
Hybrid Source-Level Simulation of Data Caches
Using Abstract Cache Models

Stefan Stattelmann† Gernot Gebhard‡ Christoph Cullmann‡ Oliver Bringmann† Wolfgang Rosenstiel†§

†FZI Forschungszentrum Informatik
Haid-und-Neu-Str. 10–14

D-76131 Karlsruhe, Germany

‡AbsInt Angewandte Informatik GmbH
Science Park 1

D-66123 Saarbruecken, Germany

§University of Tuebingen
Sand 13

D-72076 Tuebingen, Germany

Abstract—This paper presents a hybrid cache analysis for the
simulation-based evaluation of data caches in embedded systems.
The proposed technique uses static analyses at the machine code
level to obtain information about the control flow of a program
and the memory accesses contained in it. Using the result of
these analyses, a high-speed source-level simulation model is
generated from the source code of the application, enabling a fast
and accurate evaluation of its data cache behavior. As memory
accesses are obtained from the binary-level control flow, which is
simulated in parallel to the original functionality of the software,
even complex compiler optimizations can be modeled accurately.
Experimental results show that the presented source-level approach
estimates the cache behavior of a program within the same level of
accuracy as established techniques working at the machine code
level.

Index Terms—System analysis and design; Timing; Modeling;
Software performance; Cache memories;

I. INTRODUCTION

The growing complexity of embedded systems and the ever-
increasing use of MPSoCs (multiprocessor system-on-chip)
and multi-level memory hierarchies makes estimating non-
functional properties like execution time and power consump-
tion a challenging task. As these properties are determined by
the interaction of hardware and software components, neither
of them can be considered in isolation. Instead, their interde-
pendency must be modeled in a fine-grained fashion to obtain
accurate results. Caches can heavily influence the non-functional
properties of an embedded system and are a prime example of
how software can influence these properties. The reason for this
is that the cache contents are almost solely determined by the
executed machine instructions and the way these instructions
access memory cells.
The effects of caches on the efficiency of an entire system can

be tremendous. On the one hand, a memory access missing the
cache takes significantly more time as it causes an additional
access to main memory. Hence, the number of cache misses
significantly affects the execution time of the software and
thereby the responsiveness of the system. On the other hand,
the difference in energy consumption between those memory
accesses hitting the cache and those which must go all the way
through the memory hierarchy to main memory can be huge.
Therefore caches are also very important for the power analysis
of embedded systems.
Additionally, not all types of caches are alike. The possi-

ble access patterns to the instruction memory can be derived
from the structure of the machine code. Therefore analyzing
the behavior of instruction caches is relatively easy. Various
solutions for the analysis of instruction caches exist in the
literature. On the other hand, estimating the cache utilization
of data caches and unified caches, which store instructions and

data, is more challenging. Data accesses are highly dependent
on the input of the executed program and its execution history.
Thus, a static analysis of the data cache behavior is often not
completely accurate, as it has to abstract the program state to
cover all possible program runs. In contrast to this, simulation-
based approaches do not have this limitation, as they model the
cache behavior of a single program run only. Yet accurately
modeling the data cache in a binary-level simulation usually
comes with a large performance loss.
This paper proposes a hybrid cache analysis which combines

static analyses of binary-level control flow and memory accesses
in the machine code with a high-speed source-level simulation
of application code. The destination of memory accesses is
determined using binary-level interval analysis of processor
registers. This approach allows a fast and precise evaluation
of the data cache behavior as the potential destination of every
memory access in the machine code can be determined. In con-
trast to previous publications in the area of source-level cache
simulation, the presented technique is able to track all memory
accesses present in the actual binary code. There is neither a
restriction to global variables nor the implicit assumption that
memory accesses in the host-compiled application code can be
translated to memory accesses in the target architecture. Thus,
the presented approach is able to cover the actual cache behavior
of the application software running on the target architecture
more accurately.
The remainder of this work is organized as follows: the next

section gives an overview of existing methods for timing and
cache analysis of embedded software. Section III introduces the
concept of abstract caches known from static cache analysis
which will be adapted for the presented hybrid approach. In
Section IV, the proposed technique for source-level simulation
of data caches will be described in detail. Section V provides
an experimental evaluation of the proposed technique. Finally,
the last section gives a summary of the presented work.

II. STATE OF THE ART AND RELATED WORK

For a given processor architecture, properties of software
components can be evaluated using an instruction set simula-
tor (ISS) modeling the functionality of the target processor. In
state-of-the art binary simulators like Synopsys CoMET [1] or
Imperas Open Virtual Platforms [2], just-in-time (JIT) compila-
tion is used to translate instructions of the target processors to
instructions for the simulation host. Non-functional properties
like the cache behavior can be determined using online cache
models integrated into the ISS or by generating traces for an
offline model like Dinero IV [3]. As the dynamic translation
of binary code and the simulation of non-functional properties
introduces a significant overhead, an ISS-based execution of

978-3-9810801-8-6/DATE12/ c©2012 EDAA



(a) Original Source Code (b) Annotated Source Code

Fig. 1: Simple Timing Instrumentation

software is often considerably slower than the native execution
of the same program on the simulation host.
As an alternative to simulation-based approaches, the exe-

cution time and cache behavior of embedded software can be
determined using static analysis. This is achieved by safely
approximating all possible executions of a program. The aca-
demic framework OTAWA [4] and the commercial tool AbsInt
aiT [5] use abstract interpretation [6] of machine instructions
to determine a worst-case execution time (WCET) bound of a
program. The computed WCET bound is an upper bound for
the execution time of all possible executions independent of the
program inputs. Internally, the WCET analysis uses a model
of the processor pipeline to determine the execution time of
basic blocks, and abstract caches [7] to determine the delay
of memory accesses in the binary code. As the state space
for the pipeline and the cache states can grow very large for
sophisticated target architectures, these analyses must use (safe)
approximations for the potential states of the analyzed system.
Additionally, only the worst-case program path for the analyzed
property is computed. If a program is tested with a fixed set of
inputs, for instance during architecture exploration in an early
design phase, the results for the worst-case path can significantly
deviate from those for the tested program path. Usually system
designers are interested in average case execution behavior and
therefore static analysis is not the first choice for such use cases.
Determining non-functional properties of embedded software

through source-level simulation has been proposed as another
alternative for the use of an ISS. In a source-level simulation, the
source code of software components is enriched with annota-
tions describing the non-functional properties to be analyzed.
The annotated source is then compiled for the simulation
host. Using the resulting host-compiled binary, non-functional
properties of the software running on the target architecture can
be obtained while executing the software on the simulation host.
If there is a unique relation between basic blocks1 in the

source code and the binary code, the desired properties can
be directly annotated to the source code. This is demonstrated
for a simple program in Figure 1, where the execution time of
binary-level basic blocks is represented by calls to the function
wait. In case compiler-optimizations are used when creating
the machine code for the target architecture, the structure of
the source code and the final machine code can be completely
different. Hence, adding source-level annotations for a given
basic block in the machine code can become very complicated.
Therefore, source-level simulation was originally limited to pro-
grams compiled without compiler optimizations [8], [9] or only
with optimizations that preserve [10], [11] or simplify [12] the
structure of the program. Additionally, it cannot be determined
from the source code whether a read or write access at the
source-code level, e.g. an access to a variable, is translated
to a real memory access, meaning a load or store instruction.
The reason for this is that it depends on the compiler whether
the value of a source-level variable is stored in main memory

1A basic block is a maximal sequence of consecutive source-level statements
or machine instructions with no possibility of branching inside the basic block.

or in a register. Moreover, the storage location of a variable
often changes during its lifetime. This is a large obstacle for
an accurate estimation of the data cache behavior in a source-
level simulation. Thus, the aforementioned approaches can only
model the instruction cache, if the cache behavior is considered
at all.
In order to add annotations for source-level simulation even if

the compiler performs optimizations which change the structure
of a program, the approaches presented in [13], [14], [15]
use a modified compiler to emit timing-annotated source code.
To some extend, this approach can also be used to annotate
memory addresses using a memory address translation from
host addresses to target addresses [16]. A similar translation
scheme not requiring a modified compiler has been proposed
in [17]. Instead of using the compiler to emit memory accesses,
the compiler-generated debug information is used to translate
accesses to source-level variables to memory accesses in the
target architecture. Both of these approaches implicitly assume a
tight coupling between memory accesses on the simulation host
and the target architecture. Furthermore, they do not provide any
guarantees that an actual memory access in the machine code
is represented in the simulation. In contrast to these existing
approaches, this work will present a method to model memory
accesses in a source-level simulation without relying on memory
access patterns on the simulation host.

III. STATIC CACHE ANALYSIS

The basic idea behind a static cache analysis is to classify
memory accesses in the program as a cache hit or a cache miss.
As these classifications must hold for all possible executions
of a program, a precise classification for every access is not
always possible. Consequently, additional classifications besides
hit or miss are used, for instance a miss for the first access to
a memory cell only. For some accesses, a classification might
not be possible at all. In this case, further analyses which use
the result of the cache analysis, like a pipeline analysis for
determining the WCET of a basic block, must either use a worst-
case assumption or model both possibilities. For space reasons,
the concepts of static cache analysis will only be sketched in
the following paragraphs. A more detailed description of static
cache analysis can be found in [7].
The example in Figure 2 illustrates one of the reasons why

not every memory access in a program can be classified as cache
hit or cache miss without executing the program. In this simple
example, the control flow graph (CFG) of a program with one
memory access in every basic block is shown. At the outgoing
edge of each basic block, the cache state is shown after the
memory access in the respective basic block has been executed.
The cache is assumed to be a fully associative cache with
three cache lines and the least recently used (LRU) replacement
policy. After every memory access, the most recently used cache
entry is depicted at the top of the cache while the least recently
used entry is located at the bottom. The cache state after the
CFG nodes 1–3 contains all memory cells that were accessed
along the respective program path from the start node. The
cache state at node 4 cannot be determined accurately by static
analysis, as it depends on the path through which the node was
reached. Depending on which part of the branch at node 1 is
taken, either memory cell B or memory cell C would be the
most recently used entry in the cache before the execution of
node 4. For the LRU cache in this example, the memory cell D
is always the most recently used cache entry after the execution
of node 4 and A is always the least recently used entry.



Fig. 2: Cache Analysis Example

(a) 1 → 2 → 4 (b) 1 → 3 → 4 (c) May Cache (d) Must Cache

Fig. 3: Cache States

To model all possible cache states accurately, a static cache
analysis uses the concept of abstract cache states determined by
a must and a may analysis. The must cache analysis determines
all entries which are guaranteed to be in the cache. For the
example in Figure 2, this holds for entries A and D. Accesses
to these memory cells directly after node 4 are guaranteed to be
cache hits. On the other hand, the may cache analysis determines
all memory cells which could potentially be in the cache. In
effect, all other entries are guaranteed cache misses.
The various cache states after the execution of node 4 from

the cache analysis example are show in Figure 3. If the concrete
path through the program is known, the concrete state of the
cache can be determined precisely. The may and must caches
are an abstraction for all concrete states. In this simple example,
the may and the must cache can be determined by the union
and intersection of the entries in every cache line for every
concrete state. The concept of abstract cache states can also be
applied if the precise destination of a memory access cannot be
determined. Instead, it suffices to determine the possible address
range of a memory access to estimate the potential cache state.
These ranges can be determined using interval analysis [6] of
processor registers at the machine code level [18]. A memory
access approximated by an address interval may affect multiple
cache sets in one update of the abstract cache state. In the worst
case, such an abstract memory access affects all abstract cache
sets. In contrast to discarding the whole abstract cache state,
only little information is lost.
Figure 4 illustrates how interval analysis can be used to

estimate memory accesses using a simple sequence of ARM
instructions. The first instruction in the example loads data from
the address stored in register r2 and stores it in register r1.
Thus, the value of r1 after executing the first instruction solely
depends on the value of the respective memory cell. Without
further knowledge about the data sections of the program and
previously executed instructions, the possible value range of r1
covers all values of a 32-bit register. The second operation ex-
ecutes a logical right shift by 24 positions. Therefore the upper
24 bits of r1 are guaranteed to be zero after this operations,

Fig. 4: Example Machine Code for Interval Analysis

reducing the possible value range to the interval [63..0].
Using this information, the memory area accessed by the third
instruction can be narrowed down to the value range of r1.
Similarly, the contents of the data cache which might be
influenced by this access can also be determined. As a result,
the cache behavior of a program can be estimated by analyzing
all possible cache states for all program paths using abstract
caches.
This work proposes the adoption of abstract cache modeling

from static cache analysis for the source-level simulation of the
cache behavior of a program. Using explicit enumeration of all
possible cache states among all possible execution paths through
a program is not feasible in general. Yet this analysis technique
allows for a compact representation of cache states, from which
simulation-based approaches can also benefit.

IV. PROPOSED DYNAMIC ESTIMATION TECHNIQUE

As stated in the introductory sections, compiler optimizations
disrupt annotations of machine code properties to the source
code of a program. To overcome the issue of matching the
structure of the source code and the machine code, this pa-
per proposes the concept of binary-level path simulation as
described in [19] and [20]. Furthermore, a hybrid approach
to simulate caches is introduced which combines a static
analysis of memory accesses in the machine code with a
source-level simulation of abstract cache states. As a result,
accurate estimates of the data cache behavior can be obtained
during a source-level simulation. Figure 6 depicts the complete
annotation work flow which will be explained below.

A. Relating Source Code and Machine Instructions

If it is undesirable or infeasible to use a modified compiler,
annotating attributes of the machine code to the source code
of a program is usually done based on the line references in
the compiler-generated debug information. This information can
be generated by most compilers, but it is not guaranteed to be
exact if compiler optimizations are used. This issue is illustrated
by the code snippets in Figure 5 using Loop Invariant Code
Motion as an example compiler optimization: the expression
c*d, which is constant for all iterations of the loop, is moved
in front of the loop. As the expression originated from the loop
body, the debug information for the binary code will map it
to the loop body in the source code, although the respective
machine instructions are no longer part of the loop. Hence,
the relation between source code and binary code is no longer
correct with respect to the execution order of the program
statements. To allow a precise source-level simulation of binary
code execution, these inconsistencies in the compiler-generated
debug information must be eliminated.
Contradictory data contained in the line references can be

detected using the dominator relation of nodes in the source-
level and binary-level control flow graphs2. After compiling a
program for the target architecture in step 1 of Figure 6, this
relation can be calculated for the source-level and binary-level
control flow graph. The line references are extracted from the

2A node in a control flow graph dominates another node if every path from
the entry node to the second node also includes the first node.



Fig. 5: Effect of Optimizations on Debug Information

machine code in step 3. They are used to derive a mapping
between both control flow graphs. To detect and remove invalid
line references, the mapping is reduced to entries preserving
the dominator relation on both levels by step 5. In the resulting
mapping, the dominator relation of a pair of nodes in the binary-
level CFG and the nodes to which they are mapped in the
source code must be identical. Accordingly, if one binary-level
basic block is always executed before a second one, the same
relation holds for their respective source-level entries in the
mapping. With this reduced mapping, more accurate annotations
can be added to the source code. For space reasons, a complete
description of this approach cannot be presented. Please refer
to [20].

B. Simulating Binary Control Flow

Even if incorrect debug information can be detected, there is
not necessarily a unique source code location for every binary-
level basic block. For instance if a function is inlined by the
compiler at multiple call sites of the function, the respective
basic blocks in the machine code will all reference the same
source code location. Yet, if the predecessors of the respective
basic blocks are known, it is usually clear which instance in
the binary code would be executed during an execution on the
target processor.
To overcome this ambiguity in the mapping between source

code and binary code, annotations will be selected dynamically
during simulation. Based on the corrected line references, the
binary-level control flow is analyzed to create code for perform-
ing a dynamic reconstruction of executed basic blocks (Figure 6,
step 9). For source code locations which are referenced by
multiple binary-level basic blocks, the generated path simulation
code decides which basic block would be executed during an
execution of the actual target binary. Hence knowledge about
the execution history (e.g. the call stack) can be used to select
the correct annotations for every basic block during the host-
compiled execution of the instrumented source code.
The concept of dynamic path simulation has several advan-

tages. First of all, it makes the annotation framework more
robust against incorrect entries in the debug information. As
the dynamic path reconstruction only simulates feasible paths
through the binary-level CFG, incorrect annotations are simply
ignored. Furthermore, changes of the program structure during
compilation can be simulated accurately. It has already been
shown in [19] that this concept allows modeling the effects of
function inlining and partial loop unrolling. Especially the latter
is hardly possible with static annotations.

C. Detecting Memory Accesses

An exact simulation of the data cache behavior of a program
requires precise knowledge about the actual memory accesses
on the target processor. As the compiler is free to choose
whether a value is stored in memory or in a register, there is
no guarantee that an access to a source-level variable triggers a

Fig. 6: Proposed Memory Annotation Work Flow

memory access in the machine code. To some extent, compiler-
generated debug information can help in translating variable
names to addresses of the target architecture, as proposed
in [17]. In particular local variables are subject to repeated
relocation during optimized compilation, as values might move
from main memory to a register and vice versa. Hence, it is
very likely that a translation of variable names or host addresses
to target addresses does not cover all memory accesses in the
machine code.

The proposed alternative is to annotate memory accesses
in a similar fashion as it has been done with the execution
time of basic blocks in previous work. It is often possible
to determine value ranges for registers at the machine code
level using interval analysis. With this information, the memory
areas accessed by a memory instruction can be narrowed down.
Therefore, memory accesses executed within a basic block can
be annotated just like any other static property of the machine
code. In the presented annotation work flow, the information
about the memory areas accessed by a given binary-level basic
block is obtained using abstract interpretation. Initially, the
possible value range of every processor register is determined
using interval analysis. Subsequently, the addresses accessed by
every memory instruction can be derived using these intervals
and the semantics of the instruction set for the target processor.
This results in an annotated control flow graph containing range
information for the destination of every memory instruction,
cf. step 7 of Figure 6.

Based on the annotated CFG, memory access annotations can
be generated for source-level simulation. Using this information
in a simulation run allows reducing the number of possible



cache states considerably compared to a static cache analysis
covering all possible program paths. Moreover, the effects of a
memory access can be estimated even if the compiler did not
provide debug information for it. This is the major advantage
of the proposed technique, as no relation between source-level
variables and memory accesses in the machine code is needed.
The proposed technique is a trade-off between precisely

knowing when a memory access happens, but without knowing
its exact destination, and potentially missing some accesses, but
reconstructing them more precisely. The former concept is the
major contribution of this work, while the latter is typical for
all previous publications in this area.

D. Dynamic Abstract Cache Simulation

The final model for source-level simulation consists of the
following items:

• The application source code with annotations describing
the binary-level basic block matching a source-level state-
ment.

• The path simulation code which simulates the transitions
between basic blocks and dynamically selects memory
annotations.

• An abstract cache model which uses the concepts of static
cache analysis to classify the annotated memory accesses.

During the execution of the annotated software, the memory
references obtained from the machine code during model cre-
ation are fed into the abstract cache model. Thus, the cache
model always maintains the cache state for the current position
of the program counter. As this state reflects only the previously
executed portions of the program, it is more precise than the
abstract state determined by a completely static cache analysis
for identical program points.
Based on the dynamically determined abstract cache states,

some memory accesses can be classified as cache hit, some can
be classified as cache misses and some cannot be classified.
The latter is the result of the abstraction used by the dynamic
analysis, since memory accesses are described by address ranges
instead of single addresses. This means that the result of the
analysis is only a range of cache hits and misses, since every un-
classified access could be a hit or a miss. While this reduces the
accuracy of the determined cache hit and cache miss numbers, it
also allows tweaking the simulation for various purposes during
architecture exploration. For instance it is possible to simulate
the best case and the worst case execution of a program for a
fixed set of input values.
Another benefit of the dynamic abstract cache simulation is

that it can be easily coupled with models using a different level
of abstraction. For instance, the memory accesses generated by
an ISS can also be passed to an abstract cache to model a
shared cache. Furthermore, the effects of program parts only
available in binary form, such as library functions, can also
be considered during a source-level simulation. As the path
simulation code will model binary-level control flow for these
program parts, their effect on the cache contents is simulated
as well. Nevertheless, data-dependent control flow might not be
simulated accurately. So the effects of the program parts that are
only available in binary form might be estimated less precise,
but their effect on the cache hits and cache misses generated by
the application code can be determined accurately.

V. EXPERIMENTAL EVALUATION

A. Implementation and Test Setup

The presented approach for source-level cache simulation
has been implemented and tested for ARM target processors.

For the experimental evaluation, the programs of the Mälar-
dalen WCET benchmark suite [21] were used. The ARM
target binaries for the experiments were generated using the
Mentor Graphics Sourcery CodeBench Lite Edition compiler
toolchain [22], which is based on the gcc toolchain. The
highest level of compiler optimizations was used (-O3) for
compiling the benchmarks. The compiler performed many high-
level optimizations which significantly modified the structure of
the programs, e.g. Function Inlining, Dead Code Elimination
and partial Loop Unrolling.
The proposed source-level technique was implemented using

existing frameworks for binary-level static analysis and source-
level annotation of machine code properties. The path simula-
tion code and the memory annotations for the example programs
were generated as described in the previous section. We then
compiled the annotated source code and linked it with a library
containing a cache model identical to models used in static
cache analysis. The resulting host-compiled binary was executed
on a standard Linux workstation to determine the number of
data cache hits and data cache misses. For all experiments, we
used an 8kB 2-way set-associative data cache with a line size
of 16 bytes and using the LRU replacement policy. Other cache
configurations are supported as well and can be easily evaluated
by changing the respective parameters of the cache model.
To validate the results, the ARM target binaries were also

executed using QEMU [23] as instruction set simulator. QEMU
was used to capture memory traces for the benchmarks which
contained all information about the memory accesses executed
by the target machine code. With these traces, the cache
behavior of the example program was determined using an
offline cache model.

B. Results and Discussion

The results of the experimental evaluation can be found in
Table I. Benchmarks for which the compiler generated trivial
optimized code, like programs with a single basic block and
no memory accesses, or data-dependent loops for which the
source code was not available (software floating point division)
were not considered in the evaluation. From the remaining
programs, the ten benchmarks with the largest memory traces
were selected. For each of the selected programs, the total
number of instructions executed, the number of data cache
hits, the number of data cache misses and the cache miss
rate are shown for the ISS-based execution and the source-
level simulation. Furthermore, the number of unclassified cache
accesses and the error rate for the number of predicted cache
misses are included for the source-level simulation. For this
estimation, all unclassified accesses were considered to be cache
hits.
As can be seen from the results, the proposed technique is

able to accurately model the memory accesses of a program on
the target architecture. In most cases, the source-level simulation
is also able to classify all data cache accesses as hits or misses.
Nonetheless, even for a best case or a worst case assumption,
meaning counting all unclassified accesses as cache hits or cache
misses, the proposed source-level estimate is still reasonably
accurate while being more general than existing techniques.

As the cache model was not integrated into the reference
ISS, a meaningful comparison of the different approaches with
respect to simulation performance was not possible. There-
fore the source-level simulation was also compared to the
commercial simulator Synopsys CoMET, which is based on
binary translation like QEMU. This comparison yielded similar
results with respect to the number of cache hits an misses. The



ISS Source-Level Simulation
Benchmark Instructions Hits Misses Miss Rate Instructions Hits Misses Unclassified Miss Rate Error
recursion 1852 662 40 0.0570 1852 662 40 0 0.0570 0.00%
ns 1897 468 158 0.2524 1898 468 158 0 0.2524 0.00%
select 3096 1267 31 0.0289 3454 665 26 767 0.0178 16.13%
nsichneu 4505 1994 13 0.0065 4537 2008 11 8 0.0054 15.38%
fdct 4649 3153 66 0.0205 4649 3153 66 0 0.0205 0.00%
jfdctint 6077 3601 264 0.0683 6031 3601 260 0 0.0673 1.52%
crc 12129 589 543 0.4797 12129 559 519 54 0.4585 4.42%
ndes 19926 7565 238 0.0305 19926 6559 182 1094 0.0232 22.22%
edn 30178 11874 582 0.0467 30173 11867 580 0 0.0466 0.34%
matmult 51339 15808 3011 0.1600 51339 15848 2971 0 0.1579 1.33%

TABLE I: Experimental Results of Data Cache Simulation

performance of the source-level simulation was between one
and two orders of magnitude faster for a single execution of the
benchmark programs. Repeated execution of the programs using
a loop around the main function reduced the simulation speedup,
as the overhead created by binary translation can amortize over
repeated execution of the same code areas, while the overhead
induced by source-level path simulation remains constant.
During the experimental evaluation, only a single-core pro-

cessor with a single private L1 data cache and executing a
single program has been considered. However, the dynamic
estimation of cache states allows the consideration of external
influences when simulating the cache behavior. Examples for
such influences are task switches in a multitasking operating
system or the use of shared caches in multiprocessor systems.
To model these effects in a source-level simulation, parallel
software components must make use of a common cache model.
The presented approach can consider these interactions by using
a synchronization scheme, like the one presented in [24]. By
modeling this interactions on a higher level of abstraction,
i.e. not for every processor cycle, source-level simulation has the
potential for a significant performance increase when compared
to a instruction-based simulation at the machine code level.

VI. CONCLUSION

This paper presented a novel approach for the precise host-
compiled source-level simulation of data caches. In contrast
to previous approaches for source-level simulation, memory
access annotations are not directly added to the source code
of a program. Instead, annotations are selected dynamically by
path simulation code which reconstructs the binary-level control
flow. The values for these annotations are determined using a
static binary-level interval analysis of processor registers. As
the resulting memory annotations do not necessarily point to
a unique memory address but to address intervals, a standard
functional cache model cannot be used to estimate cache
statistics. Therefore the presented technique makes use of an
abstract cache model which approximates the actual cache state
to determine the cache behavior.
Experimental results have shown that the presented hybrid

approach can model the cache behavior accurately. Notably, the
presented technique can handle complex compiler optimizations
and does not rely on compiler-generated debug information to
simulate memory accesses. Working on the source code level
allows a seamless integration of the presented technique into es-
tablished frameworks for system-level performance analysis and
design space exploration for embedded systems. Furthermore,
a significant boost in simulation performance can be expected
due to the native execution of the embedded software on a
simulation host.

ACKNOWLEDGMENTS

This work has been partially supported by the BMBF project
SANITAS under grant 01M3088C and by the ITEA2 project
VERDE under grant 01|S09012A.

REFERENCES

[1] “Synopsys CoMET,” http://www.synopsys.com/.
[2] “Open Virtual Platforms (OVP),” http://www.ovpworld.org.
[3] “Dinero IV,” http://pages.cs.wisc.edu/˜markhill/DineroIV/.
[4] H. Cass and P. Sainrat, “OTAWA, a framework for experimenting WCET

computations,” in European Congress on Embedded Real-Time Software
(ERTS), Toulouse, 2006.

[5] “AbsInt aiT WCET Analyzer,” http://www.absint.com/ait.
[6] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice Model

for Static Analysis of Programs by Construction or Approximation of
Fixpoints,” in Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. Los
Angeles, California: ACM Press, New York, NY, 1977, pp. 238–252.

[7] C. Ferdinand and R. Wilhelm, “Efficient and Precise Cache Behavior
Prediction for Real-Time Systems,” Real-Time Systems, vol. 17,
pp. 131–181, 1999, 10.1023/A:1008186323068. [Online]. Available:
http://dx.doi.org/10.1023/A:1008186323068

[8] T. Meyerowitz, A. Sangiovanni-Vincentelli, M. Sauermann, and D. Lan-
gen, “Source-Level Timing Annotation and Simulation for a Hetero-
geneous Multiprocessor,” in Proceedings of the Conference on Design,
Automation and Test in Europe (DATE 2008).

[9] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel, “High-
Performance Timing Simulation of Embedded Software,” 45th Design
Automation Conference (DAC 2008).

[10] K.-L. Lin, C.-K. Lo, and R.-S. Tsay, “Source-Level Timing Annotation
for Fast and Accurate TLM Computation Model Generation,” 15th Asia
and South Pacific Design Automation Conference (ASP-DAC 2010).

[11] J. Castillo, H. Posadas, E. Villar, and M. Martinez, “Fast Instruction Cache
Modeling for Approximate Timed HW/SW Co-Simulation,” in GLSVLSI
’10: Proceedings of the 20th Great lakes symposium on VLSI.

[12] Z. Wang, K. Lu, and A. Herkersdorf, “An Approach to Improve Accuracy
of Source-Level TLMs of Embedded Software,” in Proceedings of the
Conference on Design, Automation and Test in Europe (DATE 2011).

[13] A. Bouchhima, P. Gerin, and F. Petrot, “Automatic Instrumentation of
Embedded Software for High Level Hardware/Software Co-Simulation,”
14th Asia and South Pacific Design Automation Conference (ASP-DAC
2009).

[14] E. Cheung, H. Hsieh, and F. Balarin, “Fast and Accurate Performance
Simulation of Embedded Software for MPSoC,” 14th Asia and South
Pacific Design Automation Conference (ASP-DAC 2009).

[15] Z. Wang and A. Herkersdorf, “An Efficient Approach for System-Level
Timing Simulation of Compiler-Optimized Embedded Software,” 46th
Design Automation Conference (DAC 2009).

[16] E. Cheung, H. Hsieh, and F. Balarin, “Memory Subsystem Simulation
in Software TLM/T Models,” in 14th Asia and South Pacific Design
Automation Conference (ASP-DAC 2009).

[17] H. Posadas, L. Dı́az, and E. Villar, “Fast Data-Cache Modeling for
Native Co-Simulation,” in 16th Asia and South Pacific Design Automation
Conference (ASP-DAC 2011).

[18] A. Flexeder, M. Petter, and H. Seidl, “Analysis of Executables for
WCET Concerns,” Technical Report TUM-I0838, Technische Universität
München, 2008.

[19] S. Stattelmann, O. Bringmann, and W. Rosenstiel, “Fast and Accurate
Source-Level Simulation of Software Timing Considering Complex Code
Optimizations,” 48th Design Automation Conference (DAC 2011).

[20] S. Stattelmann, O. Bringmann, and W. Rosenstiel, “Dominator Homomor-
phism Based Code Matching for Source-Level Simulation of Embedded
Software,” in Proceedings of the 9th International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS 2011).

[21] “Mälardalen WCET research group WCET Benchmark Suite,”
http://www.mrtc.mdh.se/projects/wcet.

[22] “Mentor Graphics Sourcery CodeBench Lite Edition for ARM,”
http://www.mentor.com/embedded-software/sourcery-tools.

[23] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in Proceed-
ings of the USENIX Annual Technical Conference, 2005.

[24] S. Stattelmann, O. Bringmann, and W. Rosenstiel, “Fast and Accurate
Resource Conflict Simulation for Performance Analysis of Multi-Core
Systems,” in Proceedings of the Conference on Design, Automation and
Test in Europe (DATE 2011).


