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Abstract—We present a framework that allows us to construct
and formally analyze the behavior of synthetic gene circuits
from specifications in a high level language used in describing
electronic circuits. Our back-end synthesis tool automatically gen-
erates genetic-regulatory network (GRN) topology realizing the
specifications with assigned biological “parts” from a database.
We describe experimental procedures to acquire characterization
data for the assigned parts and construct mathematical models
capturing all possible behaviors of the generated GRN. We
delineate algorithms to create finite abstractions of these models,
and novel analysis techniques inspired from model-checking to
verify behavioral specifications using Linear Temporal Logic
(LTL) formulae.

I. INTRODUCTION

Synthetic bioengineering is an emerging field in which the
goal is to extend or modify the behavior of organisms and
engineer them to perform new tasks [1]. The bioengineering
approach holds tremendous promise in enabling sophisticated
computation, control, and manufacturing in a biological cell
leading to breakthrough applications [2], [3], [4], [5]. Fol-
lowing the discovery of logic in biology [6], a number of
biological devices—engineered genetic circuits that function
as switches [7], oscillators [8], [9], counters [10], and digital
logic-gates [11] have been designed and implemented in vivo.
Approaches, such as [12], [13] further the use of digital logic
abstractions used in electrical engineering to construct genetic
regulatory networks (GRNs).

A. Problem
The success in implementing genetic circuits has relied

largely on manual trial and error experimentation. Synthetic
biologists must account for cell death, crosstalk, mutations, in-
tracellular, intercellular and extracellular conditions, noise and
other biological phenomena [14]. A major goal of synthetic
biology, however, is also to develop a deeper understanding of
biological design principles from the bottom up, by building
genetic circuits and studying their behavior in vivo. There are
several key principles in computationally constructing robust
circuits: defining appropriate levels of hierarchical abstraction;
delineating principles for standardization and characterization
of biological parts1; and integrating this data while creating

1A part is a sequence of DNA with specific function with flanking
sequences necessary for concatenating it with other parts.
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a system level circuitry using the parts. Prior work [9] has
successfully coupled computational modeling and character-
ization techniques to build a robust system. However, the
computational model was specific to a single topology and
cellular context. Building systems that are robust in a variety
of application and cellular contexts will require realistic and
analyzable computational models, combining a given GRN
topology with experimental data. Given a GRN specification,
we address the problem of deriving a computational model
and obtaining experimental data, and using them to verify the
behavior of the genetic circuit.

B. Solution

We demonstrate a novel approach for verifying genetic
circuits. We explicitly incorporate experimentally obtained
characterization data for the primitive components in the
circuit. We use this data to construct a computational model for
the composite system. To illustrate our approach, we provide
an overview of genetic circuit design, genetic component
characterization, a genetic inverter circuit, and its verification.

II. DESIGN

To illustrate the design of a GRN we select two simple
designs: a genetic inverter and a genetic NOR gate. These were
chosen because they represent useful biological primitives
as well as abstractions familiar to the design automation
community.

A. Design Background

The “Central Dogma” in molecular biology is the process of
protein production from deoxyribonucleic acid (DNA) through
the process of DNA transcription and translation. Figure 1
depicts the stages of the central dogma. DNA serves as the
storage molecule of biological information for the construction
and function of cells. Transcription is the process during which
mRNA (messenger ribonucleic acid) is transcribed from DNA
by RNA-polymerase. The mRNA is then translated to protein
by a ribosome molecule according to the genetic code [15].

The principal components in our simplified presentation
of the central dogma are Promoters, Terminators, Genes,
and Ribosome Binding Sites (RBS). DNA transcription is
initiated when RNA polymerase (RNAP) recognizes and binds
to the promoter sequence and is terminated when the RNAP
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Fig. 1. Boolean logic implemented using genetic regulatory networks.

transcribes the Terminator sequence. The binding of RNAP to
the Promoter sequence can either be enhanced or repressed
by Transcription Factors (TFs) and small molecules. Thus,
the expression of a gene, which is ultimately transcribed and
translated to a protein, can be regulated—turned “on” or
“off”—depending upon the type of the promoter sequence at
the beginning of the gene and its regulators. The ribosome
recognizes and binds to the Ribosome Binding Site which
is an untranslated sequence at the beginning of the mRNA
transcript and translates the mRNA into protein.

B. GRN examples

In Figure 1, we show a simple example of a GRN to
illustrate how a logic circuit can be constructed from genetic
parts. The left panel shows a genetic circuit that functions as
an inverter. In this circuit, the promoter labeled pBad acts as
the input and the promoter labeled pTet acts as the output.
The gene labeled RFP is used as a reporter of the state of
the output promoter and the gene labeled GFP is used as
a reporter of the input promoter. The pBAD promoter is an
inducible promoter which is induced when Arabinose binds to
the protein AraC. Thus, a specific concentration of Arabinose
in the cellular environment acts as the “high” logical input
for this circuit. In its presence the promoter is turned “on”
intiating the transcription of the tetR gene and its reporter,
the GFP gene. The TetR mRNA is translated to the TetR
protein, which in turn represses the pTet promoter, silencing
the expression of the RFP gene. We use the absence of RFP
as our logical low output signal. In the absence of Arabinose
in the cellular environment, which we use as the logical
“low” input, the input promoter is turned off, the tetR gene
is not transcribed, and the pTet promoter is not repressed.
Consequently, the RFP gene is highly expressed, which we
interpret as our “high” output signal. The full relationship
between the input Arabinose level and the output RFP level is
captured by a transfer function as shown in figure 1-4. While
the logical abstraction uses only high and low thresholds, the
actual relationship follows a nonlinear curve known as a Hill
function [16]. The right panel of figure 1 shows other examples
of logic gates implemented as genetic circuits. In the middle
figure, an additional promoter creates an OR gate which, when
coupled with the inverter, creates a NOR gate [11]. The lower
figure shows an optimized (with respect to DNA primitives)
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Fig. 2. (A) Compatible part matches: In the case of our inverter circuit, the
output range between “on” (HI in) and “off” (LOW in) states of the pBad
promoter encompass the full range of the “on” (LOW in) and “off” (HI in)
states for the repressible promoter, pTet. In cases where this relationship is
not true, the circuit will fail. (B) Characterization data is measured in arbitrary
fluorescent units. (C) The full distribution fluorescent output at each level of
induction is recorded.

cascade of two NOR gates.

C. User-specifications for Genetic Circuits

The specification of a GRN begins with a functional descrip-
tion capturing the logical behavior. This description is then
synthesized into a collection of biological parts which capture
this behavior. To perform this synthesis we can use techniques
familiar to the design automation community. Specifically, we
use a tool called “Cello” (Cell-Logic) [17] which transforms
continuous assignment statements in Verilog to a Directed
Acyclic Graph (DAG). This DAG undergoes a technology
transformation to a single logic family (e.g. NOR2) using
standard logic synthesis techniques. The back-end synthesis
tool then uses the NOR-gate and inverter biological motifs
described in Sec. II-b to “technology map” [18] the DAG, re-
sulting in a GRN. Databases curated by our group then provide
actual DNA parts for these motifs as a final “covering” step.
LTL specifications [19] are then used to specify the behavior
and relevant cellular dynamics the circuit is designed for. A
formalism introduced in Sec. IV, coupled with Characterization
data of the parts (Sec. III) can then be used to formally verify
the behavioral specifications of the generated GRN.

III. CHARACTERIZATION

To satisfy a given functional Verilog specification, Cello first
generates an abstract genetic circuit. To instantiate a physically
constructible circuit, Cello primarily uses two types of parts:
promoters—which can be turned on and off—and regulators—
which switch the promoters on and off. The efficacy with
which a regulator controls a promoter depends on the specific
sequence of the promoter and the probability of binding events
among one or more regulators and the promoter sequence.
Because precise models for any given promoter-regulator in-
teraction are not available, theoretically predicting whether the
set of promoters and regulators chosen for a genetic circuit will
work together and exhibit the functional behavior specified is
not a trivial task.

For a given circuit and a given choice of parts, we construct
a Linear Temporal Logic (LTL) specification describing the
expected dynamic behavior, in terms of the concentrations of
the regulators and reporters used in the circuit. This approach
is advantageous because the transfer function of a promoter
relating its regulator input to its output can be obtained exper-
imentally. If the transfer function for each regulator-promoter



used in the circuit is known, then the LTL specification can
be quantitatively verified.

To obtain the transfer function of a promoter-regulator pair,
we first construct a characterization circuit: a DNA sequence
containing the promoter, with the sequence coding for the gene
that produces fluorescence, downstream of it. Thus, as the pro-
moter is regulated to different levels of transcription, different
levels of fluorescence will be observed. By normalizing to the
same fluorescence reporter gene, one can obtain comparable
transfer curves for various promoter-regulator pairs. In our
example inverter circuit, characterizing the pBad promoter
involves partitioning a population of cells containing the
characterization circuit into k parts, and subjecting part i to
the regulator at concentration ci. The cell culture is allowed
to fluoresce, and then the fluorescence level is measured using
a flow cytometer.

IV. APPROACH

Starting from a high level description, the candidate GRNs
realizable from available parts are proposed automatically
as described in Sec. II-C. In general, not all these GRNs
behave “as required” but selecting the functionally correct
ones experimentally is infeasible. Instead, we automatically
construct a mathematical model of each GRN from part
characterization data (Sec. III) and analyze it from high level
behavioral specifications expressed in LTL—a formalism we
briefly introduce in Sec. IV-B. In this section, we review
our model construction (Sec. IV-A) and analysis (Sec. IV-C)
procedures and direct the interested reader to [20] and [21],
respectively, for additional details.

A. Model Construction

We model a simplified mechanism of gene expression,
which captures transcriptional regulation but considers only
genes and promoters as parts2 (see Sec. II-A). We assume that
a gene g is expressed from promoter p at rate βp (capturing
both transcription and translation) to make protein, which
degrades at rate αg . The protein concentration is denoted
by xg and is bounded in a physiologically relevant range
xming ≤ xg ≤ xmaxg (usually, xming = 0). We express the
dynamics of protein concentration as

xg(k + 1) = αgxg(k) + βp, (1)

where, for each gene (protein) g, αg has a fixed value but βp
varies in a range Bp(xg′) ⊂ R, which is a function of the
regulator3 concentration xg′ . This range is unknown and must
be computed from the available promoter characterization data.

The experimental data collected as described in Sec. III
(Fig. 2) related the measured concentration of an inducer or
a transcriptional regulator x̃g′ for promoter p to the mea-
sured steady-state concentration x̃g of a protein expressed

2For modeling purposes, we assume that each gene and promoter contain
a terminator and an RBS, respectively, which is consistent with the more
detailed mechanism described in Sec. II-A.

3For simplicity of presentation, we assume that a promoter can have only a
single regulator but our approach can be easily extended to handle promoters
with multiple regulators.

from p (i.e. the data set consisted of a set of measurements
(x̃ig′ , x̃

i
g), i = 1, . . . , n)). Assuming that the system parameters

within individual cells are fixed and that the degradation rates
of all proteins are known, each steady-state concentration
x̃ig is converted to a measurement of the expression rate
from promoter p using Eqn. (1) as β̃ip = (1 − αg)x̃

i
g . The

data set Dp = {(β̃ip, x̃ig′), i = 1, 2, . . .} characterizes the
rate of expression from promoter p at different regulator
concentrations (see Fig. 3-a,b).

In the following, we focus on the construction of a set

B̄p = {(βp, xg′) | xg′ ∈ [xming′ , xmaxg′ ], βp ∈ Bp(xg′)}, (2)

which allows us to compute the range of expression rates
Bp(xg′) at an arbitrary xg′ as the slice of B̄p at xg′ (i.e.
Bp(xg′) = {βp | (βp, xg′) ∈ B̄p}). By constructing the
tightest B̄p that contains all experimental measurements (i.e.
Dp ⊂ B̄p), we guarantee that the model we identify can
reproduce all observed behavior but our subsequent analysis
in Sec. IV-C is not overly conservative.

To capture the nonlinearity of gene regulation we introduce
a set of thresholds4 θig′ , such that θ1g′ = xming′ , θ

ng′

g′ = xmaxg′

and θig′ < θi+1
g′ for all i = 1, . . . , ng′ − 1. For each regulator

concentration region (i.e. when θig′ < xg′ < θi+1
g′ ), we

construct a trapezoid B̄ip that has the two thresholds as its bases
and contains all expression rates observed in that region (see
Fig. 3-b). We define B̄p =

⋃ng′−1
i=1 B̄ip and, given regulator

concentration xg′ such that xg′ = λθig′ + (1 − λ)θi+1
g′ for

some i = 1, . . . , ng′ − 1 and λ ∈ [0, 1],

Bp(xg′) = λBp(θ
i
g′) + (1− λ)Bp(θ

i+1
g′ ), (3)

where Bp(θig′) and Bp(θi+1
g′ ) are induced by the construction

of B̄p.
Remark 1: The rate of expression from a constitutive pro-

moter p (a promoter that is not regulated) is uncertain and
varies in a range that does not depend on the concentration
of other proteins (i.e. βp ∈ Bcp ⊂ R in Eqn. (1)). If a data
set Dc

p = {β̃ip, i = 1, . . . , n} of experimentally measured
expression rates is available (Sec. III), this range is simply
Bcp = [min(Dc

p),max(Dc
p)]. Furthermore, a promoter p regu-

lated by an external inducer can be treated as constitutive. The
transfer function for p is reconstructed as before (i.e. treating
all measurements as if p was regulated by a transcription
factor) but the set of thresholds is induced from the data
(Fig. 3-a). Let xI denote the concentration of the inducer,
in which case βp ∈ Bp(xI) can be computed through Eqn.
(3) as before. While the exact value of xI might be hard
to control experimentally, it can be restricted to a range
xI ∈ [xminI , xmaxI ]. Therefore, Bcp = [min(B̄p),max(B̄p)],
where B̄p = {βp ∈ Bp(xI) |xI ∈ [xminI , xmaxI ]} (Fig. 3-a).

Given a genetic circuit, let G and P denote its set of genes
and promoters, respectively, where N = |G| is the circuit size.

4Computing these thresholds is not the focus of this paper but related
methods are available [22]. Here, we implement a sampling procedure where,
out of a number of randomly generated thresholds, we select the subset of a
given size that minimizes the volume of B̄p.



For notational simplicity, we assume that for i = 1, . . . , N ,
gene gi ∈ G is expressed from promoter pi ∈ P , which is
either constitutive or regulated by the protein produced by
gene g′i ∈ G. The hyper-rectangle

X = [xming1 , xmaxg1 ]× . . .× [xmingN , xmaxgN ] (4)

is the feasible state space of the circuit, where each x ∈
X is a vector of the concentrations of all proteins (i.e.
x = (xg1 , . . . , xgN )). X is partitioned by the thresholds
θig′ , i = 1, . . . , ng′ of all regulators g′ ∈ G into a number
of hyper-rectangular regions. Given a state x ∈ X , the overall
system dynamics are given by5

x(k + 1) ∈ Ax(k) +B(x(k)), (5)

where A is the diagonal matrix of degradation rates A =
diag(αg1 , . . . , αgN ) and B(x) = B1(xg′1) × . . . × BN (xg′N ).
For a constitutive promoter pi, we have Bi(xg′i) = Bcpi (see
Remark 1) and, if pi is regulated, then Bi(xg′i) = Bpi(xg′i)
is computed according to Eqn. (3). Given an initial state
x(0) ∈ X , the concentrations of the proteins evolve over
time according to Eqn. (5) to produce an infinite trajectory
x(0), x(1), . . . where x(k) ∈ X is the state at step k = 1, . . ..
This model can reproduce all experimental data used for part
characterization and its structure allows the construction and
formal analysis of finite abstractions as discussed in Sec IV-C

B. Temporal Logic Specification

To verify that a given GRN behaves “as required”, we
first formalize the expected behavior of its model (5) as a
linear temporal logic formula. Temporal logics were originally
developed for specifying and verifying the correctness of
digital circuits and computer programs [19]. However, due
to their expressiveness, resemblance to natural language and
the existence of automated, off-the-shelf model-checking algo-
rithms, temporal logics are also gaining popularity in several
other fields, including the specification of behavior of genetic
networks [20], [23].

Given system (5), we define a set of atomic propositions Π
as a set of linear inequalities

Π = {πi, i = 1, . . . ,K}, πi = {x ∈ X | cTi x+ di ≤ 0}. (6)

Each atomic proposition πi partitions the feasible space X into
a satisfying and violating subset for πi. Given a state x ∈ X
we write x � πi if and only if cTi x+di ≤ 0 (i.e x satisfies πi).
A trajectory x(0), x(1), . . . of (5) produces an infinite word
w(0), w(1), . . . where w(k) = {π ∈ Π | x(k) � π} is the set
of propositions satisfied at step k.

To specify temporal and logical properties of the trajectories
of (5), we use Linear Temporal Logic [19]. Informally, LTL
formulas over Π are inductively defined by using the stan-
dard Boolean operators (e.g., ¬ (negation), ∨ (disjunction),
∧ (conjunction)) and temporal operators, which include ©
(“next”), U (“until”), � (“always”), and ♦ (“eventually”). LTL
formulas are interpreted over infinite words, as those generated

5The dynamics of (5) are not well defined at states that fall on thresholds
but we ignore these measure zeros sets as it will become clear in Sec. IV-C.

by system (5). For example, the word w(0), w(1), . . . where
w(0) = {π1, π2}, w(1) = {π1, π2, π3}, and w(2), w(3), . . . =
{π1, π4} satisfies formulas �π1,♦π3,♦�(π1 ∧ π4), and
π2Uπ4 but violates �π2 and ♦π5. We say that a trajectory
x(0), x(1), . . . satisfies an LTL formula φ if and only if the
corresponding word w(0), w(1), . . . satisfies φ. System (5)
satisfies φ from a given region X ⊆ X if and only if all
trajectories originating in X satisfy the formula.

C. Formal Analysis

Model-checking algorithms capable of verifying the cor-
rectness of finite state systems against LTL specifications
exist [19], but such models are often too simple to accurately
capture the dynamics of GRNs. In Sec. IV-A we used part
characterization data to construct infinite state models, which
are more realistic but cannot be verified directly. Here, we
review an approach for the construction of finite state ab-
stractions of such infinite systems which allows their formal
verification and analysis.

The state space X from Eqn. (4) was partitioned by the
set of thresholds into a number of hyper-rectangular regions.
We partition X further using all linear inequalities π ∈ Π
from Eqn. (6) and ignore the measure-zero set consisting of all
boundaries6. This results in a set of open polytopes Xl, l ∈ L
such that, for all l1, l2 ∈ L, Xl1 ∩ Xl2 = ∅ and ∪l∈Lcl(Xl) =
X , where cl() denotes the closure of a set.

All states from a given region satisfy the same atomic
propositions and are defined as equivalent. This leads to the
construction of a finite quotient T - a transition system with
a set of states L where each state l ∈ L represents the set of
all equivalent states x ∈ Xl. A transition between states l and
l′ is included in T only if a transition between a state from
region Xl to a state from Xl′ is possible in (5). The finite
T simulates (in the sense of [24]) the infinite (5) identified
through our procedure from Sec. IV-A (in other words, T
can reproduce any word of (5)). This allows us to guarantee
that if an arbitrary LTL formula φ is satisfied by T at state
l ∈ L, then all trajectories of (5) originating in region Xl
satisfy the formula. Note that when T does not satisfy φ from
state l we cannot say anything about the satisfaction of φ
from region Xl, which makes the overall method conservative.
In [20] we showed the uncertain parameter piecewise affine
structure of (5) can be exploited and developed an algorithm
for the construction of T through polyhedral operations.

In [21] we developed an analysis procedure based on the
construction, model checking and refinement of simulation
quotients such as T . Our algorithm used model checking to
partition the set of states L into set Lφ ⊆ L from which
T satisfied an LTL formula φ and L¬φ ⊆ L from which T
satisfied the negation ¬φ. This allowed us to guarantee that all
trajectories originating in the satisfying region X φ =

⋃
l∈Lφ Xl

and none of the trajectories originating in the violating region
X¬φ =

⋃
l∈L¬φ Xl satisfied φ. Both satisfying and violating

6It is unreasonable to assume that equality constraints can be detected in
practice and, in general, trajectories of the system do not disappear in such
measure zero sets.



trajectories originated in region (∪l∈LXl) \ (X φ ∪ X¬φ) and
our algorithm implemented an iterative refinement procedure
to separate them, in which case X φ and X¬φ can be expanded.

The relative volumes of the satisfying and violating regions
can be used to asses the correctness of a GRN with respect
to a temporal logic specification. A design is considered
“good” if analysis reveals a large satisfying and an empty
or small violating region, while a design is “bad” whenever a
substantial violating region is found. This information can be
used select GRNs proposed by the procedure from Sec. II-C.

V. RESULTS

As a proof-of-concept example, we applied the design
procedure proposed in this paper to the construction of the
inverter GRN given in Fig. 1. First, we considered the sim-
ulated characterization data shown in Figs. 3-a and 3-b in
order to test our procedure on an uncertain system but in
the absence of measurement noise7. The data was used for
the construction of an uncertain parameter piecewise affine
model using the procedure from Sec. IV-A. The overall model
is two dimensional (N = 2), where G = {RFP, TetR},
P = {pBad, pTet} and B̄pBad and B̄pTet are the unions of
all polytopes shown in gray in Figs. 3-a and 3-b, respectively.

Two LTL specifications over the concentrations of the output
RFP are defined to capture the behavior of the inverter (see
IV-B). First, we specify thresholds TL = 0.25 and TH = 0.4
in the normalized concentrations of RFP . The set of propo-
sitions in Eqn. (6) is defined as Π = {π1, π2}, where atomic
propositions π1 := xRFP < TL and π2 := xRFP > TH are
satisfied when the RFP concentrations (output) are low and
high, respectively. For high concentrations of the input (Ara),
we require this output to eventually reach, and for all future
times, remain at low concentrations (i.e. satisfy π1), which
we express as the LTL formula φ1 = ♦�π1. Similarly, we
express specification φ2 = ♦�π2 which must be satisfied for
low concentrations of Ara.

To test whether the inverter behaves according to these
specifications, we analyze the identified model with φ1 and φ2
at different concentrations of Ara. We first partition the range
of possible input concentrations into a number of regions.
For each input concentration region, we treat promoter pBad
as constitutive as discussed in Remark 1 (see Fig. 3-a). The
relative volumes of the satisfying and violating regions (as a
fraction of the overall state space) for φ1 and φ2 are computed
using the procedure from Sec. IV-C and are shown in Fig. 3-d.

Analysis reveals that specification φ1 is satisfied by all
trajectories of the system (i.e. from all initial conditions) for
Ara concentrations above 0.85 (Fig. 3-d top-left) but none of
the trajectories satisfy φ1 for Ara concentrations below 0.2
(Fig. 3-d bottom-left). Similarly, φ2 is satisfied or violated by
all the system’s trajectories for Ara < 0.15 (Fig. 3-d top-
right) or Ara > 0.75 (Fig. 3-d bottom-right), respectively. For
intermediate concentrations Ara ∈ [0.7; 0.8] the trajectories
originating in some but not all initial conditions can be

7Although we keep the names of all species unchanged, the simulated data
is for demonstration only and does not characterize the actual promoters.

guaranteed to satisfy φ1 (Fig. 3-d top-left) or violate φ2 (Fig.
3-d bottom-right), while nothing can be guaranteed for the
system at concentrations Ara ∈ [0.4; 0.6]. To guarantee that
the device functions robustly as an inverter, we select threshold
IH = 0.85 as the smallest Ara concentration guaranteeing the
satisfaction of φ1 from all initial conditions and, similarly, we
select IL = 0.2 as the largest Ara concentration guaranteeing
the satisfaction of φ2 (Ara concentrations above IH and
below IL are considered “high” and “low”, respectively).
Several simulated trajectories of the system shown in Fig.
3-c demonstrate the correct behavior of the inverter when
appropriate input signals are applied.

Next, we applied our procedure as described above but
considered experimental data collected as discussed in Sec.
III. Starting from this characterization data, we compute the
rates of expression from the pBad and pTet promoters at
different concentrations of the inducer Arabinose (Ara) and
the transcription factor TetR, respectively, as described in
Sec. IV-A. The computed expression rate observations and
allowed ranges for promoters pBad and pTet are shown in
Figs. 3-e and 3-f, respectively. Due to sources of uncertainty
not accounted for in simulations and additional measurement
errors, the allowed expression rates ranges are much wider. In
particular, minimal expression from pBad and pTet is allowed
regardless of the concentration of their respective inducer
and repressor. Simulated trajectories reveal that the circuit
behaves as an inverter for some parameters from the allowed
ranges (solid lines in Fig. 3-g). However, the circuit could
not be verified using our procedure (i.e. neither a satisfying
nor a violating region were identified), signifying that both
satisfying and violating behavior might be possible. This is
not surprising since, regardless of the concentration of Ara,
low expression rates are allowed from both pBad and pTet, in
which case the circuit no longer behaves as an inverter (dashed
lines in Fig. 3-g). For experimental data resulting in such wide
uncertainty ranges, considering all observed parameters might
be too conservative but other characterization techniques can
be applied to decrease measurement error and obtain tighter
uncertainty ranges. Alternatively, a probabilistic framework
can be developed where the probability of different expression
rates is also considered, in order to decrease the conservatism
of the method. Both directions are currently being explored.

VI. CONCLUSION

Synthetic biology as a discipline is committed to applying
engineering principles. If we are to fulfill this commitment,
forward engineering of designs from primitive components
is required. We have presented a design flow which begins
with the conversion of digital logic specifications into genetic
circuits. The DNA components used in these circuits are
then individually characterized. Given these circuits and their
primitive characterizations we have introduced a verification
mechanism using LTL which can reason about the potential
performance of the composite circuit. While still in its infancy,
this approach will be vital to prevent time consuming and
costly creation of genetic circuits and allow synthetic biol-
ogists to focus their efforts on creating interesting designs.
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Fig. 3. (a) Simulated characterization data for the pBad promoter. A whole family of possible regulation functions with the data is captured by the
uncertain parameter piecewise affine model (Sec. IV-A), where possible expression rate ranges fall within the shaded polytopes. Once the concentration of
the inducer Ara is fixed to the range between the dashed red lines, pBad can be considered constitutive with range of possible expression rates between
the minimal and maximal rate allowed in the polytope shaded in red (Remark 1). (b) Simulated characterization data for the pTet promoter. In this case, the
concentrations of the regulator TetR are not controlled externally and in general do not fall on the thresholds. (c) Simulated trajectories of the GRN from
Fig. 1 demonstrates its function as an inverter. (d) The relative volumes of the satisfying and violating regions for specifications φ1 = ♦�(xRFP < TL) and
φ2 = ♦�(TH < xRFP ) are computed using the analysis procedure from Sec. IV-C. (e) Characterization of the pBad promoter. The range of expression
rates at different inducer concentrations is computed from experimental data (Sec. III). (f) Characterization of the pTet promoter. (g) Simulated trajectories
confirm that under some expression rates from the allowed ranges the circuit functions as an inducer (solid lines) but it fails for others (dashed lines).

Of equal importance we have identified an interdisciplinary
research opportunity for electronic design automation to play
a role in synthetic biology.
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