
Multi-Objective Aware Extraction of Task-Level
Parallelism Using Genetic Algorithms

Daniel Cordes
TU Dortmund University

Dortmund, Germany
daniel.cordes@tu-dortmund.de

Peter Marwedel
TU Dortmund University

Dortmund, Germany
peter.marwedel@tu-dortmund.de

Abstract—A large amount of research work has been done in
the area of automatic parallelization for decades, resulting in a
huge amount of tools, which should relieve the designer from the
burden of manually parallelizing an application. Unfortunately,
most of these tools are only optimizing the execution time by
splitting up applications into concurrently executed tasks. In
the domain of embedded devices, however, it is not sufficient
to look only at this criterion. Since most of these devices are
constraint-driven regarding execution time, energy consumption,
heat dissipation and other objectives, a good trade-off has to be
found to efficiently map applications to multiprocessor system on
chip (MPSoC) devices. Therefore, we developed a fully automated
multi-objective aware parallelization framework, which optimizes
different objectives at the same time. The tool returns a Pareto-
optimal front of solutions of the parallelized application to the
designer, so that the solution with the best trade-off can be chosen.

Index Terms—Automatic Parallelization, Embedded Software,
Multi-Objective, Genetic Algorithms, Task-Level Parallelism,
Energy awareness

I. INTRODUCTION

The demands that are imposed on modern embedded devices
are continuously increasing, making multiprocessor system on
chip (MPSoC) devices more and more important in the domain
of embedded systems. By providing multiple cores in one
system, it is possible to fulfill the performance requirements of
today’s embedded applications without drastically increasing
the cores’ frequencies. Unfortunately, these benefits do not
come for free. To efficiently map these mostly sequentially
written applications to MPSoCs, the source code has to be split
up into concurrently executed tasks. Therefore, many (semi-)
automatic tools exist, but most of them are not applicable for
constraint-driven embedded devices.

In the domain of desktop or even high-performance comput-
ing, much computational power and a huge amount of energy
are available. Thus, it is not surprising that most parallelization
tools are only optimizing the execution time of applications at
the expense of other plentiful available resources. In contrast,
many objectives have to be considered at the same time if an
application should be efficiently mapped onto an embedded
MPSoC. Certainly, a lot of execution time can be saved if
multiple cores of an MPSoC are executing an application fully
in parallel. But this requires a huge amount of energy since
all cores must be supplied with power. If the designer knows

that a certain amount of speedup is sufficient for the execution
of an application, it may be a good idea to reduce the amount
of implemented parallelism in order to put some of the cores
into idle mode or switch to a platform with less cores which
saves a lot of energy.

While multi-objective aware optimizations are widely used
in the domain of mapping or scheduling algorithms (e.g., [1],
[2] and [3]), they have not been employed to parallelization
tools so far. In general, most frameworks are first extracting
massive parallel parts of the applications to reduce execution
time before multi-objective or energy aware mapping tools try
to minimize other objectives as well. At this point, a lot of
optimization potential is wasted since mapping tools rely on
the parallelized application, which is given as input.

Therefore, we developed a novel, fully automated multi-
objective aware task-level parallelization framework which op-
timizes different objectives at the same time by using genetic
algorithms. In the current implementation, execution time,
energy consumption and communication costs are evaluated
by the parallelization approach. While the first two objectives
are in general contrary to each other, the communication costs
may be correlated with both objectives. The parallelization
algorithm determines a Pareto-front of optimized solutions
from which the designer can choose the most suitable solution
for his scenario.

The main contributions of this paper are as follows:
1) To the best of our knowledge, this is the first paralleliza-

tion approach which uses genetic algorithms to partition
applications in a multi-objective aware manner.

2) In contrast to the high-performance computing commu-
nity, this framework focuses on the requirements for
constraint-driven embedded devices.

3) We use high-level models to evaluate different objectives
without re-simulating the whole application.

The rest of the paper is organized as follows: Section II
gives a survey of related work, followed by a short explanation
of the hierarchical task graph in Section III, employed as
intermediate representation. Section IV gives an overview of
the overall parallelization algorithm, before the multi-objective
aware parallelization approach is described in Section V.
Afterwards, Section VI gives an overview of our framework
which is evaluated in Section VII. Finally, Section VIII sum-
marizes this paper and gives directions for future work.978-3-9810801-8-6/DATE12/ c© 2012 EDAA



II. RELATED WORK

The first Multi-Core architectures were invented decades
ago. As a result, special programming languages or models
like, e.g., MPI, PThreads and OpenMP as well as semi-
or fully automatic parallelization techniques were developed.
Most of these techniques can be grouped into at least the
categories of task-level, data-level and pipeline parallelism.

The first category of tools extracts very coarse grained
parallelism by, e.g., moving independent function calls into
concurrently executed tasks. The frameworks of Hall et al. [4],
Ceng et al. [5] and our previous publication [6] are dealing
with the extraction of this kind of parallelism in a semi-
and fully-automatic manner. Other approaches like the ones
published by Verdoolaege et al. [7], Sarkar [8] and Ottoni [9]
are also extracting task-level parallelism.

In addition to task level parallelism, the finer-grained data
level and pipeline parallelism techniques are focusing on loops
in applications. While, in general, data-level parallelism splits
the amount of data being processed into equal tasks [10], [11],
pipeline parallelism splits the body of a loop into disjunctive
pipelined stages. Raman et al. [12], Tournavitis et al. [13] and
our previous publication in [14] are examples of frameworks
which are able to extract this kind of parallelism.

The framework presented in this publication belongs to the
first category of tools which extract task-level parallelism.
Compared to our work, the abovementioned ones are only
optimizing the performance and disregard other objectives, like
e.g., energy consumption or bus load. Qiu et al. [15] present an
energy-aware loop parallelization method, which is most rele-
vant to our work. They are optimizing performance and energy
consumption while parallelizing an application. In contrast to
our publication, [15] implements a two phase strategy, which
first parallelizes loops to optimize the performance of an appli-
cation. Afterwards, they try to reduce the energy consumption
of the system based on the previously parallelized application.
Instead, our work is observing different objectives at the same
time, so that optimizations are not based on decoupled phases,
which may lead to sub-optimal results. Wang et al. [16]
are also implementing a two phase strategy to parallelize
streaming applications. Cho et al. [17] present theoretical
formulas describing the interplay of program performance and
energy consumption of a parallelized application.

Thus, best to our knowledge, our work is the first one which
uses genetic algorithms to take multi-objective aware decisions
while extracting task-level parallelism from sequential appli-
cations for MPSoCs.

III. HIERARCHICAL TASK GRAPH

The complexity of the solution space is always a problem
for tools which are dealing with automatic parallelization.
Since our multi-objective aware approach is optimizing for at
least three objectives at the same time, good approximations
in the intermediate representation are essential. Hence, we are
using an augmented hierarchical task graph as intermediate
representation (cf. Figure 1). The graph contains several hier-
archical levels, which correspond to the hierarchical structure

Simple Node

In

Out

... ...

...

In

Out

...

In

Out

In

Out

Hierarchical Node

Communication Node

                        Node Info:
                Iteration count:  16
                Execution cost:   200
        Energy consumption: 0.16 nJ
             Reference to Statement

                             Edge Info:
               Edge type:                      RAW
               Communication cost:  64
               Communicated data:   a[i]
               Iteration count:             8

Fig. 1. Hierarchical Task Graph Example

of an application. Thus, complex statements like, e.g., loops,
selections or function bodies are represented by hierarchical
nodes. Expression statements like, e.g., a = b are represented
by simple nodes, without additional hierarchical levels.

Dependencies which may lead to inter-task communication
are depicted by directed edges between the nodes of the graph.
Each hierarchical level contains a communication in- and out-
node which encapsulates the communication of each hierar-
chical level. Thus, each hierarchical node can be parallelized
in isolation, so that the approach does not have to consider
the whole application at once. Both, nodes and edges of the
graph are augmented with information like execution counts,
execution times, energy consumption, etc., which are extracted
by our framework.

The hierarchical task graph is extracted fully automatically
from sequential ANSI-C code, to enable an automatic paral-
lelization tool flow. For more information on the structure and
how to extract the graph, we would like to refer to [6].

IV. TOOL FLOW

As already mentioned, the multi-objective aware paralleliza-
tion tool is able to parallelize sequential applications which
are written in ANSI-C code. In a first step, our framework
analyzes the application to extract information which is nec-
essary to create the corresponding hierarchical task graph. As
soon as the graph is extracted, the parallelization process starts
to extract parallelism in a bottom-up search strategy in the
hierarchical structure of the graph. Each hierarchical node
is processed in isolation. The genetic algorithm is moving
child nodes of the hierarchical nodes to tasks which are
then evaluated for all considered objectives. As a result, a
front of Pareto-optimal solutions for the different objectives is
attached to the hierarchical nodes. As soon as all nodes on the
same level of the hierarchy are processed, the parallelization
algorithm continues with the parent node. There, the algorithm
is also able to move child nodes to new tasks. In addition,
it also chooses one of the solutions of the Pareto-front of
each child node which may contain additional tasks deeper



 T1  T1  T2  T3 ...  T4  S1,4  S2,3  S3,2  S4,8 ...  Sn,4

Node1..n Node1..n

Node-to-Task Mapping
Hierarchical

Parallel Solution

Fig. 2. Individual’s Gene Structure

in the hierarchy. This procedure is continued until each node
in the hierarchical task graph is processed and the top node is
reached. The Pareto-front of parallel solutions is then returned
to the designer so that the solution with the best trade-off for
his scenario can be chosen.

V. MULTI-OBJECTIVE AWARE PARALLELIZATION

Genetic algorithms are well known for their applicability to
multi-objective optimizations. They combine natural selection
methods with genetic mutation of individuals. Each individual
represents a solution candidate with fitness values for each
observed objective. Populations consist of individuals. In each
optimization step, a couple of individuals of the population
are selected to survive with a probability proportional to
their fitness values. These individuals are then mutated and
recombined to generate the next population. This process is
continued until a pre-defined stopping criterion is met.

A. Gene Structure

As already explained in Section IV, each hierarchical node
of the graph is processed in isolation. Due to the bottom-up
direction of the parallelization process, all child nodes deeper
in the hierarchy are already processed, so that a Pareto-front
of different solutions which may contain additional tasks is
attached to each child node. The challenge of parallelizing a
hierarchical node is to find an efficient node-to-task mapping
for all direct child nodes and to select one of the parallel
solutions for each child node. Thus, the parallelization algo-
rithm is able to extract new parallelism at the current level of
the hierarchy which can be combined with parallelism found
deeper in the hierarchy.

The gene structure of the individuals for a hierarchical node
to be parallelized is depicted in Figure 2. It consists of two
parts. The first part maps a node Ni to a task Tj while the sec-
ond part selects a parallel solution Si,k for each child node Ni.
Thus, the individual consists of NumberOfChildNodes ∗ 2
positions and can be efficiently implemented by an array of
integer values. The gene in Figure 2, for example, specifies
that nodes N1 and N2 are mapped to task T1, while node
N3 is mapped to task T2. In addition, the hierarchical parallel
solution S1,4 is chosen for node N1, parallel solution S2,3 is
chosen for node N2, etc.

The impact of the gene’s configuration is visualized in
Figure 3. The inner task graph structure for the hierarchical
node to be parallelized is shown on the top right of the
figure, according to the node-to-task mapping of the gene
on the left hand side. Since data and control dependencies
between the created tasks hinge on the chosen node-to-task
mapping, the structure of the graph may change if one node

 T1

 T3
 T2

 T4

N3

N6

N2

N7

N1

N4

N5

Gene 
Representation

Task Graph

Hierarchical
Parallel Solutions 
(Pareto-frontiers)

T1

T1

T2

T3

T3

T4

T4

N2

N3

N4

N5

N6

N7

N1

N
o

d
e-

to
-T

as
k 

M
ap

p
in

g
H

ie
ra

rc
h

ic
al

 
P

ar
al

le
l S

o
lu

ti
o

n
s

S1,4

S2,3

S3,2

S4,8

S5,9

S6,3

S7,4

N2

N3

N4

N5

N6

N7

N1 N1

N2

N5

N3

N6

N4

N7

Node 1 (Selected Point S4):
Execution costs:  162 cycles

Energy consumption: 0.16 nJ
Communicated data:   200

Number hierarchical tasks: 3

Selected Parallel 
Solution for Node N1

S1,1

S1,6

S2,1

S2,7

S5,1

S5,9

S6,1

S6,7

S7,1

S7,7

S4,1

S4,9

S3,1

S3,5

Fig. 3. Impact of Gene Configuration on the Parallelized Hierarchical Node

is moved to another task. Thus, if node N5 is moved to task
T2, for example, a new dependency between T3 and T2 arises
which has to be taken into account for the evaluation of the
objective’s fitness values. Since all child nodes N1, .., N7 may
also be hierarchical nodes, different parallel solutions may
exist which were extracted deeper in the hierarchy. Thus, the
parallelization algorithm has to choose one of these solutions
from the Pareto-fronts of the child nodes. In the example of
Figure 3, the hierarchical parallel solution S1,4 is chosen for
Node N1, solution S2,3 is chosen for Node N2 and so on. Since
all child nodes were processed in isolation, each one has its
own Pareto-front of possible parallel solutions. The selected
parallel solution contains a task graph for the child node which
directly influences the execution time, the energy consumption
and other objectives for the evaluation of this node. Thus, if a
solution with more generated hierarchical tasks for node N1 is
chosen, the execution time for this node might be decreased,
while the energy consumption is increasing due to, e.g., more
communication. The next subsection explains the high-level
models which are used to evaluate the fitness values of the
different objectives.

B. Objective Evaluation

In the current implementation, we observe three objectives,
namely the execution time, which reflects the speedup of
the application, the energy consumption of executing the
application on the embedded device, and the communication
overhead, which gives a hint on the bus load of the parallelized
application.

1) Execution time: The evaluation of the fitness value
for the execution time of a gene is based on the algorithm
of Sarkar [18] and our previous publication [6] and returns
a linear execution time estimation. Due to the hierarchical



structure and the cycle-freeness of the hierarchical sub-graphs,
the fitness value is equal to the execution time of the longest
(or most critical) path through the sub-graph of the parallelized
hierarchical node. In the example of Figure 3, the longest path
may be T1 → T3 → T4, depending on the execution time and
the communication delay of the tasks. The following Equations
show the calculation of the fitness value for the execution time
in a more formal way.

The execution time ET (Ti) for task Ti is equal to the sum of
the execution times ETN(n, Sn) of the child nodes n which
are mapped to task Ti and a constant task creation overhead
TCO. The execution time of the child nodes depends on the
chosen hierarchical parallel solution Sn:

ET (Ti) = TCO +
∑

n∈Nodes(Ti)

ETN(n, Sn)

The path costs PC(Ti) of task Ti are recursively defined and
equal to the sum of the execution time ET (Ti) of the task itself
plus the path costs PC(t) of the most expensive predecessor
task t including the communication costs CC(t, Ti):

PC(Ti) = ET (Ti)+max{PC(t)+CC(t, Ti)|∀t ∈ Pred(Ti)}

Finally, the overall execution time is equal to the longest
execution path of the node’s sub-graph:

OverallET = max{PC(t)|∀t ∈ Tasks}

2) Energy consumption: The fitness value of the energy
consumption of a gene’s configuration contains energy costs
which arise due to task spawning, statement execution and
communication, like shown in the following equations.

The energy consumption ICE(Ti) for the incoming com-
munications of task Ti is calculated by summing up a static
overhead for the incoming data ICEO (for setting up the
communication channels etc.) and a factor ICM per commu-
nicated byte:

ICE(Ti) =
∑

d∈InData(Ti)

ICEO +#Bytes(d) ∗ ICM

The energy consumption OCE(Ti) for the outgoing commu-
nications is similar to ICE(Ti):

OCE(Ti) =
∑

d∈OutData(Ti)

OCEO +#Bytes(d) ∗OCM

The total amount of energy E(Ti) consumed by each task Ti

is the sum of a constant task creation overhead TCE, the
energy which has to be spent to execute the statements of the
task EE(Ti) which is annotated in the graph (it also depends
on the chosen hierarchical parallel solution of the nodes) and
the energy for the incoming and outgoing communication:

E(Ti) = TCE + EE(Ti) + ICE(Ti) +OCE(Ti)

Thus, the overall energy consumption for a gene’s configu-
ration is equal to the sum of the energy consumption of all
tasks:

OverallEnergy =
∑

t∈Tasks

E(t)

Sequential ANSI C-
Source Code

Parallelized and 
mapped source code

Parallelization
Tool

ATOMIUM
Tools

Parallel
ANSI C-Code

Mapping tool

Augmented
ANSI C-Code

Parallel 
Specification

Overall 
Tool Flow

MACC
Database

Hierarchical Task 
Graph extraction

GA-based parallelization

Code optimization

Dependency
analysis

Exec-time + Engery
estimation

Parallelization Tool

PISA Framework
SPEA 2 -

Genetic Solver

U
n

ix
-S

o
ck

et
C

o
m

m
u

n
ic

at
io

n

(a) (b)

Fig. 4. Implemented Tool Flow

3) Communication overhead: In our current implementa-
tion, the evaluation of the communication overhead’s fitness
value is equal to the sum of the communicated bytes of all
tasks multiplied by a specified communication delay:

CommOverhead =
∑

data∈Comm

#Bytes(data) ∗ Costs

C. Gene-Mutation & Cross-Over

The mutation of a selected gene is done by modifying one
position of the individual’s gene with a fixed probability. Thus,
one statement is moved from one task to another, or a different
hierarchical parallel solution is chosen for one of the child
nodes. The most challenging problem in the mutation step is
to avoid the creation of cyclic – and thus invalid – solutions
regarding the dependencies of the created task graph, since it
is very easy to create such cyclic solutions. If, for example,
node N5 of Figure 3 is moved to task T2 and N6 is moved to
T3 within two mutation steps, T2 would depend on T3 and T3

would depend on T2 if communication is only allowed at the
beginning and at the end of each task. Therefore, we added
special checks which prevent that such a solution is created
in the mutation and cross-over steps.

Recombining two different genes (cross-over) is done by
cutting two genes at a randomly chosen position so that the
left side of one gene is joined with the right side of the other
one and vice versa. Here again, we are also preventing the
generation of cyclic solutions.

VI. EXPERIMENTAL ENVIRONMENT

All described techniques are fully implemented and inte-
grated in our parallelization framework which was previously
published in [6] (cf. Figure 4(a)). The sequential application’s
source code which is used as input for the tool flow is parsed
into a high-level intermediate representation. All tools are
developed on top of the MACC framework [19] which is used
to facilitate the communication between all processing steps
of the tool flow. The framework stores intermediate results,



1x 1.2x 1.4x 1.6x 1.8x 2x 2.2x100 %
160 %

220 %
280 %

340 %

4x

8x

12x

16x

20x

C
o
m

m
u
n
ic

at
io

n
 

fa
ct

o
r 

[b
yt

es
]

Speedup of Exec. Time [cycles]

Energy [nJ]

Dominated
Pareto-Optimal

(a) Model: edge detect

1x 1.3x 1.6x 1.9x 2.2x 2.5x 2.8x100 %
165 %

230 %
295 %

360 %

2x
4x
6x
8x

10x
12x

C
o
m

m
u
n
ic

at
io

n
 

fa
ct

o
r 

[b
yt

es
]

Speedup of Exec. Time [cycles]

Energy [nJ]

Dominated
Pareto-Optimal

(b) Model: mult 10 10

1x 1.3x 1.6x 1.9x 2.2x 2.5x 2.8x 3.1x100 %
155 %

210 %
265 %

320 %

20x

40x

60x

80x

100x

C
o
m

m
u
n
ic

at
io

n
 

fa
ct

o
r 

[b
yt

es
]

Speedup of Exec. Time [cycles]

Energy [nJ]

Dominated
Pareto-Optimal

(c) Model: boundary value

100 %

165 %

230 %

295 %

360 %

1x 1.2x 1.4x 1.6x 1.8x 2x 2.2x

E
n
er

g
y 

[n
J]

Speedup of Exec. Time [cycles]

Model

Simulation

(d) Simulation: edge detect

100 %

145 %

190 %

235 %

280 %

325 %

370 %

1x 1.3x 1.6x 1.9x 2.2x 2.5x 2.8x 3.1x
E
n
er

g
y 

[n
J]

Speedup of Exec. Time [cycles]

Model

Simulation

(e) Simulation: mult 10 10

100 %

150 %

200 %

250 %

300 %

350 %

1x 1.3x 1.6x 1.9x 2.2x 2.5x 2.8x 3.1x

E
n
er

g
y 

[n
J]

Speedup of Exec. Time [cycles]

Model

Simulation

(f) Simulation: boundary value

Fig. 5. Final parallel solutions based on the used models (a-c) compared to the evaluation on the MPARM/MEMSIM simulator (d-f)

the application’s IR and a description of the target platform in
a database, so that all tools can easily access this information.

The parallelization tool described in this publication extracts
the parallelism of the application in a multi-objective aware
manner and annotates the application’s source code to express
the parallelism of the chosen Pareto-point. This annotated
source code and a parallel specification is passed to the
ATOMIUM (MPA) tool suite [20], which is then implementing
the extracted parallelism. Finally, a mapping tool is used to
map the different tasks to the target platform.

The internal structure of the parallelization tool is depicted
in Figure 4(b). In a pre-processing step, high-level optimiza-
tions like, e.g., constant propagation are applied to the source
code to enable the extraction of more efficient parallelism.
Afterwards, a dependency analysis and a platform dependent
execution time and energy estimation tool are executed. The
second tool is extracting this information by simulating the
statements of the application, so that this information can be
annotated to the hierarchical task graph, which is extracted
in the succeeding step (cf. [6]). Finally, the presented GA-
based algorithm can be executed to extract the parallelism of
the application. The selection of individuals which should be
mutated or recombined and the generation of the Pareto-fronts
are done by the SPEA2 genetic solver [21] (part of the PISA
framework).

VII. EXPERIMENTAL RESULTS

To evaluate the validity of the results produced by our paral-
lelization framework, we present results for benchmarks from
the UTDSP suite [22], as well as additional meaningful em-
bedded applications like a JPEG encoder. As target platform,
we used the cycle-accurate MPARM simulator [23] which
provides up to four separate single-core ARM processors. The
simulator is equipped with a detailed energy model called
MEMSIM, which makes it most suitable for our purposes.

Figure 5(a-c) shows the parallel solutions for three of the

evaluated benchmarks which are determined by our novel par-
allelization framework based on the presented high-level mod-
els. The three objectives, namely speedup, energy consumption
and communication, are visualized in a 3D-point diagram. The
3D-points are projected to the 2D plane to improve readability.
The axes of the diagram are normalized to the solution with the
lowest speedup and the minimal energy consumption. Figure
5(a-c) shows both, the Pareto-optimal solutions, as well as the
dominated ones, for the top hierarchical node. The designer
is now able to choose one of the Pareto-optimal solutions
which complies with the best trade-off for his scenario. If, e.g.,
a speedup of 1.4x might be sufficient for the parallelization
of the edge detect benchmark (c.f. Figure 5(a)), the amount
of consumed energy (compared to the sequential execution)
increases to around 200%. Nevertheless, if the solution with
the highest speedup were chosen – like done by most ex-
isting parallelization frameworks, which are only optimizing
the speedup – the energy consumption would increase to
over 340%. Thus, 140% percent of energy could be saved
here, by using our multi-objective aware framework. Similar
optimization potentials can be observed for the benchmarks
mult (cf. Figure 5(b)) and boundary value (cf. Figure 5(c)).
Compared to the results of the edge detect application, it can
be seen that less Pareto-optimal points were found, since many
solutions are Pareto-dominated. Nevertheless, a speedup of up
to 2.9x with 280% energy consumption (mult) and 3.1x with
310% energy consumption (boundary value) create a huge
optimization potential for our multi-objective aware trade-offs.

Since the applicability of our framework strongly depends
on the soundness of the used high-level models, Figure 5(d-
f) opposes the Pareto-optimal points of our model to the
simulated results on the target platform. The third objective
(amount of communication) is not shown here, since it cannot
be measured by the simulator. Nevertheless, the most im-
portant ones are speedup and energy consumption. We have
configured the MPARM simulator to have the same amount



TABLE I
EVALUATION OF GENETIC PARALLELIZATION ALGORITHM

Benchmark Time #N #Pop #Ind #Mut #Cross #S
adpcm enc. 00:49 27 1,376 146,003 27,164 91,616 5
bound. value 01:04 6 532 79,933 15,122 50,492 4
compress 09:07 131 6,552 592,124 110,426 371,048 5
edge detect 02:08 47 2,088 175,203 32,506 109,528 12
filterbank 01:36 4 212 22,198 4,223 14,012 6
fir 256 00:18 7 292 26,462 4,883 16,620 4
iir 4 00:51 7 564 82,224 15,373 51,996 6
jpeg2000 04:36 43 2,468 294,970 55,655 186,988 42
latnrm 32 00:13 11 460 37,122 6,884 23,172 4
mult 10 00:14 10 404 34,511 6,529 21,500 4
spectral 01:36 38 1,948 190,266 35,498 120,084 33

of cores as concurrently executed tasks appearing in the
parallelized application. Thus, a solution with 2 concurrently
executed tasks is executed on a platform with 2 cores. Of
course, there can be several parallel regions in the application.
All cores which are not executing threads at a given timeframe
are put into idle mode to save energy. As depicted in the
figures, the trend of increasing energy consumption for more
expressed parallelism was confirmed by the simulator. In
addition, the figures show that the points of our high-level
model are comparable to the simulated ones which makes the
model accurate enough to be used for our purposes.

We have summarized the results for all evaluated bench-
marks in Table I. The columns contain information about the
time in minutes which was necessary to parallelize the appli-
cations with the presented parallelization approach (Time), the
number of processed nodes (#N), the number of generated
populations (#Pop), the overall number of generated and
evaluated individuals (#Ind), the number of mutated (#Mut)
and recombined (#Cross) individuals and the number of of-
fered Pareto-optimal solutions (#S) which are returned to the
designer. The number of individuals and populations used
to parallelize a hierarchical node is determined dynamically,
based on the number of child nodes and the number of found
hierarchical solutions. Thus, nodes with probably less parallel
solutions are processed much faster. The shown numbers of
populations, individuals, mutations etc. are summed up over all
parallelized hierarchical nodes. As can be seen, our approach
is able to create and evaluate individuals very fast due to the
usage of the presented high-level models. To parallelize, e.g.,
the compress benchmark, more than half a million individuals
were generated and evaluated in about 9 minutes which is
only possible due to the usage of our accurate high-level
models. The number of offered Pareto-optimal solutions varies
between 4 and 42, depending on the available parallelism of
the application. This also shows that our framework is able to
give the designer a huge amount of freedom in finding good
trade-offs for the parallelization process.

VIII. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, this paper presents the
first parallelization approach which uses genetic algorithms
to partition embedded applications in a multi-objective aware
manner. We have shown that our high-level models are accu-
rate enough to enable trade-offs between the considered ob-
jectives, which are namely speedup, energy consumption and

communication overhead. The applicability of the framework
was demonstrated on several real-life benchmarks from typical
embedded system application domains.

In the future, we would like to extend our framework and
the used models to be capable of dynamic voltage scaling
(DVS) to further optimize the energy consumption of the
embedded device. Even if this might lead to a decrease of the
application’s speedup, the trade-off can be perfectly integrated
in our framework. In addition, we would also like to evaluate
the influence of other objectives (e.g., code size) as well.

REFERENCES

[1] L. Thiele, I. Bacivarov, W. Haid et al., “Mapping Applications to Tiled
Multiprocessor Embedded Systems,” in Proc. of ACSD. IEEE Computer
Society, 2007.

[2] H. Nikolov, M. Thompson, T. Stefanov et al., “Daedalus: Toward
composable multimedia MP-SoC design,” in Proc. of DAC, 2008.

[3] S. Ha, “Model-based Programming Environment of Embedded Software
for MPSoC,” in Proc. of ASP-DAC. IEEE Computer Society, 2007.

[4] M. H. Hall, S. P. Amarasinghe, B. R. Murphy et al., “Detecting coarse-
grain parallelism using an interprocedural parallelizing compiler,” in
Proc. of Supercomputing, 1995.

[5] J. Ceng, J. Castrillon, W. Sheng et al., “MAPS: an integrated framework
for MPSoC application parallelization,” in Proc. of DAC, 2008.

[6] D. Cordes, P. Marwedel, and A. Mallik, “Automatic parallelization of
embedded software using hierarchical task graphs and integer linear
programming,” in Proc. of CODES/ISSS. ACM, 2010.

[7] S. Verdoolaege, H. Nikolov, and T. Stefanov, “pn: A Tool for Improved
Derivation of Process Networks,” EURASIP Journal on Embedded
Systems, 2007.

[8] V. Sarkar, “Automatic partitioning of a program dependence graph into
parallel tasks,” IBM Journal of Research and Development, 1991.

[9] G. Ottoni, R. Rangan, A. Stoler et al., “Automatic Thread Extraction
with Decoupled Software Pipelining,” in Proc. of MICRO 38, 2005.

[10] B. Franke and M. O’Boyle, “Compiler parallelization of C pro-
grams for multi-core DSPs with multiple address spaces,” in Proc. of
CODES+ISSS. ACM, 2003.

[11] R. Chandra, D.-K. Chen et al., “Data distribution support on distributed
shared memory multiprocessors,” ACM SIGPLAN Notices, 1997.

[12] E. Raman, G. Ottoni, A. Raman et al., “Parallel-stage decoupled
software pipelining,” in Proc. of CGO. ACM, 2008.

[13] G. Tournavitis and B. Franke, “Semi-automatic extraction and exploita-
tion of hierarchical pipeline parallelism using profiling information,” in
Proc. of PACT. ACM, 2010.

[14] D. Cordes, A. Heinig, P. Marwedel et al., “Automatic Extraction of
Pipeline Parallelism for Embedded Software Using Linear Program-
ming,” in Proc. of ICPADS, 2011.

[15] M. Qiu, J.-W. Niu, L. T. Yang et al., “Energy-Aware Loop Parallelism
Maximization for Multi-core DSP Architectures,” in Proc. of GreenCom.
IEEE Computer Society, 2010.

[16] Y. Wang, H. Liu, D. Liu et al., “Overhead-aware energy optimization
for real-time streaming applications on multiprocessor System-on-Chip,”
ACM Trans. Des. Autom. Electron. Syst., vol. 16, 2011.

[17] S. Cho and R. G. Melhem, “On the Interplay of Parallelization, Program
Performance, and Energy Consumption,” IEEE Trans. Parallel Distrib.
Syst., 2010.

[18] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multipro-
cessors. MIT Press, 1989.

[19] R. Pyka et al., “Versatile System-level Memory-aware Platform Descrip-
tion Approach for Embedded MPSoCs,” in Proc. of LCTES, 2010.

[20] R. Baert, E. Brockmeyer et al., “Exploring parallelizations of applica-
tions for MPSoC platforms using MPA,” in Proc. of DATE, 2009.

[21] S. Bleuler, M. Laumanns, and L. T. andothers, “PISA — A Platform and
Programming Language Independent Interface for Search Algorithms,”
in Proc. of EMO. Springer, 2003.

[22] C. G. Lee, “UTDSP Benchmark Suite,” http://www.eecg.toronto.edu/
˜corinna/DSP/infrastructure/UTDSP.html, July 2011.

[23] L. Benini, D. Bertozzi, A. Bogliolo et al., “MPARM: Exploring the
Multi-Processor SoC Design Space with SystemC,” Journal of VLSI
Signal Processing Systems, 2005.


