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Abstract—Accurate runtime power estimation is important for
on-line thermal/power regulation on today’s high performance
processors. In this paper, we introduce a power calibration
approach with the assistance of on-chip physical thermal sensors.
It is based on a new error compensation method which corrects
the errors of power estimations using the feedback from physical
thermal sensors. To deal with the problem of limited number
of physical thermal sensors, we propose a statistical power
correlation extraction method to estimate powers for places
without thermal sensors. Experimental results on standard SPEC
benchmarks show the new method successfully calibrates the
power estimator with very low overhead introduced.

I. INTRODUCTION

Chip power performance is critical for today’s high-

performance microprocessors as the transistor density has been

increasing exponentially. It is directly related to the micropro-

cessor’s energy efficiency, the chip’s thermal reliability and

life expectancy. As a result, accurate estimation of power

at runtime is crucial for the energy efficiency optimization,

dynamic thermal/power management [1], [2], [3], [4] and chip

reliability analysis [5], [6].

The coarse runtime power estimation provides total power

consumption at the die level and can be used to assist the

global power/thermal managements such as fan speed control

and dynamic voltage and frequency scaling (DVFS). However,

today’s multi-core computer architecture enables the ability

to perform more efficient fine-grained management such as

task scheduling and computing migration, for which accurate

functional-block-level power estimation is required [1], [2].

Although one is able to monitor the total power consumption

of the die easily, measuring the runtime power at functional-

block-level is extremely difficult [7]. As a result, there are

many researches conducted in this area, and most of the

proposed methods are performance counter based [8], [9],

[10]. The functional-block-level power estimators count the

execution numbers of various performance actions for each

functional block in a time frame and calculate the power by

multiplying the execution numbers with its corresponding per-

formance parameters. However, the power estimators cannot

be very accurate due to several reasons. First, not all the

executions are counted in the performance counting process
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Fig. 1. A simple schematic diagram of the power calibration process.

due to the complex behaviors of the microprocessor at runtime.

Second, the performance parameters are not static in general

because of the temperature variations and the aging of the

chip.

An alliterative way to get more accurate power estimation at

runtime is to exploit the thermal-power relation of the chip and

utilize the on-chip thermal sensors to calibrate the power esti-

mator. The simple schematic diagram of the proposed power

calibration process is shown in Fig. 1. A specially designed

compact thermal model takes the power estimation from the

power calibrator and calculates the full-chip temperatures with

low overhead. The temperatures from the compact thermal

model, the physical thermal sensor readings and the estimated

power are fed into the power calibrator together, with the

calibrated functional-block-level runtime power as the output.

In this paper, we address the accuracy problem of the run-

time functional-block-level power estimation by introducing

a power calibration method. The main contributions of this

paper are:

1) First, we show how on-chip physical sensors can be used

to compensate the power estimation error by exploiting

the thermal-power relationship of the chip.

2) Second, we show how to fully utilize the correlations

among the power errors of different functional blocks

and reach an accurate calibration when the number of

thermal sensors is limited.

3) Third, we propose a statistical correlation extraction

scheme which characterizes the functional block corre-

lations in a systematic way.

The rest of this paper is organized as follows: In Section II,

the basic thermal-power relationship of the chip and the

power calibration problem are presented. In Section III, we

demonstrate the new runtime power calibration method using

physical on-chip thermal sensors. Experimental results are
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Fig. 2. A nine-grid equivalent thermal circuit. Each grid has a thermal node
Ti denoted as a solid circle (black or red dashed), a thermal capacitor and a
current source representing the power dissipation at the grid. There is also a
thermal resistor between each pair of the adjacent thermal nodes. A thermal
sensor, denoted as the red dashed circle (T5), is placed at the center grid.

reported in Section IV and Section V concludes this paper.

II. BACKGROUND

A. Thermal-power relation of the chip

In order to utilize on-chip physical sensors in the power

calibration process, the thermal-power relation should be an-

alyzed first.

The heat differential equation of the chip can be spatially

discretized using finite difference method in the three dimen-

sional space to generate an equivalent thermal circuit [11]. A

two dimensional nine-grid equivalent thermal circuit example

is shown in Fig. 2. As shown in the figure, each grid has

a thermal node Ti, a thermal capacitor and a current source

representing the power dissipation at the grid. There is also

a thermal resistor between the adjacent thermal nodes. One

thermal sensor, denoted as the red dashed circle, is placed at

the center grid in this example.

Mathematically, if there are n discretized grids with specific

boundary conditions, the equivalent thermal circuit can be

modeled using an ordinary differential equation [11]

C
dT (t)

dt
+ GT (t) = BU(t) (1)

where T (t) ∈ R
n is the temperature vector containing the

temperatures of the n thermal nodes, C ∈ R
n×n is the thermal

capacitance matrix, G ∈ R
n×n is the thermal conductance

matrix, B ∈ R
n×p is the position matrix of the input where

Bi,j denotes the portion of the jth functional block power

injects into the ith thermal node and U(t) ∈ R
p contains the

power dissipations of the p functional blocks. The right hand

side of (1) is also written as

J(t) = BU(t) (2)

where J(t) ∈ R
n represents the power dissipations of n grids.

B. Power estimator calibration problem

In the thermal model introduced in the previous subsection,

the input J(t) (or U(t)) is accurate and the resulting temper-

ature T (t) is accurate. Assume the power estimation from a

power estimator is J̄(t) (Ū(t)), the system equation with the

estimated power is

C
dT̄ (t)

dt
+ GT̄ (t) = J̄(t) (3)

where T̄ is temperature estimation using the power estimation

J̄(t). T̄ is not accurate, but can be used for the power

calibration process.

Our goal is to compensate the power estimation error and

get an accurate power as close to J(t) as possible. We will

show in the following section that how the compensation is

performed with the help of thermal sensors.

III. RUNTIME POWER ESTIMATOR CALIBRATION METHOD

In this section, we present the runtime power estimator

calibration method. First, a power error compensation method

is presented with the assumption of infinite number of thermal

sensors. Then, a statistical correlation extraction method is

proposed to make the power error compensation applicable

with limited number of thermal sensors.

A. Power error compensation process

As briefly introduced in Section I, error is inevitable for

the runtime power estimators. In order to obtain the power

compensation term using thermal sensor information, we have

to first simulate the thermal system numerically using the inac-

curate power estimation as input. The simulation is performed

by discretizing (3) in time domain. We use Backward Euler

(BE) here for illustration. By choosing an appropriate time

step h, BE discretizes (3) in time domain as

(
C

h
+ G)T̄ (t + h) =

C

h
T̄ (t) + J̄(t + h) (4)

Through inverting (C
h

+ G) to the right hand side, (4) is also

written as

T̄ (t + h) = (
C

h
+ G)−1(

C

h
T̄ (t) + J̄(t + h)) (5)

Given the initial value T̄ (0) and the input J̄(t) for all time

points, the subsequent temperature T̄ (t) can be calculated

iteratively using (5).

However, the temperature T̄ (t) calculated from (5) is inac-

curate due to the inaccurate input J̄ . Assume the actual power

input is J = J̄ + δJ . The real system response T can be

calculated from

(
C

h
+ G)T (t + h) =

C

h
T (t) + J(t + h) (6)

1) Power error compensation with sufficient thermal sen-

sors: We would like to compensate the power estimation error

with the feedback from thermal sensors.

In the ideal case, assume there are thermal sensors every-

where on the chip, that is, we have the accurate temperature

information T (t) already. We define the temperature estima-

tion error δT , power estimation error δJ as

δT (t) := T (t) − T̄ (t) (7)

δJ(t) := J(t) − J̄(t) (8)



Then subtract (4) from (6) and neglect the small second order

term, we have

(
C

h
+ G)δT (t + h) =

C

h
δT (t) + δJ(t + h) (9)

Because of the low-pass filter property of thermal system [2],

the temperature estimation error over two successive time

steps does not change too much, that is δT (t + h) ≈ δT (t).
Therefore, (9) becomes

(
C

h
+ G)δT (t) ≈

C

h
δT (t) + δJ(t + h) (10)

We define the error compensation term, determined at time

t + h, as

ǫ := δJ(t + h) (11)

and from (10), the error compensation term ǫ can be approx-

imately solved as

ǫ ≈ GδT (t) (12)

We do not express ǫ as a variable of t since it will not be

calculated repeatedly at every time point.

After we obtain the error compensation term, the power

estimations of all the future time points are updated as

J(t + ih) = J(t + ih) + ǫ (13)

where i = 1, 2, . . ..

Note the error compensation term ǫ is accurate as long as

the power estimation error statistics do not change too much.

In this case, one compensation/calibration is enough for the

whole estimation time. If the condition is not satisfied, we

can perform the error compensation process (12) and (13)

periodically or at the time when the temperature errors at the

thermal sensors exceed a threshold.

2) Power error compensation with limited number of ther-

mal sensors: We have shown we are able to fully compensate

the power estimation error to generate accurate power esti-

mation in the ideal case with sufficient number of thermal

sensors. However, we cannot put thermal sensors all over

the chip in reality. The number of sensors is always limited

and as a result, it is impossible to obtain all the elements of

δT (t) in (12). In this subsection, we show how to exploit the

power estimator and limited thermal sensor information and

approximately recover the full-chip temperature.

Assume there are ns thermal sensors placed on chip. For

convenience, we first perform matrix permutation on (1) to

group the thermal nodes with thermal sensors together as

[

C11 C12

C21 C22

]

[

dTs(t)
dt

dTu(t)
dt

]

+

[

G11 G12

G21 G22

] [

Ts(t)
Tu(t)

]

=

[

B1

B2

]

U(t)

(14)

and
[

Js(t)
Ju(t)

]

=

[

B1

B2

]

U(t) (15)

where Ts(t) ∈ R
ns represents the temperatures at the nodes

where thermal sensors are placed and Tu(t) ∈ R
n−ns repre-

sents the temperatures at the nodes without thermal sensors.

Accordingly, (12) becomes
[

G11 G12

G21 G22

] [

δTs(t)
δTu(t)

]

=

[

ǫs

ǫu

]

(16)

We know the value of δTs since thermal sensors are placed at

these nodes. However, δTu is unknown due to the absence of

thermal sensors. Since there are 2n−ns unknowns in (16) with

n equations, (16) is unsolvable (in the normal sense) unless

the number of unknowns is reduced. Fortunately, we are able

to reduce the number of unknowns by taking advantage of the

power correlation among different functional blocks in a chip

and introduce a correlation matrix D ∈ R
(n−ns)×ns . Then,

we can represent ǫu in terms of ǫs as

ǫu = Dǫs (17)

The details of forming the D matrix in a systematic way are

presented in Section III-B.

After the introduction of the correlation matrix D, the

number of unknowns has been reduced to n. Combined with

(17), (16) is rearranged as
[

G12 −Ins×ns

G22 −D

] [

δTu(t)
ǫs

]

=

[

−G11δTs(t)
−G21δTs(t)

]

(18)

where Ins×ns
is an identity matrix with dimension ns. After

ǫs is solved from (18) and ǫu is obtained from (17), the error

compensation is performed with the permuted form of (13).

B. Statistical correlation extraction

In this subsection, we provide a systematic method to extract

the error compensation correlation and form the D matrix.

Our idea is based on the observation that many functional

blocks in a chip are highly correlated in their power con-

sumptions. For instance, when a integer register file is busy,

most likely the integer ALU and nearby cache memory will

also be busy. As a result, if we properly place the thermal

sensors so that more correlated functional blocks are clustered

around those thermal sensors, we should be able to have a

good guess of the compensation errors around the thermal

sensors. Specifically, based on the placement of the ns thermal

sensors, the chip is divided into ns blocks by combining the

correlated functional blocks around each thermal sensor. We

call this kind of block as sensor block. The compensation

errors of different nodes inside the same sensor block are

correlated and the correlation can be characterized, mainly

because the power consumptions of these functional blocks

inside the same sensor block rely strongly on a small number

of common performance parameters [10] such that the power

estimation errors are dependent on each other statistically. For

example, in (17), each column of D shows the correlation of

the compensation errors within a specific sensor block.

Please note that instead of finding the error relation for

each thermal node, it is only necessary to find the correlation

among functional blocks since the powers of the nodes inside

each functional block are extremely correlated and are usually

considered to be the same or follow a static distribution. As



a result, we only need to find the relation of the total power

error

δUu = DpδUs (19)

and the fine-grind power error relation (17) can be easily

calculated.

There are three steps in the statistical correlation extraction

process. The first step is to collect sample data, both from

measurement and power estimator simulation. The second step

is to group the functional blocks into sensor blocks according

to the results of a correlation test. The final step is to find

the exact formulation of the correlated power errors of the

functional blocks in each sensor block using simple linear

regression method.

Assume there are b benchmarks with steady power con-

figurations. First, we run the benchmarks using the power

estimator and record the power results

Û = [Û1, Û2, . . . , Û b] (20)

where, for example, the ith sample

Û i = [ûi
1, û

i
2, . . . , û

i
p]

T (21)

since there are p functional blocks. Next, run the benchmarks

on the test chip until the temperatures reach steady state,

measure the steady state temperatures as T . The real power

of the chip is reversely calculated as

U = [U1, U2, . . . , U b] (22)

using the measured temperatures. Note that all these steps

should be performed off-line, such that the error can be better

controlled and no overhead is introduced at runtime. Please

see [12], [13] for details of the reverse power calculation. The

errors of the functional block powers are obtained as

δU = U − Û (23)

Also assume the functional blocks with thermal sensors are

permuted to the first few blocks, such that we can also write

δU =

[

δUs

δUu

]

(24)

where the ith sample of δUs is

δU i
s = [δûi

1, δû
i
2, . . . , δû

i
ns

]T (25)

and the ith sample of δUu is

δU i
u = [δûi

ns+1, δû
i
ns+2, . . . , δû

i
p]

T (26)

remember that ns is the number of thermal sensors.

The next step is to determine the sensor blocks using a

correlation test, such that functional blocks with high power

error correlations can be identified and put into one sensor

block. The correlations are tested first using the data samples

δU through forming the correlation matrix (27) shown on top

of the next page, where µi is the expected value of δui. (27)

can be also divided into blocks like

corrδu =

[

Ess ET
us

Eus Euu

]

(28)

By definition, correlation matrix is a symmetric matrix con-

taining the correlation values of each random variable pair.

The correlation value is a number between −1 and 1 which

reveals the dependence of a random variable pair, where 1
and −1 indicate the two random variables are fully dependent

and 0 means totally independence. By investigating Eus which

contains the correlation values of all the δUs and δUu pairs,

we can easily determine which sensor block does the ith

functional block without thermal sensors belongs to: for the

ith row in Eus, simply take the column number of the element

with the largest absolute value as the sensor block number.

For the final step, we use the linear regression method to

find the relations among the functional blocks within each

sensor block. Assume ith functional block is associated with

the jth functional block (which has thermal sensor placed),

the relation

δuj = ajδui (29)

is found using the sample data information [δu1
i , δu

2
i , . . . , δu

b
i ]

and [δu1
j , δu

2
j , . . . , δu

b
j ]. With (29) for each functional block

without thermal sensors, i.e. j = 1, 2, . . . , n − ns, Dp in (19)

is populated with aj and the correlation matrix D in (17) is

derived subsequently.

C. Compact thermal modeling and practical implementation

considerations

Thermal model is used in our power calibrator to con-

nect the power and thermal. However, at the same time, it

introduces overhead and degrades the system performance.

The overhead can be significant especially when the full-

chip thermal model is used. Model order reduction (MOR)

technique, which reduces the size of large dynamic system

models, can be used to generate a compact thermal model and

reduce the runtime overhead. In this work, Krylov subspace

based approach is used with structure preservation [14] to

generate the compact thermal model as we need to preserve

the structure of (14). Interested readers are referred to [15] for

a comprehensive MOR introduction.

The practical implementation of the new power calibration

scheme needs to be considered carefully to avoid overhead as

much as possible. The full thermal model generation, statistical

correlation extraction, model order reduction process, and

the pre-factorization of the compact thermal system matrices

are performed off-line. The on-line computation should only

contain the temperature calculation with the pre-factorized

compact thermal system matrices and the power error com-

pensation.

IV. EXPERIMENTAL RESULTS

The experiments are conducted using Matlab on a Linux

server with Intel 3.0GHz quad-core CPU and 16GB memory.

In order to validate the new power estimator calibration

method, we build a dual-core processor with a shared L2 cache

which is shown in Fig. 3 (a). The size of the processor is

10mm × 10mm × 0.7mm. The core architecture shown in

Fig. 3 (b) is similar to the Alpha ev6 processor. There are 10
thermal sensors placed on chip in total, 4 for each core and 2



corrδu =

















E[(δu1−µ1)(δu1−µ1)]
σ2

δu1

E[(δu1−µ1)(δu2−µ2)]
σδu1

σδu2

· · ·
E[(δu1−µ1)(δup−µp)]

σδu1
σδup

E[(δu2−µ2)(δu1−µ1)]
σδu2

σδu1

E[(δu2−µ2)(δu2−µ2)]
σ2

δu2

· · ·
E[(δu2−µ2)(δup−µp)]

σδu2
σδup

...
...

. . .
...

E[(δup−µp)(δu1−µ1)]
σδupσδu1

E[(δup−µp)(δu2−µ2)]
σδupσδu2

· · ·
E[(δup−µp)(δup−µp)]

σ2

δup

















(27)

L2 Cache

Core 1 Core 2

(a) The dual-core micro-
processor architecture.

FPQ
ITB

IntQ

IntExec

IntReg

Bpred

IntMap

LdStQ

DTB

FPMap

FPMul

FPReg

FPAdd

DCacheICache

(b) The architecture for
each core composed of
functional blocks.

Fig. 3. The dual-core microprocessor architecture, with two cores and one
shared L2 cache. 10 thermal sensors (red solid circle) are placed on chip, 2

on the L2 cache and 4 on each core.

TABLE I
SENSOR BLOCKS DETERMINED BY THE STATISTICAL EXTRACTION.

Sensor block # Functional blocks in the sensor block

1 L2 Cache Left
2 Core 1: ICache, Bpred
3 Core 1: DCache, DTB
4 Core 1: FPAdd, FPReg, FPMul, FPMap, FPQ
5 Core 1: IntMap, IntQ, LdStQ, ITB, IntExec
6 L2 Cache Right
7 Core 2: ICache, Bpred
8 Core 2: DCache, DTB
9 Core 2: FPAdd, FPReg, FPMul, FPMap, FPQ
10 Core 2: IntMap, IntQ, LdStQ, ITB, IntExec

for the L2 cache as shown in Fig. 3. The power information

is obtained using the power estimator Wattch [16] by running

the standard SPEC benchmarks [17]. One core of the dual-

core processor is assumed to be active and the other one is

assumed to be idle, they can be switched when the temperature

on one core is too high. The power estimations given by the

power estimator is modeled with up to 20% mean value error

with the correlations similar to the one reported in [18]. The

original order of the thermal model is 3200 and the reduced

model, which is used in our power calibrator, has the order

of 106. The simulation time step h is chosen to be 0.1s to

balance the speed and accuracy.

The sensor blocks determined by the statistical correlation

extraction are shown in Table I. The accuracy comparison of

the power density map snapshot of bzip2 benchmark is given

in Fig. 4. The real power density map is shown in Fig. 4

(a), the estimated power density map which has significant

error is shown in Fig. 4 (b), and the power density map

TABLE II
RUNTIME AND ACCURACY COMPARISON OF THE POWER CALIBRATION

METHOD ON SPEC BENCHMARKS.

BenchmarkEstimation Calibration
err org time org err red time X red err

bzip2 14% 0.04 4.1% 0.0011 36X 4.2%
gzip 11% 0.12 4.3% 0.0016 75X 4.3%
mcf 17% 0.06 6.3% 0.0013 46X 6.1%

mgrid 12% 0.04 1.5% 0.0014 29X 2.3%
swim 13% 0.05 2.3% 0.0011 45X 2.4%
galgel 13% 0.09 1.9% 0.0013 69X 2.0%

after the calibration process is demonstrated in Fig. 4 (c). It

is clear from the figures that the power calibration process

successfully compensated the power estimation errors and

generated a much more accurate power density map compared

to the directly estimated one. The result with the compact

thermal model can be found in Fig. 4 (d). It is almost the

same as Fig. 4 which reveals the high accuracy of the compact

thermal model.

The detailed results on other benchmarks are presented

in Table II, where Estimation means the inaccurate power

estimation, org is the calibration with the original thermal

model and red suggests the compact thermal model is used,

X shows the speedup of the compact model over the original

model. To be fair, all the times are measured as the time spent

to calibrate 1 second transient power map, with the unit s.

Even with the large average power estimation error around

15%, the new power calibration method reduces the average

error to around 4%. The overhead of the power estimator is

also low, especially with the compact thermal model. Only

about 0.0015 seconds are spent to calibrate 1 second transient

power map.

V. CONCLUSION

In this paper, we have proposed a new runtime power

estimator calibration method for high-performance micropro-

cessors with the assistance of on-chip physical thermal sensors.

It is based on a new error compensation method which corrects

the errors of power estimations using the feedback from

thermal sensors. We also proposed a statistical correlation

extraction method to fully utilize the information from limited

number of thermal sensors. Experimental results on standard

SPEC benchmarks demonstrate the new method successfully

calibrates the power estimator with very low overhead intro-

duced.
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(b) The estimated power density map of the
dual-core processor.
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(c) The power density map of the dual-core
processor after the calibration process with
the original thermal model.
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(d) The power density map of the dual-core
processor after the calibration process with
the compact thermal model.

Fig. 4. Comparison of the power density maps of the dual-core processor before and after the power calibration process.
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