
Application-Specific Memory Partitioning for
Joint Energy and Lifetime Optimization

†Haroon Mahmood, †Massimo Poncino, ‡Mirko Loghi, †Enrico Macii
†Politecnico di Torino, Torino, 10129, ITALY
‡University di Udine, Udine, 33100, ITALY

Abstract—Power management of caches based on turning idle
cache lines into a low-energy state is also beneficial for the aging
effects caused by Negative Bias Temperature Instability (NBTI),
provided that idleness is correctly exploited; unlike energy, aging,
being a measure of delay, is in fact a worst-case metric.
In this work we propose an application-specific partitioned
cache architecture in which a cache is organized as a set of
independently addressable sub-blocks; by properly using the
idleness of the various banks to drive how the partition is
determined, it is possible to extend the effective lifetime of the
cache while saving extra energy.
Two are the distinctive features of our approach: First, we
allow the cache sub-blocks age at different rates, achieving a
sort of graceful degradation of performance while extending
lifetime beyond the limits of previously published works. Proper
architectural arrangements are also introduced in order to cope
with the issue of using a progressively smaller cache. Second,
the sub-blocks have non-uniform sizes, so to maximally exploit
idleness for joint energy and aging optimization.
Simulation results show that it is possible to extend the effective
lifetime of the cache by more than 2x with respect to previous
methods, while concurrently improving energy consumption by
about 50%.

I. INTRODUCTION

Aging of devices has emerged as the latest challenge brought
by technology scaling. Thinner oxide layers, higher electric
fields and operating temperatures, induce adverse physical and
chemical phenomena that cause transistors to deteriorate their
performance over time. The three main sources of device aging
are Bias Temperature Instability (BTI), Hot Carrier Injection
(HCI), and Time Dependent Dielectric Breakdown (TDDB).
Of the three, BTI, and in particular Negative Bias Temperature
Instability (NBTI) appears to be the most critical one in sub-
65nm technologies [1]. NBTI affects PMOS devices under
negative bias (i.e., when a logic “0” is applied to the gate
terminal), resulting in a temporal drift of the threshold voltage,
which translates into a delay increase over time. However,
NBTI is partially reversible if a logic “1” is applied to the
gate terminal [1].
A large amount of research has recently been published ad-
dressing NBTI aging from the design and EDA perspective, by
trying to act on design variables that regulate the aging process
[2]—[6]. SRAM memories, in particular, have received special

This work is supported in part by the European Commission under grant n.
247999 “COMPLEX”: COdesign and power Management in PLatform-based
design space EXploration.

attention: One reason is their criticality in the determination
of the overall system performance; another and more subtle
motivation is due to the fact that NBTI value dependence
is weaker in memory cells: due to its symmetric structure,
a SRAM cell ages regardless of the value stored.
The most effective solutions rely on the observation that
typical power management strategies (i.e., voltage scaling for
dynamic power and power/ground gating for static power) can
be exploited to reduce NBTI-induced aging [7], [8]. Therefore,
proper revisitation of power-managed memory/cache archi-
tectures according to an aging-related metric can achieve
concurrent energy and aging improvements [16], [15], [17].
Our work is focused on caches and is close in scope to that
of [17], in which a multi-bank cache implementation with
an improved aging profile was proposed: the work leverages
the idea introduced in [16], that is, the use of time-varying
cache indexing strategy (called dynamic indexing) to achieve
perfectly uniform distribution of idleness over the cache lines.
The work of [17] extends this paradigm to a multi-bank cache
architecture in which dynamic indexing is applied to individual
banks rather than cache lines to achieve concurrent (static)
energy (thanks to the cache partitioning) and aging benefits.
In practice, [17] implements a coarse-grain version of [16].
Regardless of the granularity, the two methods share two
features: first, dynamic indexing causes all the power man-
agement units (cache lines or cache blocks) to age identically.
Second, all power management units have same size.
In this work we explore a partitioned cache architecture in
which we relax both constraints. First, we allow the different
blocks into which the cache is partitioned to age at
different rates. This implies that some cache block will
become unreliable first, and the cache will keep on functioning
with a reduced efficiency (or equivalently, with a progressively
smaller cache). Another implication of this graceful aging is
that a proper aging metric is required for a fair comparison
against the method of [17]. To this purpose, we introduce
the concept of Effective LifeTime (ELT), that is, the product
of lifetime and size of a memory block. ELT conceptually
measures how much memory can be used for how much time.
Secondly, we allow the blocks into which the cache is
partitioned to have different sizes. In order to simplify
implementation and demonstrate a first proof-of-concept, in
this work we only consider the case of two partitions. Since
the sizes of the two sub-blocks become an optimization978-3-9810801-8-6/DATE12/ c⃝2012 EDAA

variable, we propose two partitioning algorithms that combine
in different ways ELT-driven partitioning with the swapping
of a small subset of cache indices.
As results will show, relaxing these constraints provides better
results in the (leakage, ELT) space. In particular, we improve
ELT by over a factor of 2 for a monolithic cache, over the
approach of [17], while concurrently reducing total energy
consumption by about 50%, on average.

II. BACKGROUND AND RELATED WORK

A. Background

In this section we summarize the basic issues related to NBTI-
induced aging in SRAM cells; for a more in-depth analysis
of NBTI mechanisms we refer the reader to the introductory
papers in the literature (e.g., [1]).
The threshold voltage drift induced by NBTI does not truly
affect the delay of a SRAM cell. Rather, it impacts its stability,
since it alters its Static Noise Margin (SNM), defined as the
minimum DC noise voltage required to change the state of
the cell. When the SNM of a cell falls below a threshold that
allows safe storage of data it cannot be safely read or written.
Another peculiarity of NBTI effects on SRAM cells is that
the value dependence is quite weak: the symmetry of the cell
causes it to age whatever the value it stores. The best-case
degradation occurs when both inverters in the cell exhibit the
same amount of degradation, that is, when a cell stores a 0
and a 1 with equal probability [9].

B. Related Work

Solutions proposed to mitigate NBTI effects in SRAMs fall
in three main categories. One class includes methods that try
to equalize cell value probabilities [9], [10]. In [9] the authors
provide hardware and software schemes to periodically invert
the entire content of a memory so as to guarantee a perfectly
balanced probability. A similar strategy was pursued by [10],
yet at a word granularity and with a much shorter inversion
frequency (thousands of cycles).
Another type of approach aims at designing customized NBTI-
resilient cells [11], [12]. In [11] a new cell structure is
proposed consisting of a set of NAND gates arranged so that
minimum degradation ratio for all PMOS transistors in the
cell is obtained. Another solution called recovery boosting
[12] allows both PMOS devices in the cell to be put into
the recovery mode by raising the ground voltage and bitlines
to the nominal voltage through modification of each memory
cell.
A third class of solutions is based on the exploitation of
the aging benefits provided by low-energy states [15], [16],
[17]. Assessment at the architectural level on entire memory
blocks of power management solutions (based on both DVS
and power gating) were evaluated in [15].
The work of [16] introduces a dynamic indexing scheme in
which the cache indexing function is modified over time in
order to achieve a uniform distribution of idleness over the
cache lines; in this way all the leakage saving opportunities
can also be used for aging reduction. The work of [17] can be

viewed as a coarse-grain extension of [16], and implements a
uniform-size, multi-bank cache with the purpose of achieving
a better design point in aging/energy design space.

III. MOTIVATION AND CONCEPT

Consider a power-managed cache in which individual lines can
be turned into a low-power state based on their access pattern
(e.g., [13], [14]); if we now simulate a given workload we can
extract the exploitable idleness (i.e., idle intervals longer than
some breakeven time) of each line.
Given that idleness can be exploited for both energy and
aging reduction, it is straightforward to observe that different
characteristics of the idleness profile matter for the two met-
rics. For energy, it is clearly the average value that matters:
energy savings for each line will cumulate proportionally to
the idleness of the line. For aging, conversely, it is the worst
case that matters: the line that becomes unusable first will
cause the entire cache to fail. Since due to the very principle
of locality, the distribution of idleness will in general not be
uniform, average and worst case will differ.
These considerations have inspired the works of [16] and [17];
using different architectural arrangements, both solutions aim
at the same objective, that is, having individual cache lines
([16]) or cache blocks ([17]) to “die” at the same time. This
corresponds to making average and worst case to coincide.
A different strategy is indeed possible, namely, to allow the
different blocks to age at different rates. This implies that
some cache block will become unreliable first, and the cache
will keep on functioning with a reduced efficiency (or equiva-
lently, with a progressively smaller cache). Implementation of
such a strategy requires the definition of at least two issues: the
management of “dead” blocks and the evaluation of lifetime.

A. Architectural Support

A first requirement is to have an aging sensor that is able
to monitor the aging of the corresponding block. The imple-
mentation of [18] perfectly fits the purpose because it can
be easily embedded into an existing memory array and it is
extremely compact. Since we need a monitor for each block,
the proposed strategy is more suitable for a coarse-grain imple-
mentation; even if the monitor of [18] can easily be added to
each line (it is essentially a modified SRAM cell), overhead
consideration suggest that a larger block should be used as
unit of power/aging management. Therefore, we compare our
method to that of [17], in which sets of contiguous cache lines
were used for power/aging management.
Assuming therefore a smaller number of blocks into which the
cache can be partitioned, a second architectural issue concerns
how to manage “dead” cache blocks. Two options are possible.
In one scenario, after a block dies we can view the cache as
becoming progressively smaller, similar to what is done in the
DRI cache proposed in [13]. Although possible, this implies
the re-design of the cache indexing mechanism (a smaller
cache results into extra index bits, depending on how small it
becomes); furthermore, it would limit the size of the block to
manageable sizes (proper powers of two). Therefore, we adopt

another scenario with simpler management. As soon as one
block dies, we simply force the corresponding lines to become
indefinitely invalid, and disable any kind of replacement for
those lines: any further access to these lines will result on
a miss. It is clear that this has impact on performance, but
will allow to use the cache longer than without any aging
management; in other terms, the performance of the cache
will be identical to the original one until the time the latter
will die, then it will become inferior.

B. Metrics

Another implication of this graceful aging is that a proper
aging metric is required for a fair comparison against previous
works. To this purpose, we introduce the concept of Effective
LifeTime (ELT), that is, the product of lifetime and size of
a memory block. ELT conceptually measures for how much
time a memory block of a given size can be used. Figure 1
pictorially describes the concept of ELT.

Fig. 1. Concept of Effective Lifetime.

The solid line enclosing the filled area denotes the aging profile
of a regular memory: M words are usable reliably for an
amount of time equal to LT1. By using solutions such as [16],
[17] we can extend the lifetime upto LT2, and the memory still
becomes unusable as a whole (dotted line). With our approach
(dashed line), we will use the entire memory until LT3a equal
to original lifetime, but then disable the earliest failing block
so that we can still use a smaller (say, M ′ < M words)
memory, yet for a longer time (up to LT3b). The figure shows
a simplified case in which only the cache is partitioned into
two blocks.
The ELT is the area below the various aging profiles. Thus,
the rationale is that, depending on the idleness distribution and
on how we partition the memory, it is possible that ELT3 =
M · LT3a +M ′ · (LT3b − LT3a) > ELT2 = M · LT2

IV. AGING-DRIVEN CACHE PARTITIONING

A. Architecture

We assume a direct-mapped cache with L = 2n lines
(l0, . . . , lL−1), where n is the number of the index bits
of the cache address. We want to split the cache into M
blocks B0, . . . , BM−1, of sizes S0, . . . , SM−1, addressed us-
ing n0, . . . , nM−1 bits, respectively. We assume M ≤ 4 in

order to limit the hardware overhead required for address de-
coding and wiring. Figure 2 shows the conceptual architecture
and the relevant quantities.

�

���

��

��

����

���

���

��� ���	
��

��������

� �
��

�
��

�
��

�
	

�

�
	

�

�
��

�
��

Fig. 2. Variable-Size Partitioned Cache Architecture.

The figures assumes the use of voltage scaling for imple-
menting the low-energy states for the blocks (denoted by
the dotted signal from the dual supply voltage selector).
Voltage scaling is the only viable choice for the standard
memory blocks provided by the memory compiler in our target
technology. Moreover, voltage scaling allows to preserve the
contents of the memory block in the standby state with a better
energy/performance tradeoff [16].
The decoding block Dec in the figure serves two purposes:
remapping the address on the proper block and asserting the
standby signals for the M blocks.

B. Aging Model

The lifetime of a given block will be determined by the earliest
failing line, which in turn is determined by the earliest failing
cell. Besides the amount of idleness, also the value stored
in the cell has a strong impact on its lifetime [9]. We have
therefore accurately characterized using HSPICE the aging
of a SRAM cell with respect to the percentage of idleness
(exploited through voltage scaling) and for the two extreme
cases of stored values (a fixed 0 or 1, and a 50% probability
of storing a 0 or 1 – respectively worst and best case). Figure
3 shows the two curves, which are used by our algorithms
to translate idleness into aging. Lifetime has been defined as
the time after which the SNM has decreased by more than
20%. The curves are not linear, but there is a clear correlation
between the two quantities.

�

��

��

��

��

��

��

�����	
��

������

�

��
�

�
�
��
�

�
�

�

�

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

����������

�

��
�

�
�
��
�

�
�

Fig. 3. Lifetime vs. Idleness.

C. Lifetime Optimization

The problem we are trying to solve can be stated as follows:
Given an idleness profile I = {i1, . . . , iL} for a cache of L
lines, and a number of banks M , generate a profile-specific
partition of the cache into M banks B = B0, . . . , BM−1 so
that the ELT of the partitioned cache is maximized.
The problem can be solved by observing, as discussed in
Section IV-B, that the lifetime of a block is determined by the
line with the least idleness. Using the relation between actual
lifetime and idleness of Figure 3, we can derive an analytical
formula for the ELT. For a generic M -way partition B, ELT
is obtained as:

ELTB =
∑

j=0,...,M−1

(LT (minj) · Sj)

where minj and Sj are the line with minimum idleness and
the size of block j, respectively. LT () represents the lifetime
vs. idleness function of Figure 3.
Given this compact cost function and the fact that M is
a small number, it is reasonable to think of an exhaustive
exploration algorithm in which all possible p-partitions with
p = 2, . . . ,M are evaluated and the one yielding maximum
ELT configuration is stored. By representing a M partition
as a set of M − 1 address boundaries, we can generate all
possible partitions by enumerating all possible boundaries
using a classical recursive backtracking framework.
As the results will show, ELT-driven partitioning alone already
yields significant benefits in terms of both aging and energy
with respect to a fixed-size partition as the one of [17],
thanks to a better matching between the partition sizes and
the idleness profile. However, the knowledge of the idleness
profile can be exploited so as to further improve both aging
and energy, at the cost of a small hardware overhead. The basic
transformation we implement is to selectively swap addresses
across partitions in order to achieve a better overall ELT. This
can be easily implemented by modifying the cache indexing
function for a few, selected addresses.
The choice of a possible swap-based strategy depends on
its relation with the ELT-driven partitioning step. There are
essentially two options to combine these two phases.
The first, and most intuitive is to run the partitioning first and
then improve the results of partitioning with a set of swaps.
We call this strategy partition & swap. A second option is
to first tweak the idleness profile with a set of swaps and then
find the best partition on that profile. We call this strategy
cluster & partition.
In the following we describe two detailed algorithms for each
of the two strategies. Both algorithms are parameterized by a
parameter k, which denotes the number of swapped addresses.
1) Partition & Swap Strategy: Since both size and minimum
idleness concur to determine ELT, the basic principle behind
this strategy is to repeatedly swap the address with the
minimum idleness in the largest block with some address (with
a larger idleness) of a smaller block that dies earlier.
The operation of the algorithm (called k-swap) can be de-
scribed as follows (see pseudocode): First we get the partition

B = B0, . . . , BM−1 with sizes S0, . . . , SM−1. We then repeat
k times the swap between the address with maximum idleness
in the earliest failing block (i) and the one with the minimum

1: k-Swap (I)
2: B = ELT-DrivenPartitioning (I)
3: for l = 1 . . . k do
4: i ⇐ index of address with l-th maximum idleness in

the earliest failing block.
5: j = index of block with maximum value of Sj · (m2j −

m1j).
6: mj ⇐ index of m1j

7: if (I[i] > I[mj]) then
8: SWAP(I[i], I[mj])
9: end if

10: end for
11: return B
idleness in the block j in which such a swap would maximize
the benefit. The latter is defined as the product between size
of the block and difference between the second and first
minimum (Si ·(m2j−m1j). The second factor represents how
much the lifetime of this block would be extended.
Clearly, the swap is done only if beneficial (i.e., if we are
bringing into Block j an address with idleness higher than the
previous minimum m1j).
2) Cluster & Partition Strategy: The rationale behind this
strategy is driven by the observation that the ELT-driven
partitioning would provide ideal results if the idleness profile
I would be sorted in non-decreasing order.
Since sorting the entire profile would require an excessive
number of swaps, the algorithm we implement under this
strategy (called k-min clustering) identifies the k minima in
the idleness profile and swaps them with the addresses at the
beginning or at the end of the profile (first or last k addresses),
as shown in the pseudocode below.
Then, the ELT-driven partitioning is applied on the modified
idleness profile.

1: k-MinClustering (I)
2: (j1, . . . , jk) ⇐ indices of the first k minima
3: i = 0
4: for l = 1 . . . k do
5: SWAP(I[i], I[jl]);
6: i++
7: end for
8: B = ELT-DrivenPartitioning (I)
9: return B

Notice that also in this case k is an upper bound on the number
of swaps. Some of the minima might already be “in place”.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The proposed architecture has been implemented and tested
on a set of traces, extracted from the simulation of the
MediaBench suite [19] with an in-house cache simulator. The
simulator also includes energy and aging models, derived from
an industrial 45nm design kit provided by STMicroelectronics,

to provide execution metrics as the miss rate, the energy con-
sumption, and the aging of the simulated cache. As described
in Section IV, we define lifetime as the time after which the
SNM has decreased by more than 20%. Results refer to the
worst case for aging in which it is assumed that a fixed value
is stored in each cell.

B. Aging Results

Figures 4 and 5 show a comparison of the proposed algo-
rithms against previous works for a 8kB and 16 kB cache,
respectively. They reports average lifetime improvement over
a monolithic, power-managed cache and refer to the case of
M=2 blocks.

100

150

200

250

L
T
e
x
te
n
si
o
n
[%

]

K min Clustering

K swaps

0

50

PALT PLT k =4 k = 8 k = 16 k = 32

E
L

Fig. 4. Lifetime Improvement of 8 KB Cache.

0

50

100

150

200

250

PALT PLT k =4 k = 8 k = 16 k = 32

E
LT

e
x
te
n
si
o
n
[%

]

K min Clustering

K swaps

Fig. 5. Lifetime Improvement of 16 KB Cache.

PALT refers to uniform partitioning with re-indexing [17],
which yields slightly less than 50% lifetime improvement.
PLT denotes the ELT-driven partitioning alone, which pro-
vides a lifetime extension of about 120% on average. The
adoption of swap-based algorithms yields even better results.
Both proposed algorithms perform similarly, although they
scale differently with respect to the number of swaps. For
smaller number of swaps the k-min clustering does not show
considerable improvement in lifetime but then it grows rapidly
as k gets larger. Conversely, for the k-swap lifetime increases
almost linearly. k-min clustering appears then to be more
advantageous for bigger caches with possibility of performing
higher number of swaps and k-min clustering will be better
suited for situation where only fewer swaps are possible.
In order to analyze the variation of the partitioning efficiency
over the benchmarks, Table I reports detailed data.
We can notice that there exists a significant variation across
the traces; but for one pathological case (mad) in which
only a marginal extension is possible, the benefit is always

TABLE I
DETAILED ELT IMPROVEMENTS [%] (k-SWAP ALGORITHM AND 16 KB

CACHE).

PALT PLT k
4 8 16 32

adpcm.dec 80.2 248.0 273.5 329.1 498.5 498.5
adpcm.enc 75.3 379.8 425.1 524.3 782.9 782.9
cjpeg 42.4 84.6 103.6 106.4 112.8 116.2
CRC32 8.9 25.8 51.9 63.7 145.7 551.9
dijkstra 89.6 255.6 283.9 288.1 296.3 301.8
djpeg 13.0 28.9 31.3 37.0 81.9 91.7
fft_1 24.6 52.3 62.8 66.3 66.9 69.0
fft_2 17.3 35.8 42.0 47.8 50.1 52.7
gsmd 31.0 94.4 187.2 190.6 196.3 284.4
gsme 76.5 197.0 242.6 245.1 245.2 247.7
ispell 23.4 50.8 59.3 61.3 67.0 72.1
lame 16.6 18.6 19.2 20.6 21.4 22.0
mad 0.6 2.9 7.0 9.5 12.9 14.3
rijndael_i 31.0 69.8 97.4 118.3 142.3 145.9
rijndael_o 46.3 94.7 108.3 145.4 169.6 179.4
say 31.3 79.2 135.5 149.0 161.7 184.2
search 63.8 131.0 141.4 150.2 172.6 189.0
sha 52.3 80.4 95.3 95.6 96.8 103.9
tiff2bw 98.2 400.8 401.4 401.5 401.7 403.8
Average 43.3 122.7 145.7 160.5 195.9 226.9

sizeable. The lifetime benefit is strongly impacted by idleness
distribution: applications with higher temporal and spatial
locality will provide better results. However, in all cases,
results consistently improve those of [17].

C. Energy Results

Table II shows the energy savings for a 16 KB cache, with
16 bytes for line, and for M = 4 blocks. We report data for
the PLT algorithm and for the k-min algorithm with several
values of k.

TABLE II
ENERGY SAVINGS [%] FOR A 4-PARTITIONS WHEN VARYING LINE SWAPS

(CACHE SIZE IS 16 KB, LINE SIZE IS 16 BYTES).

PLT k
4 8 16 32

adpcm.dec 52.4 61.6 57.6 60.7 57.0
adpcm.enc 65.0 55.4 54.6 52.1 62.8
cjpeg 49.9 44.6 48.3 51.9 54.1
CRC32 55.7 54.2 54.4 56.1 65.4
dijkstra 54.0 60.8 60.8 51.8 62.0
djpeg 53.4 51.5 52.1 28.0 38.2
fft_1 44.3 47.8 47.9 48.2 50.1
fft_2 44.2 46.0 46.1 46.5 48.0
gsmd 33.2 40.9 41.6 45.5 52.3
gsme 43.9 40.9 41.1 43.1 43.1
ispell 43.3 44.2 29.0 33.4 38.1
lame 46.7 49.6 49.7 23.3 25.8
mad 52.0 51.3 45.6 46.5 48.2
rijndael_i 54.3 44.9 45.7 47.4 51.9
rijndael_o 45.8 46.1 40.9 46.2 30.8
say 46.6 37.9 41.2 43.4 45.3
search 34.2 42.3 41.8 26.6 46.0
sha 58.0 58.0 56.8 56.3 56.1
tiff2bw 50.1 43.3 42.8 56.6 52.3
Average 48.8 48.5 47.3 45.5 48.8

The dependency of the energy benefits on the line exchanges
is quite irregular. Still, the custom partitioning achieves good
results in terms of energy: for each benchmark there is at least
one value of k that provides more than 40% of saving. Notice

that our approach achieves relevant lifetime extensions with
no impact on the energy saving potential (for a 16 KB cache,
this approach saves about 48% of the total energy on average,
while the uniform partitioning scheme [17] yields about 44%).
This slight advantage over [17] sums up to the reduced cost
of the hardware overhead required for the decoding circuitry:
The static rewiring required to implement the swaps requires
far less resources than those needed by a dynamic reindexing
scheme, which needs to change the line mapping over time.

TABLE III
AVERAGE ENERGY SAVINGS [%] FOR A 2 AND 4 BLOCKS PARTITIONED

CACHE WHEN VARYING CACHE SIZE.

2 blocks 4 blocks
Size PLT k PLT k
(KB) 4 8 16 32 4 8 16 32

4 25.2 18.7 24.0 18.4 18.8 37.3 40.1 45.6 36.2 36.1
8 30.6 19.5 24.9 21.3 23.3 42.7 44.8 50.7 42.9 44.8

16 31.4 23.2 26.4 25.4 28.4 48.8 48.5 47.3 45.5 48.8

Table III shows energy savings, averaged over all the bench-
marks, for M = 2 and M = 4, and for different cache sizes.
Clearly, using more blocks or larger caches provides higher
saving potential, mainly because the idleness is spread over
a larger number of objects (cache partitions or cache lines).
Hence the dynamic power manager has more chances to shut
down a memory block. Moreover, as M increases, the average
dynamic energy cost required for each access decreases

D. Impact on Performance
Figure 6 shows the evolution of the miss rate before and
after the “death” of the first block for a 16 KB cache. We
report sample curves for a monolithic cache, and for a cache
partitioned into 4 blocks using first the PLT and another ones
using with the k-min clustering algorithm.

0%

25%

50%

75%

100%

time

monolithic cache

PLT

k=4

MR benefit of

partitioning after

the first block death

LT
1

Fig. 6. Miss Rate Before and After the Death of the First Cache Block.

As expected, the miss rate is strongly impacted by the death of
the first block. Since we are forcing in that partition the lines
used the most, it is very likely that such a block has a relevant
impact on cache performance. However, if we compare such
a behavior against the one of a monolithic cache (which, from
the death of the first block suffers from a 100% miss rate), we
can notice that the cache is still working, allowing to exploit
the locality principle for more than 50% of the cases.

VI. CONCLUSIONS

We have proposed an application-specific partitioned cache
architecture that provides, besides the traditional energy bene-

fits, also significant lifetime extension, thanks to the use of an
aging-driven algorithm to drive the calculation of the partition.
In addition to the aging-driven partitioning, we introduced
an enhancement of the basic algorithm that selectively swap
addresses belonging to different blocks to improve the energy
and aging quality of the solution.
The two algorithms have similar magnitudes in the aging and
energy improvements, but different trends with respect to the
number of performed swaps, which make them suitable for
different cache sizes. We can achieve aging extensions ranging
from 1.2x to 2.3x, depending on the number of swaps and the
cache size, while keeping energy smaller by about 50%.

REFERENCES

[1] M.A.Alam, “Reliability- and process-variation aware design of integrated
circuits,” Microelectronics Reliability, Vol. 48, No. 8, August 2008, pp.
1114-1122.

[2] R. Vattikonda, et.al. “Modeling and minimization of PMOS NBTI effect
for robust nanometer design,” DAC-44, pp. 1047-1052, 2006.

[3] S. V. Kumar, et al., “NBTI-Aware Synthesis of Digital Circuits,” DAC-45,
pp. 370–375, June 2007.

[4] Y. Wang et al., “Gate replacement techniques for simultaneous leakage
and aging optimization,” DATE’09: Design Automation and Test in
Europe, pp. 328–333, March 2009.

[5] Y. Wang et al., “On the efficacy of input Vector Control to mitigate
NBTI effects and leakage power,” ISQED’09: International Symposium
on Quality of Electronic Design, pp. 19–26, March 2009.

[6] K.-C. Wu, D. Marculescu, “Joint logic restructuring and pin reordering
against NBTI-induced performance degradation,” DATE’09: Design, Au-
tomation and Test in Europe, March 2009, pp. 75–80.

[7] L. Zhang, R. P. Dick, “Scheduled Voltage Scaling for Increasing Lifetime
in the Presence of NBTI,” ASPDAC’09, pp. 492–497, Jan. 2009.

[8] A. Calimera, E. Macii, M. Poncino, ”NBTI-Aware Power Gating for
Concurrent Leakage and Aging Optimization”, ISLPED ’09: International
Symposium on Low power Electronics and Design, pp. 127-132, August
2009.

[9] S.V. Kumar, K.H. Kim, S.S Sapatnekar, “Impact of NBTI on SRAM read
stability and design for reliability,” ISQED’06, March 2006, pp. 213–218.

[10] Y. Kunitake, T. Sato, H. Yasuura, “A case study of Short Term
Cell-Flipping technique for mitigating NBTI degradation on cache,”
ISQED’10: International Symposium on Quality Electronic Design, pp.
660–666, March 2010.

[11] J. Abella, X. Vera, O. Unsal and A. González, “NBTI-Resilient Memory
Cells with NAND Gates for Highly-Ported Structures”, Workshop on
Dependable and Secure Nanocomputing, June 2007.

[12] T. Siddiqua, S. Gurumurthi, “Recovery Boosting: A Technique to
Enhance NBTI Recovery in SRAM Arrays,” ISVLSI’10: IEEE Annual
Symposium on VLSI, July 2010.

[13] M. Powell, et al. “Gated-Vdd: A Circuit Technique to Reduce Leakage
in Deep-Submicron Cache Memories,” ISLPED’00: International Sym-
posium on Low power Electronics and Design, July 2000, pp. 90–95.

[14] K. Flautner, N. Kim, S. Martin, D. Blaauw, T. Mudge, “Drowsy caches:
Simple techniques for reducing leakage power,” ISCA’02: International
Symposium on Computer Architecture, May 2002, pp. 148–157.

[15] A. Ricketts, J. Singh., K. Ramakrishnan, N. Vijaykrishnan, D. K.
Pradhan. “Investigating the Impact of NBTI on Different Power Saving
Cache Strategies,” DATE’10: Design, Automation and Test in Europe, pp.
592–597, March 2010.

[16] A. Calimera, M. Loghi, E. Macii, M. Poncino, “ Dynamic indexing: Con-
current leakage and aging optimization for caches”, 2010 ACM/IEEE In-
ternational Symposium on Low-Power Electronics and Design (ISLPED),
pp.343-348, 18-20 Aug. 2010

[17] A. Calimera, M. Loghi, E. Macii, M. Poncino, “ Partitioned cache
architectures for reduced NBTI-induced aging”, DATE 2011: Design
Automation and Test in Europe, pp. 938-943, March 2011.

[18] Z. Qi, et al. “SRAM-based NBTI/PBTI sensor system design,” DAC-47:
47th Design Automation Conference, June 2010, pp. 48.1–48.4.

[19] M. R. Guthaus et al., “MiBench: A free, commercially representative
embedded benchmark suite”, IEEE 4th Annual Workshop on Workload
Characterization, pp. 3–14, Dec. 2001.

