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Abstract—System-level power analysis is commonly used in
modern SoC design processes to evaluate power consumption
at early design phases. With the increasing variations in man-
ufacturing, the statistical characteristics of parameters are also
incorporated in the state-of-the-art methods. However, the spatial
correlation between modules still remains as a challenge for
system-level statistical power analysis where power models gen-
erated from individual modules are used for analysis efficiency or
IP protection. In this paper, we propose a novel method to extract
variation-aware and correlation-inclusive leakage power models
for fast and accurate system-level analysis. For each individual
module we generate a power model with different correlation
information specified by the module vendor or customer. The
local random variables in the power models are replaced by the
corresponding ones at system level to reconstruct the correlation
between modules so that the accuracy of system-level analysis is
guaranteed. Experimental results show that our method are very
accurate while being 1000X faster than Monte Carlo simulation
and 70X−100X faster than the flattened full chip statistical
leakage analysis.

I. INTRODUCTION

In modern system-on-chip (SoC) design methodologies,
power consumption, together with other design constraints,
e.g., performance and die size, is usually defined at very early
design phases. Respecting these design constraints, the design
space is explored to choose appropriate system architectures.
Making correct design decisions at such early design phases
is very important to avoid significant modification efforts and
cost in later phases. Therefore, early and accurate system
power consumption analyses are required to guarantee that all
power consumption constraints are met. Additionally, owing to
the increasing complexity of modern SoCs, the design space
becomes very huge. Thus, fast power analysis methods are
mandatory to permit efficient design space exploration.

To achieve high efficiency during design space exploration,
system-level hierarchical power analysis methods are applied.
For example, spread-sheet [1] and power-state based methods
[2] [3] are often used to explore the power design space at
early design phases. In these methods, the power consumption
of each component is modeled by parameterized equations
or annotated power values, which rely on constant process
parameters or nominal/worst-case power values. As long as the

process variations are small, such methods can provide useful
power estimation at the early design phases. However, with
the technology scaling down to nanometer regime, process
variations become significant and non-negligible, thus making
conventional power modeling methods inaccurate and face
new challenges: Firstly, the power models with constant pro-
cess parameters become inaccurate due to increasing process
variations. Secondly, variations also cause huge deviations
from nominal power dissipation values for the same hard-
ware block, e.g., up to a 20 times variation in chip leakage
power has been found in a 180 nm technology processor
[4]. Consequently, accurate power evaluation results cannot
be produced by simply annotating power states with nominal
values. Finally, worst case analysis makes the power evaluation
too pessimistic, which results in overengineering and high
design cost.

Statistical power analysis methods have been introduced to
handle the impact of process variations on power consumption.
Because leakage power is highly sensitive to process variations
while dynamic power is relatively immune to them, most of
these methods focus on statistical leakage analysis (SLA) [5]
[6] [7]. SLA has originally been proposed to analyze full chip
leakage power considering process variations. Therefore, it
cannot be directly integrated into a hierarchical power analysis
environment. Although SLA has been applied to individual
hardware components to extract statistical leakage power
information for rough system-level power analysis [8], the
correlations between modules cannot be easily incorporated
at system level by using SLA due to lack of hierarchical
analysis method. As we will show in this paper, neglecting
these correlations during system-level power analysis may
cause significant inaccuracy. Additionally, in modern SoC
design processes, because of IP protection reasons, netlists
of IP modules, which are mandatory inputs for SLA, are
not always provided by the IP vendors, thus restricting the
applicability of SLA. Furthermore, SLA usually deals with
gate-level calculations, which may lead to runtime problem
when applied to complex SoCs. All these facts make system-
level hierarchical power analysis even more challenging.

The main contribution of this paper is a novel method
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to extract variation-aware and correlation-inclusive leakage
power models for system-level hierarchical power analysis.
Within this method, SLA is firstly used to generate statistical
leakage power models for system modules. Thereafter, a
hierarchical statistical leakage analysis (HSLA) algorithm is
introduced to replace the local independent random variables
(R.V.s) in the generated statistical models with a new set
of independent R.V.s at top level so that the correlations
between modules can be taken into account during system-
level power analysis. With this method on the one hand,
IP vendors can provide hierarchical statistical power models
to customers without disclosing netlists. Hence, intellectual
property is protected. On the other hand, the customer can
use these power models and the proposed HSLA method to
perform a fast and accurate system-level power evaluation.
Experimental results show that this method can produce very
accurate leakage power distribution curves compared with
Monte Carlo simulation. Furthermore, it is 1000X faster than
Monte Carlo simulation and 70X-100X faster than full chip
SLA. To the best of our knowledge, this paper is the first
that deals with hierarchical statistical leakage power model
extraction and analysis.

The rest of this paper is organized as follows: In Section
II, related work will be reviewed. In Section III, we will
describe an existing SLA method, which will be used as
the basic engine for statistical leakage power analysis. The
hierarchical statistical leakage model extraction and analysis
will be detailed in Section IV. Thereafter, we will present
experimental results in Section V and conclude the paper in
Section VI.

II. RELATED WORK

In this section, we will review related work in statistical
leakage analysis. Many previous methods have been proposed
to analyze leakage power under process variations. In [9]
[10], the mean and variance of full chip subthreshold leak-
age currents are evaluated by analytic methods. Only global
variations are considered in these two methods. In [11], both
global and local variations are considered and the probability
density function (PDF) of a full chip subthreshold leakage is
derived. The effect of spatial correlations in local variations
is first considered in [5] by partitioning a chip into grids
and assuming perfect correlations among the devices in the
same grid, but with a high computation complexity, O(n2),
where n is the number of gates in the chip. To reduce this
complexity, a spectral stochastic method is proposed in [7]
where principle component analysis (PCA) is used to reduce
the number of variables. In [6], PCA is applied to transform
the spatially correlated R.V.s into linear form so that the
computation of mean and variance of a lognormal random
variable can be computed in O(Np) where Np is the number of
principle components. Recently, a linear algorithm for full chip
leakage power analysis considering weak spatial correlation
is proposed in [12]. The above methods can be used to
analyze leakage power of full chips and individual modules
statistically. But none of them considers the challenge in

hierarchical statistical leakage analysis, i.e., how to incorporate
the correlations between modules when they are instantiated
at system level. In this paper, we will propose a method to
solve this problem.

III. STATISTICAL LEAKAGE POWER MODELING AND
ANALYSIS

In this section, we will describe an existing SLA algorithm
used in this paper. By using this algorithm, statistical leakage
power, which contains local spatial correlation information
for a single module, can be calculated. In this paper, we use
the terms leakage power and leakage current interchangeably,
since the difference between them is just a multiplicative factor
Vdd.

Similar to [5] [6], leakage power is modeled in lognormal
distribution form

Il = ef(p) (1)

where f(p) is a function of process parameters. Each process
parameter is expressed as

p = p0 + pg + pl (2)

where p0 is the nominal value of the parameter; pg stands
for the global variation shared by all gates while the local
variation is modeled by pl that is specific for each gate and
is correlated to each other. It is assumed that pl only models
spatial correlation and does not contain any effects from global
variation. For simplicity, two parameters are considered in this
work, namely the transistor gate length (L) and the gate oxide
thickness (Tox). Nevertheless the proposed method can be
easily extended to take other process parameters into account.
As in [5] [7], L is taken as a spatially correlated parameter and
Tox as spatially uncorrelated. In addition, it is also assumed
that correlation exists only among the same type of parameters
and there is no correlation between different parameters, e.g.,
between L and Tox. To model the local spatial correlation, the
die area of each module is partitioned into nrow × ncol = n
grids. All gates within the same grid are assumed to have the
same local variation, represented by a random variable pli ,
i ∈ {1, 2, ..n}. All n pli form a vector Pl whose correlation
matrix C can be obtained by calculating correlations between
pli and plj , j ∈ {1, 2, ..n} using an empirical formulation. In
this paper we use the following exponential model [13]

γ(r) = e−r2/η2

(3)

where r is the distance between the centers of two grids and
η is the correlation length, though the proposed method is not
bound to any specific correlation matrix.

A method similar to the one proposed in [6] is used to
calculate the sum of leakage power. To simplify the mean
and variance calculations, the local correlated random variable
vector Pl=[pl1 , pl2 , ..., pln ]

T is decomposed by applying PCA
[14]

Pl = Ax (4)

where the transformation matrix A, constructed by eigen-
vectors of C, is orthogonal. x=[x1, x2, ..., xn]

T is a set of
independent Gaussian R.V.s with mean being 0.



When represented in the form of (4), each random variable
pli can be expressed as a linear combination of x1, x2, ..., xn

with the coefficients coming from the corresponding row of A.
Combining with (1) and the fact that f(p) can be approximated
by a first-order Taylor expansion at the nominal values of
process parameters [5], the leakage power can be expressed
as

Il = e
b0+bgLLg+bgtoxToxg+

n∑
i=1

bixi

(5)

where b0 is the nominal value of f(p). Lg and Toxg are
normalized global variations of L and Tox, which are shared

by all gates in hierarchical leakage analysis.
n∑

i=1

bixi is the

local variation of L in linear form where xi are independent
variables in (4). Since Tox is assumed to be spatially uncor-
related, there is no local variation portion for Tox. bgL , bgtox
and bi are all coefficients with fixed values. The total leakage
power can be calculated recursively and expressed in the same
form as (5) [6]. In each recursive step, Ial +Ibl is approximated
by

Icl = e
c0+cgLLg+cgtoxToxg+

n∑
i=1

cixi

= e
c0+

n+2∑
i=1

cixi

(6)

and c0, ci can be calculated by

c0 =
1

2
log

(
(E(Ial ) + E(Ibl ))

4
)

−1

2
log

(
(E(Ial ) + E(Ibl ))

2 + V ar(Ial ) + V ar(Ibl )

+2Cov(Ial I
b
l )
)

(7)

ci = log

(
E(Ial e

xi) + E(Ibl e
xi)

(E(Ial ) + E(Ibl ))E(exi)

)
(8)

where E(∗), V ar(∗), and Cov(∗) stand for mean, variance
and covariance operations, respectively.

IV. HIERARCHICAL STATISTICAL LEAKAGE POWER
MODELS

Hierarchical analysis methods are commonly applied during
SoC design process to overcome increasing design complexi-
ties. SLA, which is usually used to analyze leakage power for
full chips or individual modules, cannot guarantee the accuracy
during hierarchical analysis due to the lack of information to
incorporate correlations between modules at higher levels. In
this section, we will first introduce two simple and so less
accurate hierarchical statistical leakage power models that can
be used in hierarchical design analysis. After that, a method
that can extract very accurate hierarchical statistical leakage
power models will be detailed.

A. Simple Hierarchical Leakage Model Extraction

The direct outputs of SLA are mean and variance of leakage
power for each module, which are calculated by the following
formulas:

E(Il) = eµ+
1
2σ

2

(9)

V ar(Il) = e2µ+2σ2

− e2µ+σ2

(10)

where µ and σ2 are mean and variance of the exponent of Il
in (5), respectively. The simplest hierarchical leakage power
model can be extracted by simply ignoring all correlations and
providing E(Il) and V ar(Il) as model content for module j,
i.e.,

LPM j
NoCorr. = {E(Ijl ), V ar(Ijl )} (11)

The leakage power of the entire system is calculated by
summing up the leakage power of all modules

µtotal =

m∑
j=1

E(Ijl ), σ
2
total =

m∑
j=1

V ar(Ijl ) (12)

where m is the number of modules in the system. This method
assumes no correlation between modules.

When the modules are instantiated at system level, leakage
power from different modules are correlated with each other
due to system-level spatial correlations as well as global
correlations. Ignoring all correlations can generate very large
inaccuracy. Therefore, we propose a simple yet efficient
method that only considers global correlations to improve the
accuracy. In order to take global correlations into account at
system level, coefficients b0, bgL and bgtox in (5) are provided
as model content, i.e.,

LPM j
GlobalOnly = {bj0, bjgL , b

j
gtox} (13)

so that leakage power of each module can be expressed in the
form of (14).

Il = eb0+bgLLg+bgtoxToxg (14)

Then the recursive calculation algorithm introduced in Section
III can be applied again to calculate total leakage power.

B. Accurate Hierarchical Leakage Model Extraction

SLA can be easily extended to incorporate global correla-
tions at system-level design as what we have shown above,
because the R.V.s Lg and Toxg in (5) that represent global
variations are shared by all the gates in the system. It is,
however, very hard for the SLA to incorporate spatial corre-
lation at system level, since the R.V.s xi in (5) that model the
spatial correlation are generated from the correlation matrix
C in Section III, which is different from module to module.
Therefore, no spatial correlation can be established between
modules by simple variable sharing.

The similar problem also exists in system-level statistical
timing analysis. To solve this, a characterization method for
hierarchical statistical timing model is first introduced in [15].
In this method, spatially correlated R.V.s in timing models
are transformed into linear form by applying PCA. Then,
when these modules are instantiated at system level, these
variables are mapped back to their original variables first and
later replaced by a new set of independent R.V.s. Thus, the
correlation between modules can be established by sharing
the same set of R.V.s. Nevertheless, this method has its
own limitation: If the transformation matrix is not selected
carefully, the reverse transformation may not be possible at



all. This limitation is resolved in [16] by selecting a complete
eigenvector matrix as the transformation matrix.

In this paper, we will use a similar approach to solve the
HSLA problem. This approach replaces the independent R.V.s
in the leakage power models with a new set of independent
R.V.s from system level so that the correlations between mod-
ules can be established by sharing the same set of variables.

After each module is analyzed by the method in Section III,
statistical leakage power in the form of (5) can be generated.
Usually, this step is done by IP vendors. However, if netlists
are available, it can also be done by the customer himself.
Besides b0, bgL , bgtox and bixi, the grid size gs used in
partitioning the module die area, module length ml and
module width mw as well as the matrix A in (4) are provided
to customers, too.

LPM j
H = {bj0, bjgL , b

j
gtox , b

j
ix

j
i , gs

j , mlj , mwj , Aj} (15)

After the hierarchical leakage power model LPM j
H of each

IPj is obtained, the system leakage power can be analyzed by
applying HSLA. During HSLA, the customers first instantiate
the obtained IP modules at system level and partition the area
covered by the IP modules in the same way they are partitioned
during SLA, i.e., using the provided grid size gsj to partition
the corresponding IP area. Then, the same grid size is used
to partition the remaining system die area. Fig. 1, adapted
from [16], shows an example of system die partitioning where
two IP modules X and Y are instantiated. Thereafter, each
grid is assigned a random variable psysli

to represent the local
variation at system level no matter if it is a normal grid or an
irregular grid, e.g., the shadowed grid in Fig. 1 as an irregular
grid. Since the size of such an irregular grid is smaller than a
normal grid, it will not lose any modeling accuracy. If there
are totally m grids after system die partitioning, the random
variable vector Psys

l = [psysl1
, psysl2

, ..., psyslm
]T has an m × m

correlation matrix Csys. Similar to (4), it can be decomposed
as

Psys
l = Bxsys ≈ Bkxsys,k (16)

where B is formed by eigenvectors of Csys.
xsys=[xsys

1 , xsys
2 , · · · , xsys

m ] are independent variables at
system level with zero mean. Their standard deviations are
formed by square root of eigenvalues of Csys corresponding to
eigenvectors in B. If there are eigenvalues that are very small
compared with other larger eigenvalues, the corresponding
variables in xsys contribute relatively less than other variables.
Therefore, these less contributing variables can be discarded
to reduce the number of independent variables so that the run
time can be improved. Assume xsys is truncated to xsys,k
with k variables, k < m and Bk is a truncated matrix of
B. After decomposition, each random variable psysli

can be
expressed as a linear combination of xsys

1 , xsys
2 , · · · , xsys

k :

module Y
module X System Level

Module Level

mwx

gsx

m
lx

Fig. 1. System die partitioning

Csys

m columns

n rows Csys
n×n

m-n rows

Fig. 2. Submatrix Csys
n×n

module j

module j

module j

module j

Fig. 3. Experimental circuit
system

psysl1
= β11x

sys
1 +β12x

sys
2 + ...+ β1kx

sys
k

psysl2
= β21x

sys
1 +β22x

sys
2 + ...+ β2kx

sys
k

...
psyslm

= βm1x
sys
1 +βm2x

sys
2 + ...+ βmkx

sys
k

(17)

where the coefficients βi1, βi2, · · · , βik i ∈ {1, 2, ..m} come
from the corresponding row i of Bk.

In the following, we will take module Y as an example
to illustrate the variable replacement. Since at system level,
module Y is partitioned with the same grid size as the one used
during SLA at module level, the area covered by module Y is
still partitioned into n grids. Assuming the n R.V.s associated
with the grids covered by module Y at system level, denoted as
Psys
l,n , corresponding to the first n R.V.s in Psys

l , the correlation
between Psys

l,n can be represented by the n × n sub-matrix
Csys

n×n at the upper-left corner of Csys as shown in Fig. 2.
Since the correlation matrix is determined by the distance
between grids and module Y is partitioned in the same way
it has been partitioned during SLA, this Csys

n×n sub-matrix
is the same as the C of Pl during SLA in Section III, i.e.,
C=Csys

n×n. Because both Psys
l,n and Pl are standard Gaussian

random variable vectors and they have the same correlation
matrix, Psys

l,n and Pl are equivalent.

Pl = Psys
l,n (18)

As Psys
l,n correspond to the first n R.V.s in Psys

l , it can be
written in PCA form as

Psys
l,n = Bk

nxsys,k (19)

where Bk
n, a n × k matrix, is constructed by the first n

rows of Bk in (16). Comparing (19) and (4), we find that in
(19), Psys

l,n is decomposed into a combination of k independent



R.V.s while in (4) Pl is decomposed into a combination of
n independent R.V.s. These k R.V.s carry the information of
correlations from other modules at system level. Therefore, to
incorporate the correlations at system level, the old random
variable vector x is replaced with a new set of independent
R.V.s from system level. From (18) (19) and (4), the replace-
ment is performed as

x = AT Pl = AT Bk
nxsys,k (20)

where AT = A−1 since A is orthogonal. By applying (20) to
each SLA generated leakage power model in the form of (5),
the leakage power model of each module becomes

Il = e
b0+bgLLg+bgtoxToxg+

k∑
i=1

dix
sys
i

(21)

where xsys
i are new independent R.V.s at system level and di

are their corresponding coefficients, which are calculated by:

d = bAT Bk
n (22)

where d=[d1, d2, · · · , dk], b=[b1, b2, · · · , bn]. Consequently,
the correlation between modules is modeled by sharing the
new set of independent R.V.s xsys,k. When all leakage power
models are transformed into the form of (21), the leakage
power of the entire system can be calculated by the recursive
method introduced in Section III.

TABLE I lists the complete procedure of accurate HSLA
using random variable replacement at system level.

TABLE I
PROCEDURE OF ACCURATE HSLA

Steps Executor
1. analyze IP modules with SLA and IP vendor

generate local leakage power models. or customer
2. instantiate IP modules at system level customer

and partition system die with grids
3. decompose system-level correlated customer

process parameters using PCA.
4. replace local independent variables customer

for each module using (20).
5. system-level leakage power analysis. customer

C. Computational Complexity

To analyze the computational complexity, typically the pre-
characterization cost of step 1 and IP instantiation cost of
step 2 in TABLE I are not taken into account. The cost of
PCA in step 3 is O(τN3

g ) where τ is the number of spatially
correlated process parameters and Ng is the number of grids
that the system die has been partitioned into. The cost of
step 4 equals the cost of a matrix multiplication (22). Since
bAT can be provided by the IP vendor or pre-calculated, the
cost approximates to O(τngkNm) where k is the number of
column of Bk

n and ng is the number of grids a module is
partitioned into and Nm is the number of modules in the
system. Finally, the cost of step 5 is O(NmNg). As the
system-level process parameter decomposition with PCA is
a common operation for system-level statistical analyses, e.g,
hierarchical statistical timing analysis [16], it is possible to

share its result and there is no need to calculate it for every
analysis. Therefore, the overall complexity is O(τngkNm),
which means our method scales linearly with the number of
spatial correlated parameters.

V. EXPERIMENTAL RESULTS

In this section, the results of applying our proposed HSLA
method to the ISCAS89 benchmarks [17] are shown. The
proposed method has been implemented in C++ and all the
experiments were executed on a Linux machine with 2 GB
memory and a 3.0 GHz CPU.

All benchmark circuits were synthesized with a 45nm
library. The 3σ values of parameter variations for L and Tox

were set to 12% of the nominal parameter values, like in [7].
The proportions of inter-die variations and intra-die variations
were set to 30% and 70%, respectively.

To test the proposed HSLA method, a series of experimental
hierarchical circuit systems were built by placing four identical
modules close to each other as shown in Fig. 3. In order
to verify the accuracy of the proposed accurate model, we
compared its results with the ones carried out by running
Monte Carlo simulation with 10000 iterations. The input of
Monte Carlo simulation is a set of flattened netlists of the
experimental systems. To show the effectiveness of the HSLA
method, we also compared the results with those produced by
the two simple methods introduced in Section IV that ignore
all correlations and consider global correlation only.
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Fig. 4 shows the normalized leakage power distribution
(CDF) of an experimental system with four s641 modules. For
comparison, the curves generated by the two simple methods
are also illustrated in the same figures, showing that the curve
generated by our HSLA method tracks the Monte Carlo curve
very well and the ones generated from the simple methods
deviate significantly from the Monte Carlo curve. When these
methods are used to predict parametric yield for leakage,
the simple methods trend to predict over-optimistic yields,
e.g., at normalized leakage 3, both simple methods produce
a much higher yield than Monte Carlo simulation. Therefore,
we can conclude that the correlation from local variations and
global variations has a remarkable effect on the system leakage



TABLE II
COMPARISON OF EXPERIMENTAL RESULTS

Circuits No Corr. Global Corr. Only HSLA Monte Carlo SLA
µ err. % σ err. % µ err. % σ err. % µ err. % σ err. % Exe. T (s) Exe. T0 (s) Exe. T (s) Exe. T (s) Exe. T0 (s)

s298 -0.003 -43.11 -0.133 -20.15 0.002 -1.42 < 1µs < 1µs 0.78 < 1µs < 1µs
s420 -0.006 -43.58 -0.128 -18.78 -0.006 -0.58 < 1µs < 1µs 1.17 < 1µs < 1µs
s526 -0.003 -43.78 -0.118 -18.22 -0.003 -0.41 < 1µs < 1µs 1.29 < 1µs < 1µs
s641 -0.006 -43.35 -0.130 -18.33 -0.006 0.10 < 1µs < 1µs 1.38 < 1µs < 1µs
s713 -0.005 -43.30 -0.129 -18.21 -0.005 0.21 < 1µs < 1µs 1.43 < 1µs < 1µs
s820 -0.001 -41.24 -0.102 -13.30 0 1.29 < 1µs < 1µs 2.12 0.01 0.01
s953 -0.003 -40.62 -0.105 -12.36 0.003 0.03 < 1µs < 1µs 4.01 0.02 0.02
s1196 -0.013 -43.11 -0.095 -12.08 -0.013 -1.05 < 1µs < 1µs 4.47 0.04 0.04
s1238 -0.016 -41.46 -0.096 -9.24 -0.016 0.60 < 1µs < 1µs 5.56 0.04 0.04
s1423 -0.021 -41.53 -0.110 -9.82 -0.021 0.46 < 1µs < 1µs 6.30 0.05 0.05
s5378 -0.032 -43.05 -0.092 -5.76 -0.032 0.13 0.01 < 1µs 27,37 0.23 0.22
s9234 -0.018 -45.10 -0.057 -3.72 -0.018 0.25 0.01 < 1µs 61.01 0.51 0.50

s13207 -0.007 -45.95 -0.037 -2.28 -0.007 0.69 0.05 0.01 143.80 1.25 1.21
s15850 -0.009 -46.41 -0.035 -2.03 -0.009 0.53 0.06 0.01 177.13 1.56 1.51
s38584 -0.013 -48.76 -0.022 -0.72 -0.013 0.11 1.35 0.17 1524.58 14.76 13.58
average 0.01 -43.59 -0.092 -10.99 -0.010 0.53 average =

∑
|err.i|/15

power and ignoring the correlation effects during system-level
leakage analysis can produce unacceptable inaccuracy.

The results of other experimental systems are shown in
TABLE II, from which we can see that mean values are
close for all three methods; ignoring all correlations causes the
largest standard deviation error, around 43%; only considering
global correlation can also generate large error, e.g., up to
20% compared with Monte Carlo simulation; in contrast,
our proposed method with both correlations considered can
produce very accurate results, i.e., with average error of
σ < 1%.

To evaluate the efficiency of the proposed method, we also
compared its execution time with the Monte Carlo simulation
as well as the full chip SLA described in Section III whose
input is a set of flattened netlists of the experimental systems.
In TABLE II, the execution time is shown as Exe. T and Exe.
T0, representing execution time with and without system-level
PCA calculation because the PCA cost can be eliminated by
sharing PCA results with other statistical analysis. For most
benchmarks, the execution time of our method is less than 1
µs. From the comparison, we can conclude that our method is
at least 1000X faster than Monte Carlo simulation and when
compared with full chip SLA it also has at least 10X-20X
speedup, which makes it a suitable method for system-level
hierarchical power analysis. It also shows that this speedup can
be further enhanced to at least 70X-100X by utilizing shared
system-level PCA results.

VI. CONCLUSIONS

In this paper, we proposed a new method to extract
variation-aware and correlation-inclusive leakage power mod-
els for fast and accurate system power analysis. This method
utilizes hierarchical leakage power analysis where random
variables in SLA generated leakage power models are replaced
by a new set of independent random variables so that correla-
tions between modules at system level can be incorporated.
With this method, the system leakage power analysis can
produce very accurate results compared with Monte Carlo sim-

ulation. Furthermore, it is faster than Monte Carlo simulation
by three orders of magnitude. When compared with full chip
SLA, our method still has a 70X-100X speedup advantage.
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