
978-3-9810801-8-6/DATE12/ c�2012 EDAA

Scheduling for Register File Energy Minimization
in Explicit Datapath Architectures

Dongrui She, Yifan He, Bart Mesman, Henk Corporaal
Department of Electrical Engineering, Eindhoven University of Technology

{d.she, y.he, b.mesman, h.corporaal}@tue.nl

Abstract—In modern processor architectures, the register file
(RF) consumes considerable amount of the processor power.
It is well known that by allowing software to have explicit
fine-grained control over the datapath, the transport-triggered
architectures (TTAs) can substantially reduce the RF traffic,
thereby minimizing the RF energy. However, it is important
to make sure that the gain in RF is not cancelled out by the
overhead due to the fine-grained datapath control, in particular,
the deterioration of code density in conventional TTAs.

In this paper, we analyze the potential of minimizing RF energy
in MOVE-Pro, a TTA-based processor framework. We present a
flexible compiler backend, which performs energy-aware instruc-
tion scheduling to push the limit of RF energy reduction. The
experimental results show that with the proposed energy-aware
compiler backend, MOVE-Pro is able to significantly reduce RF
energy compared to its RISC/VLIW counterparts, by up to 80%.
Meanwhile the code density of MOVE-Pro remains at the same
level as its RISC/VLIW counterparts, allowing the energy saving
in RF to be successfully transferred to total energy saving.

Index Terms—TTA, MOVE-Pro, Low Power, Code Generation,
Register File

I. INTRODUCTION

In the coming years, embedded systems, especially the ones
in mobile devices like smart phones, are becoming more and
more important in everyday life. The rapid development in
embedded processors enables such devices to run high per-
formance applications like wireless communication and high
definition video codecs. However, power efficiency is becom-
ing the dominant determinant of embedded system design: in
most cases, embedded systems have limited power sources like
batteries, which greatly constrain the use of high performance
processors. Moreover, high power dissipation makes the chip’s
thermal design more difficult. A lot of work has been done in
different ways to reduce the processor power. We observed
that a substantial part of the energy is consumed by register
file (RF). Therefore in this paper, we particularly focus on
reducing energy consumption of the RF, and converting this
energy saving into the total core energy reduction.
In typical embedded application kernels, most of the vari-

ables have very low use count. Table I shows the local
variable statistics of five representative kernels. In a pipelined
processor, a lot of such variables can be accessed via the
bypassing network instead of the RF. However, in conven-
tional processor architectures, these RF accesses are usually
performed regardless of the necessity unless relatively complex
pre-decode logic is introduced, which result in a power hungry
RF and a hotspot on the chip.

This work is supported in part by the Dutch Technology Foundation STW,
project NEST 10346.

Table I: Kernel local variable statistics in basic blocks

Histogram FIR IDCT YUV2RGB MatVec
Avg. reads per var. 1.59 1.71 1.55 1.77 1.55
Local var. with

98.25% 94.10% 98.72% 90.31% 85.00%
< 3 uses

Intuitively, having fine-grained control over the datapath can
reduce the unnecessary RF accesses. The transport triggered
architecture (TTA) is an ideal candidate for this purpose.
Because in a TTA the software explicitly controls every data
movement in the datapath, making it relatively easy to reduce
RF accesses [1]. However, a conventional TTA has drawbacks
in code density and compiler design complexity, as well as
unsatisfying power and performance results. MOVE-Pro is a
TTA-based processor architecture [20]. It exploits the software
bypassing flexibility in TTA, while a number of features
are added to improve the efficiency over conventional TTAs.
In this paper we present the design of a compiler backend
for MOVE-Pro. The core of the MOVE-Pro compiler is the
scheduler. Apart from reducing the number of RF accesses,
the scheduler also needs to ensure that the schedule is as
short as possible, since its length has great impact on both
performance and energy consumption. Experimental results
show a significant RF energy reduction: up to 80%. The energy
saving is still significant when the energy consumption of
instruction memory is taken into account.

This paper makes the following contributions:
• We introduce the design of a new compiler for MOVE-

Pro using a graph-based resource model for the datapath.
Compared to the compiler in [8], the proposed design
has the following advantages: 1) the resource model is
much more flexible, which enables code generation for
less regular architectures; 2) with the proposed model,
the compiler can integrate more passes to improve code
generation results.

• Based on the resource model, max flow calculation is
used to ensure deadlock freedom, which guarantees that
the scheduler can generate valid schedules.

• Comprehensive comparison of energy consumption be-
tween MOVE-Pro and its RISC/VLIW counterparts is
performed, demonstrating the effectiveness of the pro-
posed design.

The remainder of this paper proceeds as follows: Section II
introduces the basic idea behind register file access reduction.
MOVE-Pro, the TTA-based architecture proposed in [20] is
briefly presented in Section III. The proposed energy-aware
compilation flow for MOVE-Pro is depicted in Section IV.
In Section V, the proposed design is verified with a detailed

�������� ����

�� �

��

��

��

�� �

������ �������

� �

� � �

�

� � � �

Figure 1: Operand bypassing in a typical VLIW processor datapath

add r3, r4, r7

add r12, r3, r7

sw 0(r1), r12

r4 r7

r1 0

SW
+

+

Figure 2: RF access elimination example

comparison between MOVE-Pro and its RISC/VLIW counter-
parts. Section VI discusses related work. Finally, Section VII
concludes our findings and discusses future work.

II. REGISTER FILE ACCESS REDUCTION

In processors designed for multi-media and/or high perfor-
mance signal processing, the RF is one of the most power
hungry components in the datapath, which could account for
over 40% of the datapath power consumption [3]. For multi-
issue architecture, the demand for RF with many ports is
especially costly [12]. In this work, we focus on saving the RF
power consumption by reducing the number of RF accesses.
Fig. 1 shows the datapath of a typical VLIW processor. To

reduce pipeline stalls caused by data dependencies, a bypass
network is usually employed to allow an instruction to use
the results which are available in the pipeline but haven’t yet
been written back to the RF. With the bypass network, there
are three situations where RF accesses are not necessary:

• Bypassing: the result of an operation can be read from
the pipeline register before it is written back to RF.

• Dead result elimination: if all uses of a variable are
bypassed, writing it back to the RF is not necessary.

• Operand sharing: when an operand is used successively
on the same port of a function unit (FU), it only needs
to be read once.

The left side of Fig. 2 shows an example in which all three
types of RF access eliminations are possible:

• Register r3 in the second addition (add) and r12 in the
store instruction (sw) can be bypassed;

• After bypassing, values of r3 and r12 can be discarded;
• Register r7 is shared by the two additions, so only the

first instruction needs to actually read r7 from the RF.
In Table II, we depict five representative streaming kernels

which are studied in this paper. Table I shows the percentage of
local variables with less than 3 uses in these kernels. Clearly,
most variables have very small use counts, which can be
interpreted as a huge potential to eliminate RF accesses.

III. EXPOSED DATAPATH ARCHITECTURE

Architectures like RISC, Superscalar, and VLIW can be
categorized as operation-triggered architectures. In such archi-
tectures, an instruction typically specifies what the operation
is and what the required operands are. Usually, they cannot
eliminate the unnecessary RF accesses identified in Section II.

Table II: Kernel description

Kernel Description
FIR 5-tap 32-bit finite impulse response filter

Histogram 256-bin histograming for 8-bit gray-scale image
YUV2RGB YUV to RGB color space conversion for 24-bit image

IDCT Inverse cosine transformation in the JPEG decoder
MatVec Matrix vector multiplication

In a transport-triggered architecture (TTA), however, instruc-
tions control the datapath by specifying the data transportation
between different units, and operations are merely side-effects
of the transportation [1], as shown in Fig. 3. TTA is well-
known for its cost-effective trade-off between performance and
flexibility. It is able to generate optimized cores for various
domains, e.g., multimedia, telecommunication [1], [2], [16].

In this work, we explore TTA’s low-power potential inher-
ited from its explicit datapath nature, i.e., the capability of
directly transferring an operand from the output of one unit
to the input of another. With proper scheduling of the data
transport, RF accesses can be dramatically reduced compared
to its RISC/VLIW counterparts. As a result, the total processor
energy consumption is expected to be reduced accordingly.
However, it is challenging to achieve this goal due to some
disadvantages of conventional TTAs:

• Code density is likely to be lower than RISC/VLIW [13].
• The separate scheduling of source operands increases cir-

cuit switching activity, causing more power consumption.
• Operations can only be triggered by moving data to the

trigger port, introducing extra scheduling constraints.
• Inefficient support for large immediate, which deterio-

rates code density and power consumption [1].
To fully utilize TTA’s low-power potential and to convert the
energy saving in RF to the energy saving of the complete
processor core, we proposed MOVE-Pro, a TTA-based pro-
cessor framework [20]. A brief description of the MOVE-Pro
architecture is presented in the remainder of this section.

A. MOVE-Pro Architecture

The block diagram of the MOVE-Pro architecture is shown
in Fig. 4. The main differences between MOVE-Pro and
conventional TTAs are:

1) Output Buffer: Each output port of the FUs is connected
to a small buffer, which is a first-in-first-out (FIFO) queue and
all entries are accessible. The result of an operation is kept in
the buffer until it is popped out by new ones. The use of
output buffer greatly increases the chance of bypass, thereby
eliminating unnecessary RF accesses.

2) Shadow Input Register: To avoid the extra FU circuit
activity caused by separate scheduling of source operands, we
introduce shadow input buffers for FUs with multiple input

FU 2 FU NFU 1 RF…

Bus 1
Bus 2

Bus M
… …

Input
Socket ConnectionTrigger InputOutput

Socket

Figure 3: TTA architecture, with exposed inter FU and RF datapath

�

�

�

�

���

������� �������� �������

����
�����������

��������

�� � ���� � �� �

����� ������
������ ���������

Figure 4: MOVE-Pro architecture

ports, where new input values of an operation are kept until
the trigger arrives. The FU gets all the input operands in the
same cycle, which greatly reduces FU circuit activities.
The use of shadow buffers has another important advantage:

the result of an operation is available in the FU’s output port
until the next one is produced, which effectively makes the
output port an extra entry of the output buffer.

3) Unified FU Input Port: In MOVE-Pro, an FU can be
triggered by a move to any of its input ports. This provides
more scheduling flexibility for the compiler compared to
conventional TTAs. A MOVE-Pro instruction triggers the
destination FU if its opcode field is set.
Similar to conventional TTAs, the connectivity of the

operand dispatch network can be tailored based on application
characteristics, which can reduce the power and area overhead
introduced by the extra flexibility compared to RISC/VLIW
architectures. The trade-offs in the connectivity of the network
is beyond the scope of this paper. For the remainder of this
paper, we assume that the network is fully connected.

B. MOVE-Pro ISA

Code density not only affects processing performance, but
also has a strong influence on the total energy consumption. To
improve the code density of conventional TTAs and to provide
flexible immediate support, a new ISA is proposed [20].
MOVE-Pro uses a 16-bit move instruction format, spec-

ifying the source, which can be an FU, a register or an
instruction’s immediate field, and the destination, which can
be the input of an FU or a register. When the destination is an
FU, an opcode can be set if the move is a trigger move. Some
helpful features are introduced to improve code density:

• A special type of move called I-Move is introduced,
which can encode two moves to the same FU, one of
them with a 16-bit immediate.

• Two kinds of branch instructions are supported: 16-
bit Short Branches, with 10-bit offset, and 32-bit Long
Branches with 26-bit offset.

IV. ENERGY-AWARE COMPILATION

In TTA, a typical binary operation needs three moves: two
for the source operands and one for the result. It typically
takes 16 bits to encode a move. Therefore, a direct translation
from operation code to move code would probably result in a
very bad code density. Fig. 5 shows an example where move
code is 66% larger in a direct translation. The problem can
be solved by the compiler. In the example, after performing
software bypassing and instruction scheduling, the final move
code has the same number of instructions as the operation
code, with half of the RF reads and all of the RF writes
eliminated. Obviously the compiler plays an important role in

add r3, r4, r7

add r12, r3, r7

sw 0(r1), r12

r4->add.i0 r7->add.i1

add.o->r3

r3->add.i0

r7->add.i1

add.o->r12

r1->sw.i0

0->sw.i1

r12->sw.i2

r4->add.i0 r7->add.i1

add.o->add.i0

add.o->sw.i2

r1->sw.i0

0->sw.i1Schedule

Figure 5: TTA code scheduling example

Clang/
LLVM

Dependency &
Liveness Analysis Schedule Local

Reg Alloc
Emit
Binary

IR
MOVE-Pro Scheduler

C code

Core
Configuration

Figure 6: MOVE-Pro compiler framework

a TTA. In this section the design of the MOVE-Pro compiler
backend, in particular, the instruction scheduler is discussed.

A. MOVE-Pro Compilation Flow
The compiler framework of MOVE-Pro is shown in Fig. 6.

The LLVM compiler framework is used as the front-end,
which produces intermediate representation (IR) for the back-
end. The instruction set of the IR is similar to a RISC ISA,
with support of extra meta-data. In this paper we assume that
all operations in IR can be mapped to FU, so the backend
does not need to perform instruction selection. Therefore the
core of the backend is the instruction scheduler.

In this work, the scheduler performs basic block level
scheduling. It minimizes the energy consumption by elimi-
nating unnecessary RF accesses. The number of instructions
is another optimization target. Otherwise the scheduler may
choose to serialize operation execution in order to increase
the bypassing opportunity. A post-pass register allocator is
used. Due to the nature of TTA, spilling rarely happens in
MOVE-Pro. When there is any spill code that fails to fit into
the current schedule, the scheduler simply performs a partial
reschedule.

The remainder of this section describes the model and
algorithms used in the scheduler in detail.

B. Resource Model of MOVE-Pro
1) Resource Graph: A space-time representation of the

datapath is used in this work. We first construct a spatial
graph representation of the datapath, in which each allocatable
resource is represented by a node, and edges are added
between resources that can communicate within the same
cycle. Then, the graph is duplicated for each cycle. Two types
of edges between nodes in different cycles are added: 1) move
edges are added between nodes that can communicate but with
a latency, e.g., the edges from Issue Slot in t to FU Input in
t + 1; 2) a storage edge is added between the nodes for a
resource in adjacent cycles if it can keep values, e.g., the edge
from RF in t to RF in t+1. An example of the resource graph
model is shown in Fig. 7. The edges between buffer nodes in
different cycles enable the modeling of the FIFO behaviour.
The output port of an FU is modeled as a buffer entry, as
discussed in section III.

With the aforementioned resource graph, the problem of
binding operations to FUs and scheduling data transportation
becomes the problem of embedding the data-flow graph (DFG)
of the program to the resource graph: operations are mapped

Buf

FU

In In W

R R

Issue SlotBuf

Buf

FU

In In

RF

W

R R

Issue SlotBuf

t

t+1

RF

DFG

Resource
Graph

add

R4sub

Figure 7: Resource graph and mapping example

to nodes representing the required resources, e.g., actual oper-
ations are mapped to FUs and live-in values are mapped to RF;
a data dependency edge is mapped to a path from producer to
consumer in the resource graph, with a few constraints:

• Paths with different producers cannot have common
nodes, except for the ones that are actually representing
multiple resource instances, e.g., the issue slot nodes;

• Paths with the same producer cannot split at issue slots;
• A path can only use buffers before its producer’s result

is popped out.
Compared to the compiler design in [8], the advantages of

the proposed resource model are:
• It is possible to model almost any datapath structure with

the proposed resource model, including irregular inter-
connect, clustered register files. This is particularly inter-
esting for highly customizable architectures like TTA;

• With the proposed model, different passes can be inte-
grated to improve code generation result. In this work, the
FU assignment is integrated with instruction scheduling.

2) Checking for Deadlocks: In this work, we uses a forward
operation scheduler, i.e., an operation is always scheduled
before its consumers. Due to the FIFO behaviour of the FU
output buffer in MOVE-Pro, a value is lost if it is still alive
but not written back to RF when it is popped out. Therefore,
it is critical for the scheduler to ensure that the output of
every producer can always reach its consumers in a partial
schedule. Otherwise the schedule cannot be complete, we call
this a deadlock. In a partial schedule, a conservative approach
to avoid deadlocks is to guarantee that all scheduled live
producers, which are scheduled operations with live outputs,
can be written back to RF. If that is the case, the consumers of
the live producers can always get the value from the RF and
it is guaranteed that there exists at least one valid schedule.
In this work, deadlocks in a partial schedule are checked

by calculating the max flow of the live-producer flow graph,
which is obtained from the resource graph. It contains:

• The FUs that live producers are mapped to, the nodes
reachable by the live producers, and edges between them;

• A source node, and a unit capacity edge from the source
to each live producer;

• A sink node, and an infinite capacity edge from each RF
node to the sink.

In a partial schedule, all live producers can find a valid path to
the RF if and only if the max flow of the flow graph equals to

Buf

RFW

Issue Slot

Buf

RFW

Issue SlotBuf

Sink

Live
Producer

Live
Producer

Source
FU in t

FU in t+1

Figure 8: Flow graph for checking deadlocks

the number of live producers. Fig. 8 shows an example flow
graph with two live producers on the same FU in two cycles.

C. MOVE-Pro Instruction Scheduler

The MOVE-Pro scheduler performs forward scheduling, in
which an operation can only be scheduled after its predeces-
sors are scheduled. The scheduling is operation-based, i.e., the
scheduler issues the selected operation in any time slot as long
as it is valid. It is more flexible and effective than instruction-
based scheduling, in which the scheduler tries to fill the issue
slots on a cycle-by-cycle basis [5].

The scheduler uses modified list scheduling, as shown in
Algorithm 1. The priority of the ready operations used by
select next operation is calculated based on the mobility
(critical path) and the estimated issue cost. When an operation
is selected, the scheduler finds the earliest available FU. Then
find min cost paths tries to find shortest paths from all
producers of the selected operation to the input ports of the FU.
The weight of the edges are set based on the energy cost, and
issue cost is added if a path increases the schedule length. So
the search for shortest paths on the resource graph minimizes
the energy consumption of the schedule whiling keeping the
schedule short. As discussed in Section IV-B2, the max flow of
the flow graph is calculated to check for deadlocks. The worst
case complexity of finding the max flow is O(V 2

√
E), where

V is the number of nodes and E is the number of edges. [15],
but the number of live producers is typically very small. So the
size of the flow graph is very small compared to the resource
graph, and the max flow calculation is not expensive.

V. EVALUATION AND ANALYSIS

A. Energy Consumption Model

In order to quickly validate the proposed energy-aware
compiler backend and to illustrate its efficiency in our MOVE-
Pro framework before implementing a complete processor
design, we first estimate the potential energy saving by only
focusing on the major components whose energy consumption
are affected. The datapath of conventional VLIW processors
and MOVE-Pro processors are very similar when they use
the same amount/type of functional units and same bypass
network (e.g., fully connected). The difference of energy con-
sumption is mainly caused by the number of RF accesses and
the instruction size [20]. For the same kernel, the instruction
size of a conventional TTA is usually much larger than its
VLIW counterpart [13].

Table III lists the average energy consumption of RFs with
different number of ports and SRAMs with different data
widths and sizes. The library we used in the experiment
throughout this paper is TSMC 90nm low-power technology.
The RF access energy is derived by synthesizing the RTL
design, extracting the physical information, and estimating the

Algorithm 1: Basic Block Scheduling
Input : Operation DDG of the basic block B and machine model M
Output : Scheduled move instructions of the basic block MB

1 // Set number of cycles based on conservative estimation
2 G ← initialize resource graph (B,M)
3 R ← ∅ // Ready set
4 // Initialization: map live-in and immediate values
5 foreach o ∈ {x|x ∈ B, predecessors(x) = ∅} do
6 Map o to RF in cycle 0 or immediate unit
7 R ← R ∪ {s|s ∈ successors(o), s is ready}
8 end
9 S ← ∅ // Set of scheduled operations

10 L ← ∅ // Set of live producers
11 while |S| �= |B| do // Schedule the basic block
12 o ← select next operation (R)
13 t ← ready time (o) // Earliest time to schedule o
14 for t ← ready time (o) to maximal time (G) do
15 value ← false
16 F ← available FUs (o, t) // Set of possible FUs in t
17 while F �= ∅ do
18 // Find an FU, prefer sharing if possible
19 f ← get function unit (o, F , G)
20 F ← F \ f
21 P ← find min cost paths (o, f , G) // See Sec. IV-C
22 if P �= ∅ then
23 reserve resources (o, P , G)
24 fg ← gen flow graph (L, G) // See Sec. IV-B2
25 // If no live producer is blocked
26 if max flow (fg) = |L| then
27 valid ← true
28 break
29 end
30 end
31 end
32 if valid = true then // o is successfully scheduled
33 break
34 else // Failed, release reserved resources
35 release resources (o, P , G)
36 end
37 end
38 S ← S ∪ {o}
39 // A producer of o is closed if o is the last user
40 check and close producers (o, L)
41 if o has consumer then
42 L ← L ∪ {o}
43 end
44 end
45 MB ← get move schedule (G, B) // Convert mapping to schedule

average toggle rate of each port by performing 1024 random
access. The energy of the memory is estimated by CACTI [7].

B. Experimental Results
The five representative kernels listed in Table II are used in

the evaluation. These kernels are compiled with our newly de-
veloped compiler. The compiled benchmarks are then executed
on a cycle-accurate simulator to collect access statistics, from
which the RF access energy and memory access energy of each
kernel are calculated. In all the experiments, we conservatively
set the RF to the same size for all the processors, even though
the RF pressure in MOVE-Pro is much lower.
Fig. 9(a) shows the RF (32b×32 2R1W) energy consump-

tion comparison among a RISC (R1, 32-bit instr.), a 2-issue
MOVE-Pro (M2, 32-bit instr.), and a 3-issue MOVE-Pro (M3,
48-bit instr.). The results are normalized to the RF energy
consumption of the RISC processor for each kernel. We can
see that the MOVE-Pro processors significantly reduce the
RF access energy consumption. Compared to its 32-bit RISC

Table III: Energy consumption of different data accesses

32b×32 2R1W RF 32b×32 4R2W RF 8kB Memory 9kB Memory
Read Write Read Write 32-bit 64-bit 48-bit

Energy per 1.81 5.46 1.95 6.67 16.38 19.67 17.03access (pJ)

Table IV: Instruction counts of kernel loops on different processors

RISC MOVE-Pro-2 VLIW-2 MOVE-Pro-4 MOVE-Pro-4 MOVE-Pro-3
2R1W (R1) 2R1W (M2) 4R2W (V2) 4R2W (M4) 2R1W (M4’) 2R1W (M3)

Instr Size 32 bits 64 bits 48 bits
Histogram 10 10 8 8 8 8

FIR 20 20 12 12 12 14
IDCT 87 83 48 49 51 60

YUV2RGB 42 42 27 29 30 32
MatVec 22 22 13 14 14 17

counterpart, M2 saves an average of 72.6% write access energy
and 65.6% read access energy. Increasing the issue width of
MOVE-Pro can further decrease the traffic to RF as FU results
may stay in the bypass network for a longer time, e.g., M3
saves 26.0% of RF energy compared to M2 for YUV2RGB.
Similar results are observed when comparing VLIW processor
and MOVE-Pro processors. A maximum of 82.3% is observed
on YUV2RGB. It is worth mentioning that since the RF
traffic is greatly reduced in MOVE-Pro, the requirement on
the number of RF’s read/write ports alleviates accordingly.
With reduced RF read/write ports, M4’ (4-issue MOVE-Pro,
64-bit instr., 2R1W RF) shows an additional RF energy saving
of 15.3% compared to M4, which has a 4R2W RF.

As discussed in Section V-A, the energy saving on RF
access does not guarantee the energy saving in the whole
processor. Conventional TTAs have poorer code density com-
pared to their RISC/VLIW counterparts, which can easily
eat up the energy saving on RF. The proposed compilation
flow on our MOVE-Pro processors solves this issue. Table IV
shows the code sizes of our MOVE-Pro processors and their
RISC/VLIW counterparts. We can see that for the 64-bit cores,
M4 is only slightly worse in some kernels, while for the
32-bit cores, M2 even has better code size than RISC. The
comparison between M4 and M4’ shows that the number of
RF ports has less impact on MOVE-Pro. It is interesting to
mention that due to the finer scheduling grain (16-bit move),
we can design MOVE-Pro processors like 48-bit M3. These
kinds of intermediate solutions introduce more flexibility to
application-specific designs.

We present the combined impact of the RF access energy
and memory access energy in Fig. 9(c) and Fig. 9(d). The
result shows that even when taking the code size into consid-
eration, the energy saving is still significant. Comparing to a
RISC, we achieve an average of 22.0% energy saving in M2,
with a maximum of 24.2% on IDCT, while comparing to the
VLIW, we see an average of 26.8% energy saving in M4’,
with a maximum of 33.3% on FIR.

VI. RELATED WORK

In microprocessors, the register file is one of the central
components, which accounts for considerable amount of en-
ergy. A detailed analysis of RF power consumption is given by
Zyuban and Kogge in [22]. In [14], Rixner et al. analyze the
trade-offs in different register file designs for media proces-
sors. Balfour et al. introduce the ELM architecture that reduces
RF accesses by using a combination of software bypassing
and hierarchical RFs [10], [11]. The compiler for ELM uses
a similar way to check for deadlocks in partial schedules [6].
Compared to ELM, MOVE-Pro has finer grained scheduling
and more explicit data path.

The TTA is proposed by Corporaal [1]. The MOVE [9] and
the TTA-based codesign environment (TCE) [17] are the two
most well known implementations of TTA. Hoogerbrugge [4]

0

0.2

0.4

0.6

0.8

1

R1 M2 M3 R1 M2 M3 R1 M2 M3 R1 M2 M3 R1 M2 M3
Histogram FIR IDCT YUV2RGB MatVec

RFWrite
RF Read

(a) RF energy consumption: RISC vs. MOVE-Pro

0

0.2

0.4

0.6

0.8

1

V2 M4M4'M3 V2 M4M4'M3 V2 M4M4'M3 V2 M4M4'M3 V2 M4M4'M3
Histogram FIR IDCT YUV2RGB MatVec

RFWrite
RF Read

(b) RF energy consumption: VLIW vs. MOVE-Pro

0.4

0.5

0.6

0.7

0.8

0.9

1

R1 M2 M3 R1 M2 M3 R1 M2 M3 R1 M2 M3 R1 M2 M3
Histogram FIR IDCT YUV2RGB MatVec

RFWrite
RF Read
I-MEM

(c) RF + I-Mem energy consumption: RISC vs. MOVE-Pro

0.4

0.5

0.6

0.7

0.8

0.9

1

V2 M4M4'M3 V2 M4M4'M3 V2 M4M4'M3 V2 M4M4'M3 V2 M4M4'M3
Histogram FIR IDCT YUV2RGB MatVec

RFWrite
RF Read
I-MEM

(d) RF + I-Mem energy consumption: VLIW vs. MOVE-Pro

Figure 9: Energy consumption results. R1: RISC with 2R1W-RF; V2: 2-issue VLIW with 4R2W-RF; M2: 2-issue MOVE-Pro with 2R1W-RF;
M3: 3-issue MOVE-Pro with 2R1W-RF; M4: 4-issue MOVE-Pro with 4R2W-RF; M4’: 4-issue MOVE-Pro with 2R1W-RF

and Janssen [5] analyze different aspects of compiler back-
end design for TTA. Guzma et al. discuss the performance
impact of software bypassing in TTA [18], and the power
consumption implication is in [19], but a comparison be-
tween TTA and other architectures is missing. In this paper,
we present a comprehensive comparison between TTA and
RISC/VLIW. Reshadi and Gajski present a compiler design for
No-Instruction-Set-Computing (NISC) architecture [21]. NISC
resembles TTA, but its control overhead is less of a concern
as it mainly targets platforms that are able to reconfigure
the control logic. In this paper we exploit the potential of
building a TTA-based low power processor. The combination
of MOVE-Pro and the proposed compiler overcomes most of
the problems causing inefficiency in conventional TTAs.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the design of a compiler
backend for MOVE-Pro, a TTA-based processor. A resource
graph model is introduced, allowing the compiler to map
and schedule efficiently without deadlocks. The proposed
compiler is capable of generating energy efficient codes by
reducing RF accesses while keeping the schedule as short as
possible. In the experiments, we showed that compared to its
RISC/VLIW counterparts, MOVE-Pro achieves significant RF
energy reduction: up to 80%. When the energy consumption of
instruction memory is taken into account, the effective energy
saving is up to over 30%. It shows that the proposed design
is able to achieve high energy efficiency in a complete core.
In systems with large processing element array, the proposed
method could result in substantial overall energy saving.
Further optimization is possible with the proposed com-

piler design. For example, with modification to the resource
model, register allocation can be integrated into the proposed
scheduler, which would be useful if the register file size is
very small. Extending this work to support software pipelining
would also improve the efficiency. Future work also includes
extending this work to SIMD and multi-core architectures,
which is expected to be even more energy efficient than current
MOVE-Pro architecture.

REFERENCES

[1] H. Corporaal. Microprocessor Architectures: From VLIW to TTA. Wiley,
1998.

[2] H. Corporaal and H. J. Mulder. Move: a framework for high-
performance processor design. In Proc. of the 1991 ACM/IEEE con-
ference on Supercomputing, pages 692–701, 1991.

[3] D. R. Gonzales. Micro-RISC architecture for the wireless market. IEEE
Micro, 19:30–37, 1999.

[4] J. Hoogerbrugge. Code Generation for Transport Triggered Architec-
tures. PhD thesis, Delft University of Technology, 1996.

[5] J. Janssen. Compiler Strategies for Transport Triggered Architectures.
PhD thesis, Delft University of Technology, 2001.

[6] J. Park and W. J. Dally. Guaranteeing forward progress of unified register
allocation and instruction scheduling. Technical Report 127, Stanford
University, 2011.

[7] CACTI. cacti 5.3, rev 174. http://quid.hpl.hp.com:9081/cacti/.
[8] D. She et al. Energy efficient code generation for processors with

exposed datapath. In Proc. 9th Workshop on Optimizations for DSP
and Embedded Systems (ODES-9), 2011.

[9] Delft University of Technology. MOVE. http://ce.et.tudelft.nl/MOVE/.
[10] J. Balfour et al. An energy-efficient processor architecture for embedded

systems. Computer Architecture Letters, 7(1):29–32, 2007.
[11] J.Balfour et al. Operand registers and explicit operand forwarding.

Computer Architecture Letters, 8(2):60–63, 2009.
[12] J.W. van de Waerdt et al. The TM3270 media-processor. In Proc. of

the 38th Int’l Symposium on Microarchitecture, pages 331–342, 2005.
[13] O. Esko et al. Customized exposed datapath soft-core design flow

with compiler support. In Proc. of 20th Int’l Conference on Field
Programmable Logic and Applications, pages 217–222, 2010.

[14] S. Rixner et al. Register organization for media processing. In Proc. of
the 6th Int’l Symposium on High-Performance Computer Architecture,
pages 375–386, 2000.

[15] T. Cormen et al. Introduction to Algorithms. McGraw-Hill Higher
Education, 2nd edition, 2001.

[16] T. Pitkanen et al. Low-power, high-performance TTA processor for
1024-point fast fourier transform. Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation, pages 227–236, 2006.

[17] Tampere University of Technology. TTA-based Codesign Environment
(TCE). http://tce.cs.tut.fi/.

[18] V. Guzma et al. Impact of software bypassing on instruction level
parallelism and register file traffic. In Proc. of the 8th Int’l Workshop
on Embedded Computer Systems, pages 23–32, 2008.

[19] V. Guzma et al. Reducing processor energy consumption by compiler
optimization. In IEEE Workshop on Signal Processing Systems (SiPS),
pages 63–68, 2009.

[20] Y. He et al. MOVE-Pro: a low power and high code density tta
architecture. In Proc. 11th Int’l Conference on Embedded Computer
Systems (SAMOS-XI), pages 294–301, 2011.

[21] M. Reshadi and D. Gajski. A cycle-accurate compilation algorithm for
custom pipelined datapaths. In Proc. of the 3rd Int’l Conference on
Hardware/Software Codesign and System Synthesis, pages 21–26, 2005.

[22] V. Zyuban and P. Kogge. The energy complexity of register files.
In Proc. of the 1998 Int’l Symposium on Low Power Electronics and
Design, pages 305–310, 1998.

