
Accurate Source-Level Simulation of Embedded
Software with Respect to Compiler Optimizations

Zhonglei Wang, Jörg Henkel
Karlsruhe Institute of Technology, Chair for Embedded Sytems, Karlsruhe, Germany

{zhonglei.wang, henkel}@kit.edu

Abstract—Source code instrumentation is a widely used
method to generate fast software simulation models by anno-
tating timing information into application source code. Source-
level simulation models can be easily integrated into SystemC
based simulation environment for fast simulation of complex
multiprocessor systems. The accurate back-annotation of the
timing information relies on the mapping between source code
and binary code. The compiler optimizations might make it hard
to get accurate mapping information. This paper addresses the
mapping problems caused by complex compiler optimizations,
which are the main source of simulation errors. To obtain
accurate mapping information, we propose a method called
fine-grained flow mapping that establishes a mapping between
sequences of control flow of source code and binary code. In
case that the code structure of a program is heavily altered by
compiler optimizations, we propose to replace the altered part of
the source code with functionally-equivalent IR-level code which
has an optimized structure, leading to Partly Optimized Source
Code (POSC). Then the flow mapping can be established between
the POSC and the binary code and the timing information
is back-annotated to the POSC. Our experiments demonstrate
the accuracy and speed of simulation models generated by our
approach.

I. INTRODUCTION

Simulators based on Transaction Level Models (TLM)1 are
in widespread use for design space exploration of complex
multiprocessor embedded systems at system level. To date, most
embedded systems are software-centric, and therefore, predicting
software performance is a key issue to make performance-oriented
design decisions.

In recent years, Source Code Instrumentation (SCI) has become
a de-facto standard for automatic generation of fast and accurate
source-level software TLMs from application source code. A
source-level TLM is actually the source code annotated with low-
level timing information. The timing information is usually at the
basic-block level granularity, obtained by timing analysis using
a performance model taking important microarchitectural effects
into account, such as pipeline effects, cache effects and branch
prediction effects. The back-annotation of the timing information
is based on a mapping between source code and binary code.
However, the optimizing compilation might heavily alter the
code structure of a program and makes it hard to obtain an
accurate mapping between source code and binary code, leading
to inaccurate simulation models. Currently, there are few previous
approaches addressing such mapping problems [1], [2], [3], [4],
which will be discussed in more detail in Section II.

1Transaction Level Modeling is a standard modeling style for system-level
design and is often associated with SystemC, a standard System-Level Design
Language (SLDL).

This paper is aimed to solve the mapping problems and to
achieve a more general SCI approach. We use a control flow
analysis method that we call fine-grained flow mapping to obtain
accurate mapping information for source code instrumentation.
During control flow analysis if it fails to establish a flow mapping
due to complex alteration of the code structure made by the
compiler optimizations, our novel idea is to identify this altered
part of source code and to transform it to optimized IR-level
code, which is functionally equivalent to the original source code
but has an optimized structure that is close to the binary code
structure. The resulting code is a mixture of the original source
code and the optimized IR-level code, and therefore, is called
Partly Optimized Source Code (POSC). Then, we can obtain an
accurate flow mapping between the POSC and the binary code.
Given the accurate mapping information, the low-level timing
information obtained from the binary code can be back-annotated
into the POSC to generate an accurate source-level TLM.

The rest of this paper is organized as follows: Section II
gives an overview of related work. Then, Section III briefly
introduces SCI and summarizes the mapping problems. After that,
the proposed approach is described in detail in Section IV. Some
experimental results are shown in Section V. Finally, the paper is
concluded in Section VI.

II. RELATED WORK

The conventional way of software simulation is using Instruc-
tion Set Simulators (ISS). The common problem of ISSs is their
low simulation speed and high complexity. Trace-driven simula-
tion [5], [6] is another choice. However, it rules out functional
simulation and a set of traces can simulate the workload of only
one execution path of a program.

Source-Level Simulation (SLS) achieves a significant speedup
without compromising much accuracy compared to cycle-accurate
simulations. It is more suitable for system-level design. Early
work on SLS, such as [7], [8], [9], [10], assume that there is a
unique mapping between source code and binary code and does
not consider compiler optimizations.

To address the mapping problems, in [1], [11], [12] the com-
piler is modified to add timing information into Intermediate Rep-
resentation (IR). However, modifying the compiler takes much
effort. Furthermore, not all compilers can be modified. Kempf
et al. [13] and Wang et al. [2], [14] propose a more efficient
approach. They let the compiler generate IR and change it back
to C code, so no compiler modification is needed. Nevertheless,
the IR-level C code might have different timing behavior from the
original source code. Furthermore, IR-level code is hardly read-

978-3-9810801-8-6/DATE12/ c©2012 EDAA

able, and therefore rules out manual optimizations and source-
level debugging.

Two of the most recent works, [3] and [4], try to overcome
the mapping problems while still using the original source code
as the functional model. The work in [3] divides both source
code and binary code of a program into segments in terms of so-
called loop levels and annotates the timing information of binary
code in a loop to the source position at the same loop level.
However, this method does not work for the case that the loop
structure is heavily altered by the optimizer. The work in [4]
mainly addresses function inlining and loop unrolling. So-called
path simulation code is used to simulate binary-level control
flows. It works based on accurate annotations but in this paper
the authors make no statements of how accurate annotations are
achieved. They use what they call loop simulation code to map
source-level loop iterations to binary-level loop iterations by a
pattern with manually obtained parameters like the unroll factor
and the loop bound.

III. PROBLEM STATEMENT

Fig. 1 presents SCI using the fibcall program. In the annotated
source code, each T(block id) is used to simulate the timing
behavior of a basic block. In SystemC, T(block id) may contain a
wait() to advance the simulation time or other code for dynamic
simulation of some timing effects like cache effects and branch
prediction effects. An automated SCI tool relies on computer-
manipulatable information for instrumentation. To date, all exist-
ing tools use debugging information to obtain a mapping between
source code and binary code. However, for optimized code, the
compiler may generate wrong debugging information. Another
cause of wrong mapping is due to code motion. The compiler
often moves some code from inside to outside of a loop to
improve performance. However, according to code mapping, their
timing information is annotated back into the source-level loop,
where the code was generated. The dashed lines in Fig. 1(a) depict
the basic-block level mapping established through debugging
information. According to this mapping, bb1, bb2, bb3, bb4 and
bb5 are all simulated in the loop, but actually only bb3 and bb4
are part of the loop. Therefore, sophisticated analysis is needed
to handle wrong debugging information and detect code motion
effects.

A more serious problem is that the code structure of a program
is heavily altered during optimizing compilation. Fig. 2 shows two
examples of advanced loop optimizations. In the case of the partial
loop unrolling shown in Fig. 2(a), although the loop structure is
retained, the loop body and the number of iterations are altered.
If the execution time of bb2 is annotated into the source-level
loop, the simulation result will be wrong. In the example of loop
unswitching (Fig. 2(b)), the condition inside the loop is moved
to outside by duplicating the loop body. In the binary code, there
is a condition that selects a path to execute while in the source
code there is no condition outside the loop.

Hence, the mapping problems can be categorized into two
types:

• Problem 1: The optimizing compiler does not alter the code
structure but performs some code motions and generates
wrong debugging information, which makes it hard to obtain

. . .
10 while(i <= n) {

T(1); T(2); T(3); T(5);
11 temp = Fnew;

T(4);
12 Fnew = Fnew + Fold;
13 Fold = temp;
14 i++;
15 }

6 fib(n) int n;
7 {
8 Fnew = 1; Fold = 0;
9 i = 2;
10 while(i <= n) {
11 temp = Fnew;
12 Fnew=Fnew+Fold;
13 Fold = temp;
14 i++;

bb1

bb2

bb3

bb4
}

16 ans = Fnew;
T(6);

17 return ans;
18 }

15 }
16 ans = Fnew;
17 return ans;
18 }

bb5

bb6

(a) Mapping (b) Annotated Source Code

Fig. 1. Source Code Instrumentation (SCI)

. . .
for (i = 0; i < x; i++) {

c[i] = a[i] * b[i];
}
. . .

bb1

bb2

bb3

. . .
c[0] = a[0] * b[0];
c[1] = a[1] * b[1];

c[i] = a[i] * b[i];
c[i+1] = a[i+1] * b[i+1];
c[i+2] = a[i+2] * b[i+2];
c[i+3] = a[i+3] * b[i+3];

. . .
for (i = 0; i < x; i++) {

x[i] = x[i] + y[i];
if (w){

y[i] = 0;
}

}
. . .

bb1

bb2 bb5

bb3 bb6

bb7

bb4

if(w)

(a) Partial Loop Unrolling (b) Loop Unswitching

Fig. 2. Examples of Advanced Loop Optimizations

accurate mapping information for source code instrumenta-
tion.

• Problem 2: The code structure is heavily altered and there
is no exact mapping between the source code structure and
the binary code structure.

IV. THE PROPOSED INSTRUMENTATION APPROACH

Our work is aimed to achieve a source code instrumentation
approach which copes with both mapping problems summarized
in the last section. Our solution to the mapping problems is as
follows: For programs with only Problem 1 we use fine-grained
flow mapping to obtain accurate mapping information, while for
programs with Problem 2 we transform the program structure
to the one that is close to the binary code structure, in order to
retrieve the mapping. We therefore propose to replace part of code
that causes the problem with IR-level code that accounts for all
machine-independent optimizations, leading to Partly Optimized
Source Code (POSC). Hence, our SCI approach can be divided
into three steps: 1) partly optimized source code generation,
2) mapping information generation and 3) timing information
back-annotation. More details are presented in the following sub-
sections.

A. Summary of Advantages

First, we give a summary about how our approach is superior
to state-of-the-art with respect to the two mapping problems.
The previous work in [3] addresses Problem 1 by means of
control flow mapping. This flow mapping just sets scopes for
code mapping with respect to the loop levels. This means that the
timing information of binary code in a loop should be annotated
in the source code at the same loop level. However, the exact
information about where in the loop the timing information
should be annotated is still obtained by means of coding mapping
established through debugging information. This flow mapping
can well handle the code motions between the inside and outside
of a loop but cannot cope with code motions within the loop, for
example, between complex conditional structures. Our approach
achieves accurate mapping information by establishing a mapping

for each fine-grained sequence of control flow between source
code and binary code. That’s the reason why our approach is
called fine-grained flow mapping.

The state-of-the-art solution to Problem 2 is to annotate timing
information into the IR code instead of the source code [2], [13].
The structure of the IR code has been optimized, so there is
no problem to obtain a mapping between the IR code structure
and the binary code structure. One problem of the IR code is
that it is hardly readable. If we want to carry out some manual
adjustments or analysis on the simulation model, it is difficult
to do on the IR code. Furthermore, IR-level code might have
slightly different timing behavior from the original source code.
Therefore, it’s better to use the original source code for the
generation of simulation models. Our approach is based on the
fact that many programs do not encounter Problem 2 and in a
program with Problem 2 usually only fractions of code are heavily
optimized leading to the problem. Our novel idea is to identify
this part of code by means of control flow analysis and only
transform this part of code to the IR level. We also transform
some unstructured IR-level code back to high-level structures to
increase the readability. Thus, the negative effects of IR code can
be minimized.

B. Generation of Partly Optimized Source Code

The key issue of POSC generation is to identify code that
causes Problem 2. We mainly check whether loop structures are
heavily altered. There are two reasons for this. First of all, the
code without loop statements does not cause serious mapping
problems. Second, accurate annotation for code within loops is
more important, because errors due to wrong annotation within
a loop will be aggregated with loop iterations, leading to a large
error of the overall simulation. We define mainly three loop
optimization effects that lead to Problem 2:

• Changing number of loops: some loop optimizations (e.g.
loop fusion) merge loops while some other optimizations
(e.g. loop fission, splitting and unswitching) duplicate or split
loops.

• Alteration of loop structure: a loop is optimized along with
complex conditional statements leading to a different loop
structure. Or, two nested loops are optimized and intertwined
so that it is hard to determine which one is the outer loop
and which one is the inner loop.

• Alteration of loop iterations: after some optimizations
like partial loop unrolling and loop interchange, although
the loop structure is retained, the number of iterations is
changed.

Algorithm 1 shows the pseudo code of the loop structure
analysis for identifying the effects resulting from above mentioned
loop optimizations carried out by the compiler. It first identifies
loops in both source code and binary code. In the source code it
needs to search for keywords like “while”, “for” and “do”. The
loop information is stored in a list. Each node of the list contains
the id, the loop level and the scope of a loop. Loop level is a
value that represents the relation of nested loops. In the binary
code a loop is identified by searching for a closed graph in the
Control Flow Graph (CFG). A closed graph is identified first by
finding a back edge in the CFG and then checking whether there
is a control flow leading the destination block of the back edge

to its source block. A loop may consist of multiple closed graphs
sharing some common basic blocks. That’s why a closed graph is
called a potential loop (pLoop). The information of all pLoop is
stored in a list. It then finds the corresponding source-level loop
for each pLoop and assigns the pLoop to the id of the source-level
loop (sLoop id) (line 14).

Algorithm 1 Loop Structure Analysis
1: (a) Creating a source-level loop list
2: sLoop list: a list to store information of source-level loops
3: while ParseLine(source program) do
4: if a loop is identified then
5: add a node with sLoop id, loop level, scope into sLoop list
6: end if
7: end while
8:
9: (b) Creating a binary-level loop list

10: bLoop list: a list to store information of binary-level loops
11: CFG ← CreateCFG(binary f ile)
12: IdentifyPotentialLoops(CFG)
13: for each potential loop pLoop do
14: sLoop id ← SearchSourceLoop(pLoop,sLoop list,debugIn f o)
15: add a node with sLoop id and information of pLoop into bLoop list
16: end for
17:
18: (c) Identifying loops to be transformed
19: SortBLoopList(bLoop list) //in the ascending order of sLoop id
20: while SearchInBLoopList(bLoop list) do
21: if multiple pLoop have the same sLoop id AND do not have common

basic blocks then
22: TransformSLoop(sLoop id) //loop splitting or duplication
23: else if one pLoop has more than one sLoop id then
24: for each sLoop id do
25: TransformSLoop(sLoop id) //loop merging
26: end for
27: else if multiple pLoop have the same sLoop id AND have common

basic blocks then
28: mapping f ound ← FineGrainedFlowMap(pLoop,sLoop id)
29: if !mapping f ound then
30: TransformSLoop(sLoop id) //alteration of loop structure
31: end if
32: else if multiple pLoop have sLoop id of nested loops then
33: mapping f ound ← FineGrainedFlowMap(pLoop,sLoop id)
34: if !mapping f ound then
35: for each sLoop id do
36: TransformSLoop(sLoop id) //alteration of loop structure
37: end for
38: end if
39: else
40: p loop unrolling ← FineGrainedFlowMap(pLoop,sLoop id)
41: if p loop unrolling then
42: TransformSLoop(sLoop id) //partial loop unrolling
43: end if
44: end if
45: end while

After collecting all required information in the two lists, it
starts to identify the loops to be transformed to the IR level.
The changing number of loops effect is identified by checking
whether there is more than one pLoop with the same sLoop id
(line 21) or there is one pLoop assigned to multiple sLoop id
(line 23). If multiple pLoop with common basic blocks have the
same sLoop id (line 27), they actually belong to the same loop
with a complex control flow. In this case and also in the case of
nested loops (line 32), it performs fine-grained flow mapping to
check if there is a mapping for each sequence of control flow
between the source-level loop and the binary-level loop (line
28 and 33). As the same analysis is used for the generation of

if (w != 0) goto L28; else goto L27;
L27:
i = 0;

L21:
x[i] = x[i] + y[i];
i = i + 1;
if (i != size) goto L21; else goto L7;

L28:
i = 0;

L3:

. . .
for (i = 0; i < size; i++) {

y[i] = y[i] + 1;
}

for (i = 0; i < size; i++) {
x[i] = x[i] + y[i];
if (w)

[i] 0

. . .
for (i = 0; i < size; i++) {

y[i] = y[i] + 1;
}

if (w != 0) {
i = 0;
do{

x[i] = x[i] + y[i];
y[i] = 0;
i = i + 1;

} while (i != size);
} else{L3:

x[i] = x[i] + y[i];
y[i] = 0;
i = i + 1;
if (i != size) goto L3; else goto L7;

L7:(a) Source Code

(b) IR-Level Code

(c) POSC

. . .

y[i] = 0;
}

. . .

} else{
i = 0;
do{

x[i] = x[i] + y[i];
i = i + 1;

} while(i != size) ;
}

Fig. 3. An Example of POSC Generation

mapping information, more details about it will be provided in the
next sub-section. If a flow mapping is not found, the alteration
of loop structure effect is identified and the loop is transformed.
The partial loop unrolling effect is identified by checking whether
there are multiple identical control flows in the binary-level loop
mapped to the whole source-level loop body.

In the example in Fig. 3, the change of loop number is identified
for the second loop, so it is replaced by IR-level code, while the
source code of the first loop can be kept. We obtain the IR-level
code by modifying the compiler-generated IR that accounts for
all machine-independent optimizations back to C code. As shown
in Fig. 3(b), the IR-level C code is in three-address code form.
We transform a regular IR-level unstructured loop with one loop
entry and one exit back to a “do...while...” loop to increase the
readability. The final generated POSC is shown in Fig. 3(c).

Algorithm 2 Fine-Grained Flow Mapping
1: S ←DivideCFGIntoSegments(CFG)
2: for each segment s ∈ S do
3: F ←DivideIntoFlows(s)
4: for each sequence of flow f ∈ F do
5: L ← GetInitialLineSet(f ,debugIn f o)
6: for two parallel sequences of control flow fi ∈ F and f j ∈ F do
7: if (Li\L j)

⋃
(L j\Li) = Φ then

8: (Li,L j)← RefineLineSet(Li,L j,debugIn f o)
9: (Li,L j)← SetDifference(Li,L j)

10: end if
11: end for
12: M ← M

⋃{(f ,L)}
13: end for
14: end for

C. Generation of Mapping Information

The mapping information is generated by means of fine-grained
flow mapping. The pseudo code of the algorithm for fine-grained
flow mapping is shown in Algorithm 2. The whole approach is
also illustrated with an example in Fig. 4.

First, according to the loop levels the binary-level CFG is
divided into segments, which are further divided into sequences
of control flow. In a loop each sequence of control flow f starts
with a loop entry or a conditional branch and ends with a loop exit
or a conditional branch. In the example in Fig. 4, bb2 is the loop
entry and also contains a conditional branch, so bb2 alone builds
a sequence of control flow, while → bb3 starts with a branch
and ends with a loop exit. With flow mapping, f is mapped
to a set of source lines L. Therefore, each piece of mapping

information m is denoted as f → L, which means that the timing
information of basic blocks in f can be annotated before any
source line � ∈ L. The initial line set of each f is obtained by
mapping the two ends of f into source lines. Each loop entry
and each loop exit are mapped to the first line and the last
line of the corresponding source-level loop, respectively. Then,
the mapping between source-level conditional statements and
binary-level conditional instructions can be accurately established
through debugging information. For example, the line set L2 of
bb2 starts from the first line of the source-level loop (line 11),
ends at the source line corresponding to the conditional branch in
bb2 (line 12). As bb2 is within the loop, its timing information
cannot be annotated before line 11. Therefore, we get L2 = {12}.

For two parallel sequences of control flow fi and f j that are
mutually exclusive, the timing information of fi must be annotated
before any line in the set difference of Li and L j, which is the
set of elements in Li but not in L j. Formally, the set difference
is denoted as Li\L j = {� ∈ Li|� /∈ Li}. In the same way, the
timing information of f j must be annotated before � ∈ L j\Li.
However, in the example the line sets L3 and L4 of the two
parallel sequences of control flow, → bb3 and → bb5, do not
have set difference, i.e. (L3\L4)

⋃
(L4\L3) = Φ. In this case we

need to refine the initial line sets with the information from the
source-level control flow. For two parallel sequences of control
flow fi and f j there must be two parallel paths in source lines in
Li

⋂
L j. Otherwise, the source-level control flow and the binary-

level control flow do not match. This control flow mismatch would
have been detected in the loop structure analysis and the loop
would have been transformed to the IR level. In the example, line
13 and line 15 are in two parallel paths. Through the debugging
information, it is found that no instruction in → bb3 is generated
from line 15, so line 15 is removed from L3. In the same way, line
13 is removed from L4. Thus, we can obtain the set difference
between L3 and L4.

The two sequences of control flow → bb4 and → bb6 → bb4
are also mutually exclusive, but there is no parallel path in the
source code. Because they are not part of any loop, the algorithm
leaves the source code unaltered. As the two sequences of control
flow have different predecessor blocks, we can set the simulation
of their predecessor blocks as the condition for their simulations.
As shown in Fig. 4(e), only when the last simulated basic block
is bb5, bb6 will be simulated.

D. Back-Annotation of Timing Information

The low-level timing effects of a processor can be categorized
into local timing effects and global timing effects. Pipeline effects
are typical local timing effects. When loading instructions into
a pipeline, adjacent instructions affect each other but remote
instructions do not affect their execution. Local timing effects
can be accurately estimated in the scope of a basic block using
static timing analysis. Whereas, global timing effects are highly
context-related and different execution paths set different context
scenarios for a basic block. A cache access or a branch instruction
will affect future cache accesses or branch predictions, so the
cache and branch prediction effects are global timing effects. They
need to be estimated at run time.

Correspondingly, the timing information to be back-annotated
consists of two parts: 1) basic block latency that accounts for

bb1

bb2

bb3

bb2

7 unsigned short icrc1(...)
8 {
9 int i;
10 unsigned short ans= ...;

T_1();
11 for (i=0;i<8;i++) {

T_2();
12 if (ans & 0x8000){

T_3();

L1 = {9, 10, 11}

L2 = {12}

L3 = {13, ..., 17} {13, 14, 16, 17} {13}

++

int lastBB = 0;
bool pred_taken = false;
. . .
void T_5(){

. . .
pred_taken = BP(0x0080);
lastBB = 5;

}

void T 6(){

mapping

refinement set difference

bb1

bb3

bb4

bb5

bb6

13 ans = (ans <<= 1) ^ 4129;
14 } else {

T_5();
15 ans <<= 1;
16 }
17 }

T_6(); T_4();
18 return ans;
19 }

L5 = {18}

{14, 15, 16, 17} {15} ++ void T_6(){
if(lastBB == 5){

if(pred_taken)
cycles += BP_Miss_Penalty;

cycles += 1;
instruction += 2;
icache(0x0084, 0x008c);
. . .

} else …
}

(a) CFG (b) Sequences of Control Flow (c) Generation of Mapping Information (d) Instrumented Source Code (e) Timing Simulation Code

bb5

bb4

bb6 bb4

a loop entry, loop exit or cond. branch

L4 = {13, ..., 17}

L6 = {18}

initial set

refined set final set

Fig. 4. Our Approach for Generation of Mapping Information

the local timing effects and 2) code for dynamic simulation
of the global timing effects. For example, for instruction cache
simulation, a function call icache(...) is annotated, which will send
instruction addresses of each basic block to a cache simulator
for the estimation of cache hits and misses at simulation run-
time. Data cache simulation is more complex because target data
addresses cannot be resolved at compile time. A solution is to
use host data addresses [2], [13]. In Fig. 4(e) code for the branch
prediction simulation is also shown. As modeling these timing
effects is out of the scope of this paper, we do not go into the
details for the space reason.

Given the accurate mapping information obtained in the last
step, the timing information can be accurately back-annotated. To
get a clean instrumented program, we put the timing annotations
of each basic block in a function and annotate the function call
into the source code or POSC, as shown in Fig. 4(d) and (e).

V. EXPERIMENTAL RESULTS

In the experiments, we evaluated the proposed SCI approach
in terms of simulation accuracy and performance, by means of
a set of benchmark programs that are often used for research on
source-level simulation [2], [3], [4]. PowerPC 603e with 16KB
instruction cache and 16KB data cache was selected as the target
processor. A standard interpretive ISS was used as a reference to
evaluate the accuracy of the proposed approach.

The simulation accuracy metrics include instruction count
accuracy and cycle count accuracy. Instruction count accuracy
depends solely on the instrumentation approach and therefore can
directly reflect the accuracy of the SCI methods, while cycle count
accuracy is also dependent on the performance model. Table I
shows the estimated instruction counts of all programs. We used
a cross-compiler ported from gcc of version 4.1.1. All programs
were compiled with both the optimization level -O2, which is
the standard optimization level for software development, and the
highest optimization level -O3 to test the heaviest optimizations.

We also simulated the programs using the basic Source-
Level Simulation (SLS) approach illustrated in Fig. 1. This basic
approach is referred to as SLS in the following discussion, while
the proposed approach is called SLS+ to be differentiated from
the basic approach. The simulation results from SLS are used
to show the largeness of the estimation error caused by the
mapping programs. As SLS is not able to handle wrong debugging
information and code motion, the simulation has an average
instruction count error of 140.2%.

���

���

���

����

����

�
�
�
�
�
	

�
�

�

�

�

�
�
�
�

	
	� 	
	����������� 	
	��������������

��

���

�
�

Fig. 5. Cycle Count Accuracy

��

���

����

�����

�
�
�
�
	

�
�
�

�
�
�
�
�
�
�
�

��� �����	
������������� �����	
������ ���� ���
��������
��

�

��

�
�
�
�

Fig. 6. Comparison of Simulation Performance

For the proposed approach, in order to show the efficiency
of the Fine-Grained Flow Mapping (FGFM) and the Partly Opti-
mized Source Code (POSC) for the respective mapping problems,
we purposely evaluate them separately. First, we generate the
simulation models of all programs from the original source code
using mapping information obtained by means of FGFM. The
simulation results of these models are shown in the column FGFM
in the table. For 11 programs, the simulation models achieve very
high accuracy (here the same program compiled with the two dif-
ferent optimization levels is counted as two programs). However,
for the other 5 programs there are large errors, especially for
crc (-O3). For these programs, POSC generation is needed. By
means of the loop structure analysis, 7 programs are identified
to be transformed to POSC. The results from the simulation
models generated by instrumenting the POSC are shown in the
column POSC+FGFM. These simulation models achieve very
high estimation accuracy. Only for compress (-O2) there is an
error of 6.3%, caused by the different timing behavior of the
source code and the POSC. This means that the IR-level C code
might have (slightly) different timing behavior from the original

TABLE I
COMPARISON OF INSTRUCTION COUNT ACCURACY

ISS SLS SLS+ (FGFM) SLS+ (POSC+FGFM)
Benchmark Programs Instruction Count Instruction Count Est. Error Instruction Count Est. Error Instruction Count Est. Error

insertsort (-O2) 630 2063 227.5% 638 1.3% 630 0.0%
insertsort (-O3) 630 2063 227.5% 638 1.3% 630 0.0%
fibcall (-O2) 4511 27970 520.0% 4511 0.0% – –
fibcall (-O3) 4382 46665 964.9% 4382 0.0% – –
crc (-O2) 17201 25001 45.3% 17201 0.0% – –
crc (-O3) 12128 24607 102.9% 24607 102.9% 12042 -0.7%
compress (-O2) 3752 4082 8.8% 4005 6.7% 3987 6.3%
compress (-O3) 3681 7171 94.8% 4358 18.4% 3680 0.0%
bsearch (-O2) 59004 70010 18.7% 59010 0.0% – –
bsearch(-O3) 50003 59005 18.0% 61003 22.0% 50003 0.0%
matmult (-O2) 92019 91924 -0.1% 92019 0.0% – –
matmult (-O3) 89234 101261 13.5% 101514 13.8% 89234 0.0%
blowfish (-O2) 262435 262351 0.0% 262435 0.0% – –
blowfish (-O3) 160536 163287 1.7% 160536 0.0% – –
AES (-O2) 3624426960 3624571340 0.0% 3624442140 0.0% – –
AES (-O3) 3624394964 3624541250 0.0% 3624411080 0.0% – –

source code. That is an important reason why we do not transform
all programs to the IR level. The entire proposed approach allows
for simulating 14 out of 16 programs with 100% instruction count
accuracy. The average error is only 0.4%.

The cycle count accuracy and the simulation performance are
compared in Fig. 5 and Fig. 6, respectively. Cycle count accuracy
is represented by the normalized cycle count:

Normalized cycle count =
CycleCountSLS+

CycleCountISS
×100% (1)

As mentioned, cycle count accuracy is based on instruction
count accuracy and depends additionally on the accuracy of
performance modeling. As the target processor has large caches
and all programs are in small size, ignoring cache effects does
not have a large impact on the accuracy. However, for simulation
of practical applications modeling these timing effects is very
important. Fig. 5 shows the normalized cycle counts of all
programs obtained by simulation using SLS+, SLS+ with the
cache model, and SLS+ with both cache and branch prediction
(bp) models.

As shown in Fig. 6, the average simulation speed of SLS+ is
2550 MIPS. It achieves 680x speedup compared to the ISS and
has only around 2x slowdown compared to the native execution.
When the caches are simulated, the average speed is reduced to
520 MIPS, while the branch prediction simulation further reduces
the speed to 487 MIPS. It is still much faster than the ISS.

VI. CONCLUSIONS

This paper presented an efficient SCI approach for automatic
generation of source-level software TLMs. Especially, we ad-
dressed the mapping problems caused by compiler optimizations.
We categorized the mapping problems into two types. For each
problem, a solution was presented. We proposed fine-grained
flow mapping for obtaining accurate mapping information. For
programs with code that is heavily optimized by the compiler, we
proposed to transform this part of code to optimized IR-level code
resulting in Partly Optimized Source Code (POSC), so that there
is a mapping between binary code and POSC. The experimental
results demonstrated the accuracy and performance of the source-
level TLMs generated by our approach.

REFERENCES

[1] A. Bouchhima, P. Gerin, and F. Pétrot, “Automatic instrumentation of
embedded software for high level hardware/software co-simulation,” in
Proceedings of the Asia and South Pacific Design Automation Confer-
ence, 2009, pp. 546–551.

[2] Z. Wang and A. Herkersdorf, “An Efficient Approach for System-
Level Timing Simulation of Compiler-Optimized Embedded Software,”
in Proceedings of the 46th Annual Design Automation Conference
(DAC’09), San Francisco, California, July 2009, pp. 220–225.

[3] Z. Wang, K. Lu, and A. Herkersdorf, “An approach to improve accuracy
of source-level TLMs of embedded software,” in Proceedings of the
Conference on Design, automation and test in Europe, 2011, pp. 1–6.

[4] S. Stattelmann, O. Bringmann, and W. Rosenstiel, “Fast and Accurate
Source-Level Simulation of Software Timing Considering Complex
Code Optimizations,” in Proceedings of the 48th Annual Design Au-
tomation Conference (DAC’11), San Diego, California, 2011.

[5] T. Wild, A. Herkersdorf, and G.-Y. Lee, “TAPES–Trace-based ar-
chitecture performance evaluation with SystemC,” Journal of Design
Automation for Embedded Systems, vol. 10, no. 2-3, pp. 157–179, 2005.

[6] T. Isshiki, D. Li, H. Kunieda, T. Isomura, and K. Satou, “Trace-driven
workload simulation method for Multiprocessor System-On-Chips,”
in Proceedings of the 46th Annual Design Automation Conference
(DAC’09), 2009, pp. 232–237.

[7] Y. Hwang, S. Abdi, and D. Gajski, “Cycle-approximate retargetable
performance estimation at the transaction level,” in Proceedings of the
DATE, 2008, pp. 3–8.

[8] T. Meyerowitz, M. Sauermann, D. Langen, and A. Sangiovanni-
Vincentelli, “Source-level timing annotation and simulation for a hetero-
geneous multiprocessor,” in Proceedings of the conference on Design,
automation and test in Europe (DATE’08), 2008.

[9] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel, “High-
performance timing simulation of embedded software,” in Proceedings
of the Design Automation Conference, Anaheim, USA, June 2008.

[10] Z. Wang, A. Sanchez, and A. Herkersdorf, “SciSim: A Software Per-
formance Estimation Framework using Source Code Instrumentation,”
in Proceedings of the 7th International Workshop on Software and
Performance (WOSP’08), Princeton, NJ, USA, Jun 2008, pp. 33–42.

[11] E. Cheung, H. Hsieh, and F. Balarin, “Framework for fast and accurate
performance simulation of multiprocessor systems,” in Proceedings of
IEEE International Workshop on High Level Design Validation and Test,
2007, pp. 21–28.

[12] J.-Y. Lee and I.-C. Park, “Timed compiled-code simulation of embedded
software for performance analysis of SOC design,” in Proceedings of
the Design Automation Conference (DAC’02), 2002, pp. 293–298.

[13] T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leupers, and
H. Meyr, “A SW performance estimation framework for early system-
level-design using fine-grained instrumentation,” in Proceedings of
DATE, 2006, pp. 468–473.

[14] Z. Wang and A. Herkersdorf, “Software performance simulation strate-
gies for high-level embedded system design,” Performance Evaluation,
vol. 67, no. 8, pp. 717–739, 2010.

