/SIGDA 13th Internal
Symposium on Field Programmable Gate Arrays (FPGA’05),
pp. 107 – 117, 2005.

