
978-3-9810801-8-6/DATE12/ c⃝2012 EDAA

Playing Games with Scenario- and Resource-Aware
SDF Graphs Through Policy Iteration

Yang Yang1, Marc Geilen1, Twan Basten1,2, Sander Stuijk1, Henk Corporaal1
1Department of Electrical Engineering, Eindhoven University of Technology, Netherlands

2Embedded Systems Institute, Eindhoven, Netherlands
{y.yang, m.c.w.geilen, a.a.basten, s.stuijk, h.corporaal}@tue.nl

Abstract—The two-player mean-payoff game is a well-known
game theoretic model that is widely used, for instance in eco-
nomics and control theory. For controller synthesis, a controller
is modeled as a player while the environment, or plant, is
modeled as the opponent player (adversary). Synthesizing an
optimal controller that satisfies a given criterion corresponds to
finding a winning strategy for the controller player. Emerging
streaming applications (audio, video, communication, etc.) for
embedded systems exhibit both input sensitive and controller
sensitive runtime behavior, where the controller’s role is run-
time management or scheduling. Embedded controllers need to
be optimized for dynamic inputs, while guaranteeing through-
put constraints. In this paper, we consider this design task
for scenario- and resource-aware dataflow graphs that model
streaming applications. Scenarios in these models capture classes
of dynamic environment behavior. We demonstrate how to model
and solve the controller synthesis problem by constructing a
winning strategy in a two-player mean payoff throughput game.

Index Terms—Synchronous DataFlow, Maxplus Algebra,
Game Theory, Policy Iteration

I. INTRODUCTION

Emerging streaming applications have to adapt to environ-
mental changes for implementation efficiency. Environmental
awareness enables systems to achieve higher performance,
lower resource usage as compared to implementations with-
out such environmental awareness. Examples include traffic
modeling [1] and rate control [2] for MPEG applications,
bandwidth sharing [3] in wireless sensor networks, cognitive
radio [4] for next generation communication networks, etc.
Many streaming applications show data-dependent behavior,
i.e., their execution times and resource usage are highly depen-
dent on the properties of the input. At the same time, advances
in computer engineering allow both software and hardware to
adapt their own behaviors at runtime in response to changes
in the environment. For example, software can change its
scheduling policy and grant resources to tasks in different
orders while hardware can adapt its processors’ voltages and
frequencies, i.e., so-called Dynamic Voltage and Frequency
Scaling (DVFS) [5], [6]. Progress in programmable hardware
allows hardware implementation changes at runtime with some
overhead. For example, by downloading different bit streams at
runtime, reconfigurable computing platforms can dynamically

This work has been carried out as part of the Octopus project with Océ
Technologies B.V. under the responsibility of the Embedded Systems Institute.
This project was partially supported by the Netherlands Ministry of Economic
Affairs under the Bsik program.

configure their FPGAs with different functionalities optimized
for their corresponding input data [7].

To summarize, an adaptive system has the following two
features: detecting changes in the environment (cognitive
ability) and adapting its software/hardware accordingly in time
for efficiency (reconfigurability). As a result, the design of
an adaptive system raises the following two questions: “How
to model the environment changes?” and “How to reconfigure
software/hardware to guarantee design objectives in response
to the given environment change?”

To answer the first question, we can use the fact that the
properties of input data can be known beforehand and that
these properties are in many cases embedded into the input
data as metadata. Hence, we can capture the environment
changes with Markov Chains [8] or finite state machines
(FSM) [9]. For example, in the MPEG-2 standard, the input
image frames of a decoder can be identified as I frames,
P frames and B frames respectively. For raw input with-
out embedded information that helps identification, we can
use techniques such as machine learning to classify them.
Classification and detection of different input data is studied
extensively in literature. In this paper, we mainly focus on
the second question and set a throughput target as our design
objective.

This paper makes the following contributions:
• We introduce SARA-SDF: an extension to the syn-

chronous dataflow (SDF) [10] model to capture streaming
applications with resource sharing in dynamic environ-
ments.

• We model the interaction between the streaming applica-
tion system and its environment as a formal, mean-payoff
game in which a good controller corresponds to a player
with a winning strategy.

• Based on this model, we solve both the controller syn-
thesis problem under resource and throughput constraints
as well as the worst-case environment identification.

To give some intuition for the question that we are trying to
answer, it is useful to walk through an example. In Sec. II, we
use a running example to state the problem. The theoretical
background is given in Sec. III. In Sec. IV, the game analogy
and analysis are illustrated. In Sec. V experiments are reported.
In Sec. VI related work is discussed and Sec. VII concludes.

II. PROBLEM STATEMENT

Assume an application with four actors a, b, c, d and data
dependencies among those actors. The parameters of actors,

a,2

b,4

c,2

R,2

d,22

2

(a) Input A

a,3 b,2 d,6

R,2

2

2

2

(b) Input B

Figure 1. RA-SDF models of an application for input types A and B

i.e., execution times and data/resource rates, are depend on
the type of application input and are represented as scenarios:
A, B. The four actors use the same resource R with b
using two units at a time. Fig. 1 shows the RA-SDF [11],
[12], [13] models for two possible types of inputs, while the
execution time of the actors, the amount of resources and the
data/resource rates are annotated with the models (rates 1 are
omitted for clarity).

a

b

c d a

b

c d

Schedule S1 Schedule S2

R

t

R

t

2 2

10 10

Figure 2. Different schedules of the example application under input A

It is not very hard to see that, in Fig. 1(a), actor b and c
cannot be executed in parallel since the resource constraint of
R does not allow this to happen. So the schedule of the RA-
SDF model under input A (i.e., the execution order of actors
b and c) can be reconfigured based on the context (the two
options are shown in Fig. 2). In this example, reconfiguration
means the manipulation of the execution order of conflicting
actors, i.e., the scheduling. In general, a system can reconfigure
many properties to adapt its system behavior. Besides adapting
its schedule to the environment, it may for example change the
frequency and voltage, or resource allocation. We assume that
the changes of behaviors after reconfiguration can be modeled
as execution time and data/resource rate changes in RA-SDF.
We call the entity that chooses the behavior the controller.
For simplicity, we model the behavior of RA-SDF under
different types together as a Scenario- and Resource-Aware
dataflow (SARA-SDF) graph with parameterized execution
times and data/resource rates. Fig. 3 shows the SARA-SDF
of the example application.

For the SARA-SDF example, the question that we have to
answer contains the following three sub questions.

• What is the highest throughput that we can obtain no
matter what input sequence is encountered?

• What is the best strategy for the controller to reconfigure
the system to obtain the highest throughput?

• What is the worst input sequence of the environment that
we can have no matter what policy we use to configure
the system?

In this paper, we approach the answers to these questions
from a game theoretic viewpoint. Fig. 4 illustrates this

a,t1

b,t2

c,2

R,2

d,t3
2

2

x

y
y y

y

A

B

q0

A

B

x y t1 t2 t3 actor c

1 1 2

2 2

2

0 3

4

6

enabled

disabled

SCENARIO PARAMETERS TABLE

Figure 3. SARA-SDF of the example application

approach. The problem is viewed as a game played by two
players: environment and controller. The environment player
decides on the input sequence that feeds into the system while
the controller player decides the schedule for every input. The
worst-case situation refers to when the input sequence leads to
the lowest throughput no matter how the controller reacts to
it. The goal of controller player is to maximize the throughput
while the ‘goal’ of the environment player is to minimize it
(for worst-case analysis). In the physical view, a designer has
to design an embedded system that processes a sequence of
different types of input data. The performance requirement
gives a throughput constraint that must be satisfied. Since the
concrete sequence of input data is not predictable at design
time, a designer has to design a controller that, for reasons of
efficiency, can control or reconfigure the system parameters
such as scheduling or resource allocations based on the type
of input data encountered. In the model view, the system

Input Stream

A B AAA B A AB... ...

Embedded System

Environment Player Controller PlayerGame Board

q0q0

a,t1

b,t2

c,2

R,2

d,t32

2

x

y
y y

y

A

B

?

?

?

?

?

?
?

? ?

? ?

?

Performance Requirement

Medal

Throughput > 0.117

M
o

d
e

l V
ie

w
G

a
m

e
 V

ie
w

P
h

y
sica

l V
ie

w

SARA SDF Controller

Figure 4. Game theoretic view interpretation of embedded system design

itself is specified as an operational model (a parameterized
RA-SDF) and the types of data (scenarios) that it supports,
i.e., as a SARA-SDF. The goal of the designer is to synthe-
size a controller that reconfigures the system based on the

encountered input, while satisfying the throughput constraint.
The possible input sequences are captured by the scenario
finite state machine in the SARA-SDF. The controller is also
modeled as an, initially unknown, to be determined, FSM
that gives schedules or configurations based on the current
input and history of inputs. Intuitively, we can interpret the
interaction between two FSMs, the scenario FSM and the
controller FSM as a game played between the environment
player and the controller player. We call this the game view,
and use knowledge of game theory to quantitatively analyze
the SARA-SDF and synthesize a controller that is guaranteed
to meet the throughput constraint.

To summarize, the problem is to find a winning strategy
for the controller player (a controller FSM) to satisfy the
throughput constraint of the embedded system no matter what
its environment player (a scenario FSM) does, i.e., no matter
what sequence of input data types are encountered.

III. SCENARIO- AND RESOURCE-AWARE SDF
We combine the input, application, architecture and map-

ping aspects into a single system specification model that we
refer to as Scenario- and Resource-Aware SDF (SARA-SDF).
A SARA-SDF is a tuple (GRA,FSM S) that can be viewed as
a specification of an embedded system with two parts:

• a parameterized Resource-Aware SDF
• a scenario finite state machine

The parameters of the RA-SDF, i.e., execution times,
data/resource rates, active status of each actor, are dependent
on the scenarios of application. For an input with type T , its
corresponding scenario is denoted by ST . For each scenario,
there is a corresponding RA-SDF. Finite state machines are
used to specify the possible sequences of scenarios. Fig. 3
shows the example of a SARA-SDF. Non-active actors of
each scenario are marked as disabled in the table. Like its
relatives (SDF [10], SADF [9], RA-SDF [12]), a SARA-SDF
requires consistency and has repetition vectors. A SARA-SDF
is consistent if and only if, for every scenario ST there exists
a non-trivial repetition vector rT ; this rT assigns a non-zero
number of firings to every active actor in the scenario ST , such
that, after any sequence of actor firings conforming to rT , an
iteration labeled with ST , both the number of data tokens in
the channels and the number of resource tokens are equal to
their initial numbers. The repetition vectors of the example of
Fig. 3 are rA = [1, 1, 1, 1], rB = [2, 1, 0, 1] for scenarios
SA, SB respectively. The vectors are in alphabetical order
of actors. Fig. 5 shows an execution for scenario sequence
SBSASASB · · · , in which x axis is for time, y axis is for
resource tokens, Ti denotes the completion time of the ith
iteration and Li denotes the latency between two consecutive
iteration completion times.

We use a state-based execution model to capture the exe-
cution of a SARA-SDFG. Every channel or resource token
has a time-stamp which represents the time instant it was
produced or released. The time-stamps of all tokens at the
end of an iteration are collectively captured by a time-stamp
vector representing the state. The time-stamp vector for each
iteration in the example execution in Fig. 5 is denoted by
circles annotated with their iteration numbers. For example,
the circles annotated with number 1 denote the time-stamp

vector after the first iteration, i.e., γ1 = [5, 11]. This gives us
time-stamp vectors γ (similar to dater functions in timed Petri-
nets and the time-stamp vectors of SADF [9], [14].) Together
with the scenario FSM state q, they are used as the iteration
state of the SARA-SDF. An iteration state is thus denoted by
a pair {γ, q}. The time stamps of all tokens in the initial state
are zero.

t

21

1 2

3

3

4

4

0

0

L1�11 L3�8L2�6 L4�10

T1�11T0�0 T2�17 T3�25 T4�35

R

5

Figure 5. Iteration-based execution

Before every new iteration of a SARA-SDF, one of the
transition edges in the scenario FSM is selected and its
corresponding scenario parameters are used to instantiate the
RA-SDF model. We know the repetition vector of the given
scenario. The scheduling of actor firings in the iteration
follows the rules given in the RA-SDF. For a given execution
according to a specific scenario sequence, we use γi ∈ Rn

to denote the time-stamp vector after the ith iteration. We
use Mi : Rn 7→ Rn to denote the schedule applied by the
controller during the ith iteration by means of the effect it
has on the state, in the form of an operator Mi such that
γi+1 = Mi(γi).

From initial state {γ0, q0} of a SARA-SDF, we have to
anticipate every scenario that q0 accepts (for which it has a
transition) and explore different schedules inside one iteration
for each scenario. This generates different new iteration states.
By this process we can construct the iteration state space of
a given SARA-SDF.

I0

I1

I2

I3

(A, 3,8)(A, 2,6)

1

(B, 4,10)

�γ0
norm

,q0}={[0,0],q0}

�γ1
norm

,q0}={[-6,0],q0}

�γ2
norm

,q0}={[-2,0],q0}

�γ3
norm

,q0}={[-4,0],q0}

Figure 6. Part of the state space for the example execution

Fig. 6 shows part of the iteration state space corresponding
to the example execution in Fig. 5. Mi is the schedule of the
ith iteration as decided by the controller reacting to the ith
input observed from the environment. We use the following
notation and definitions. max(γi) denotes the maximal time
stamp in γi, which captures the completion time of the
schedule for the ith input. The latency of the ith iteration
is the completion time difference between γi−1 and γi, i.e.,
Li = max(γi)−max(γi−1). We use γnorm

i = γi−max(γi) to
denote the Maxplus-normalized vector [9]. In this execution,
the normalized vector of γ1 is the same as the normalized
vector of γ4, i.e. γnorm

1 = γnorm
4 = [−6, 0] and they

have the same input state q0. Therefore the schedule M4

results in a back edge from {γnorm
3 , q0} to {γnorm

1 , q0}. The
state space records the normalized time stamp vectors, since

only the relative differences between the individual time-
stamp affect the future behavior, not their absolute offset.
The cycle in the state space allows for a periodic execution
σper = ({γ1, q0} · {γ2, q0} · {γ3, q0})ω . As we will see, best
and worst case performance is found on such cycles in the
state space.

Given a SARA-SDFG GSARA and some execution σ =
{γ0, q0} · {γ1, q1} · · · {γn, qn} · · · , the throughput of σ is, as
usual, defined as the infimum limit of the number of iterations
completed divided by their completion time, or equivalently,
as the reciprocal of the average completion time, i.e.,

Th(σ) = lim inf
n→∞

n

max(γn)
= lim inf

n→∞

n∑n
i=1 Li

The throughput of the example execution with periodic input
scenario sequence SB(SASASB)

ω in Fig. 5 is 3
L2+L3+L4

=
3
24 = 1

8 .
The throughput of a system depends on the choices of the

controller. Let C denote all possible controllers of a given
SARA-SDFG, and let C ∈ C be a particular controller. The
throughput of controller C is defined as the infimum (worst
case) of all executions that are generated from arbitrary input
scenario sequences, denoted by ΣC .

Th(C) = inf
σ∈ΣC

Th(σ) (1)

Then, in turn, we can define the throughput of a SARA-
SDFG GSARA as the best possible throughput any controller
can achieve, the supremum of the throughput of all possible
controllers of GSARA.

Th(GSARA) = sup
C∈C

Th(C) (2)

Note that, although the use of supremum suggests that a
controller achieving the throughput need not exist, we will
see in the following part that it always does.

Input scenarios and controller decisions thus form opposing
forces that in their interaction determine throughput. In the
following we explicitly model this in order to synthesize an
optimal-throughput controller that responds to different scenar-
ios and to check whether it can satisfy the given performance
constraints using the shared resources.

IV. A MEAN PAYOFF GAME

Use of games as models for analysis and synthesis problems
first occurs in [15], in which a specification is translated into
a deterministic automaton and the circuit synthesis problem
to the computation of a strategy on a finite game graph.
Here, we use a very similar approach, i.e., we translate the
controller synthesis with throughput constraint problem to
finding a winning strategy of a well-known game, a so-called
mean payoff game on a bipartite game graph. We use the
latency of an iteration, i.e., Li as the payoff of the environment
move (while −Li is the payoff of the controller move), then
the average latency of an execution (the reciprocal of the
throughput) is the mean of the payoffs of all iterations in a
play of the game.

Fig. 7 shows the bipartite game graph constructed from the
iteration state space of the running example (we explain below
how it is constructed). The operation of a system controller

on a given (infinite) input sequence, can be viewed as a
play of a game with infinite duration between two players
on the graph: one iteration in an execution is one round of
the game that includes an environment turn and a controller
turn. The environment player (circular nodes) provides types
(scenarios) of input (outgoing edges annotated with scenarios)
and the controller player (square nodes) configures the system
with different settings, schedules or other parameters (edges
annotated with the corresponding schedules and with the
resulting latencies).

During the state space exploration, we create a new envi-
ronment node for every new iteration state that we encounter
and label the new node with the iteration state (normalized
time stamp vector and state of the scenario FSM). For every
environment node, and each possible next input from that
state, a new controller node is created with an edge between
the environment node and the new controller node, annotated
with the selected input type. Next, we perform an intra-
iteration exploration in which we explore different scheduling
possibilities using the techniques from [13]. For every new
schedule found, we compute the normalized time stamp vector
at the end of the iteration and check recurrence with existing
environment nodes. An edge is created between the controller
node and a newly created or revisited node. The edge is labeled
with its schedule and the latency of the iteration. Note that it is
not necessarily optimal to simply select the schedule with the
smallest latency as the resulting end-state may have a negative
effect on future behavior.

E0C0 C1

E1

C3

C4

E2C5 C6

E3

C7

C2

�γ0 norm,q0�

�γ1 norm,q0�

�γ2 norm,q0�

�γ3 norm,q0�

Figure 7. Bipartite game graph

Once the bipartite game graph is built, we can analyze it.
For a mean payoff game, the adversarial environment player
wants a strategy to maximize the average payoff per move,
i.e., maximize average latency, no matter how the controller
player reacts. (Recall that this players ‘desire’ to win captures
worst case environment behavior. We do not assume that the
environment providing input data has any real intention to
lower throughput.) At the same time, the controller player
wants to minimize the average loss per move, i.e., minimize
average latency, no matter how the environment player reacts.
For controller synthesis, we prefer to find a strategy that
only depends on the current state and not on the history of
previous states, i.e., a positional strategy on the bipartite game
graph. It is shown in [16] that there exist optimal positional
strategies for both environment and controller to obtain a
value v as a Nash equilibrium point [17]. And [18] shows

the time complexity of the algorithm. So the optimal strategy
of the controller to obtain maximal throughput 1/v is found by
solving the mean payoff (i.e., mean latency) game. We use the
algorithm from [19] to synthesize such an optimal positional
strategy. The obtained controller is given in Fig 8, in which
the red edges are the worst-case moves of the environment
player while the green edges are the optimal schedules of the
controller player (black edges are non-preferable actions of
players). The guaranteed throughput of this controller is 1/8.5
under the worst-case input sequence B(AB)ω . Note that the
controller strategy also specifies schedules in response to non
worst-case input scenarios.

I0={[0,0],q0}

I1�{[-6,0],q0}

I2���-2,0
,q0�

I3={[-4,0],q0}

Figure 8. Synthesized controller

V. EXPERIMENTAL RESULTS

We implemented the proposed approach and tested it on
four applications that are specified as SARA-SDF graphs and
synthesized their controllers. The PC used for the experiments
is a 64-bit Linux system with an Intel 2.8Ghz CoreTM i7 with
8GB memory. The first test graph is the SARA-SDF example
given in Sec. II. The others are a system specification of an
MP3 decoder application, a system specification for an MPEG-
4 SP decoder [9], and a system specification of a printer
image processing pipeline taken from a real industrial case
study. Tab. I shows the experimental results of the controller
synthesis for the four cases. We use similar techniques to those
in [11], [12] to prune the design space. Limits were imposed on
the iteration depth and on schedule branches to reduce the size
of the iteration state space, and therefore also the size of the
synthesized controller. The synthesized controllers can reach

the throughputs given in the table. The throughput results are
optimal. For MP3 and MPEG-4 SP, the synthesized controllers
reach the same throughputs as we know from [9]. MPEG-4 SP
has a long exploration time due to its large repetition vectors
(many actor firings need to be scheduled in each iteration). The
execution time results show that the algorithm spends most of
its time on constructing the game graph and that the controller
synthesis part is only a small fraction of the total analysis time.
Research on a more efficient game graph construction method
will be beneficial future work. Note that the refinement of
execution times with smaller time units and the involvement
of more resources will lead to a larger state space size.

Table I
CONTROLLER SYNTHESIS RESULTS

Example MP3 MPEG-4 SP Printer
Iteration depth limit 2 3 3 5
Schedule branching limit 4 4 4 4
State Space Size 4 309 26 609
Game Graph Size 12 1854 260 3654
Exploration Time (ms) 409 126387 224927 74881
Synthesis Time (ms) 1 36 5 89
Throughput 1.18 · 10−1 1.71 · 10−7 1.41 · 10−3 1.42 · 10−3

VI. RELATED WORK

We discuss related work from three fields that have been
combined in this paper: decision and game theory, Maxplus
algebra and dataflow.
Decision and Game Theory. Game theory [20] was originally
developed as a mathematical tool to analyze games and
economics behavior. The game we investigate in this paper can
be classified as a non-cooperative game, as introduced by John
Nash [17]. Our environment and controller converge to fixed
policies that represent a Nash equilibrium point, which means
neither can improve their strategy on the current opponent
strategy. [16] introduces mean payoff games and shows the
existence of optimal positional (memory-less) strategies. Our
throughput game is modeled as a so-called infinite mean
payoff game with perfect information. [18] investigates the
complexity of solving mean payoff games and shows the com-
plexity is in NP

∩
co-NP by reducing it to a simple stochastic

game. Karp’s algorithm [21] can be used for playing against
a known positional strategy, which amounts to computing the
maximal cycle mean (MCM) of the game graph.

The technique of policy iteration was invented by Howard
to solve stochastic control problems [22], so called Markov
Decision Processes (MDP) [23]. Later, it was generalized to
stochastic games [24]. However, the generalization requires
strictly positive transition probabilities and cannot be directly
applied to deterministic games. The applications of policy
iteration to deterministic games appeared later in the study
of min-max functions [25], [26], [27].

A game-theoretic approach is also widely used in controller
synthesis for timed automata [28], [29]. Priced timed automata,
for instance, are used to model costs and real-time constraints
and it is shown that the problem of finding a winning strategy
can be modeled as a reachability problem [29].
Maxplus Algebra and Min-max functions. In the study of
control theory, Maxplus algebra [14] is widely used in per-
formance analysis of systems with synchronization primitives,

such as timed Petri-nets [30], [31], [32]. Heaps-of-Pieces is
a model that combines Maxplus analysis and automata for
performance analysis [31], [32]. Spectral analysis techniques
[14], [30], [33] are used to analyze the asymptotic timing
behavior of such timed Petri-nets. [19], [26], [27] provide
practical algorithms for spectral analysis, to compute the cycle-
time vector, which are faster than Karp’s algorithm in practice.
Dataflow. SDF is a special subclass of Petri-nets and the
data and resource consistency can be expressed as transitions
and place invariants of Petri-nets. [8] introduces scenarios
of dataflow behavior in the SADF model and uses Markov
chains to analyze its performance. [34] introduces parame-
terized SDFG for functional analysis of different scenarios.
[9],[35] utilize the iteration concept and use Maxplus algebra
and Maxplus automata to analyze the performance of SADF
in worst-case scenarios. The explicit resource modeling in
SDFGs is introduced in [11], [12] and it investigates the
tradeoffs in the design space. Resource sharing can result in
multiple execution paths and can be utilized by a controller to
optimize resource-performance trade-offs.

VII. CONCLUSION

This paper introduces a new design approach from a game-
theoretic viewpoint to tackle the controller synthesis problem
of embedded systems with dynamic input. The approach is
examined both theoretically and experimentally. The novelties
of our paper are the following: modeling of dynamics in
resource-sharing streaming applications, and capturing the
environment-controller interaction as a mean-payoff game,
yielding a method to synthesize a throughput guaranteeing
controller and to identify the worst-case situation of scenar-
ios. The experimental results show synthesis results of good
quality; the controller synthesis time is only a small fraction of
the construction time of the game graph. Faster construction of
the game graph by limiting the scheduling options or iterating
known scheduling techniques will be investigated in the fu-
ture. Analyzing each scenario separately and combining their
iteration state spaces together to generate a game graph can be
a very good candidate approach. The adversarial environment
player can be replaced by a stochastic environment player; the
game then becomes a very interesting stochastic game. Results
for MDP and Reinforcement Learning can be investigated
for this type of game. This paper and the discussion of
related work show strong links among studies in game theory,
Maxplus algebra and automata models such as SDF. Since
the future of embedded system design will be challenged by
more and more dynamic environments, a systematic way of
applying the results of the three fields to tackle the challenges
seems very promising.

REFERENCES

[1] J. Ni et al., “Source modelling, queueing analysis, and bandwidth
allocation for VBR MPEG-2 video traffic in ATM networks,” IEE
Proceedings - Communications, vol. 143, no. 4, p. 197, 1996.

[2] I. Ahmad et al., “On using game theory to optimize the rate control
in video coding,” IEEE Trans. on Circuits and Systems for Video
Technology, vol. 16, no. 2, pp. 209–219, Feb. 2006.

[3] Z. Fang et al., “Fair bandwidth sharing algorithms based on game theory
frameworks for wireless ad-hoc networks,” IEEE Infocom 2004, vol. 2,
no. C, pp. 1284–1295, 2004.

[4] J. Lotze et al., “A Model-Based Approach to Cognitive Radio Design,”
IEEE Journal on Selected Areas in Communications, vol. 29, no. 2, pp.
455–468, 2011.

[5] K. Dantu et al., “Frame-based dynamic voltage and frequency scaling
for a MPEG decoder,” in ICCAD ’02. IEEE, 2002, pp. 732–737.

[6] P. Pillai et al., “Real-time dynamic voltage scaling for low-power
embedded operating systems,” ACM SIGOPS Operating Systems Review,
vol. 35, no. 5, p. 89, Dec. 2001.

[7] K. Compton et al., “Reconfigurable computing: a survey of systems and
software,” ACM Computing Surveys, vol. 34, no. 2, pp. 171–210, Jun.
2002.

[8] B. Theelen et al., “A scenario-aware data flow model for combined long-
run average and worst-case performance analysis,” in MEMOCODE ’06,
pp. 185 –194.

[9] M. Geilen et al., “Worst-case performance analysis of synchronous
dataflow scenarios,” in CODES/ISSS ’10, 2010, pp. 125–134.

[10] E. A. Lee et al., “Static scheduling of synchronous data flow programs
for digital signal processing,” IEEE Trans. Comput., vol. 36, pp. 24–35,
1987.

[11] Y. Yang et al., “Automated bottleneck-driven design-space exploration
of media processing systems,” in DATE ’10, 2010, pp. 1041–1046.

[12] Y. Yang et al., “Exploring trade-offs between performance and resource
requirements for synchronous dataflow graphs,” in ESTIMedia 2009.,
pp. 96 –105.

[13] Y. Yang et al., “Iteration-based trade-off analysis of resource-aware sdf,”
in DSD ’11, 2011, pp. 567–574.

[14] G. Cohen et al., Synchronization and Linearity, An Algebra for Discrete
Event Systems, 1992.

[15] J. R. Buchi et al., “Solving Sequential Conditions by Finite-State
Strategies,” Transactions of the American Mathematical Society, vol.
138, p. 295, Apr. 1969.

[16] A. Ehrenfeucht et al., “Positional strategies for mean payoff games,”
International Journal of Game Theory, vol. 8, pp. 109–113, 1979.

[17] J. Nash, “Non-Cooperative Games,” The Annals of Mathematics, vol. 54,
no. 2, pp. 286–295, Sep. 1951.

[18] U. Zwick et al., “The complexity of mean payoff games,” in Computing
and Combinatorics, ser. LNCS. Springer, 1995, vol. 959, pp. 1–10.

[19] V. Dhingra et al., “How to solve large scale deterministic games with
mean payoff by policy iteration,” in Valuetools ’06, 2006, p. 12.

[20] J. von Neumann et al., Theory of Games and Economic Behavior.
Princeton University Press, 2007.

[21] R. M. Karp, “A characterization of the minimum cycle mean in a
digraph,” Discrete Mathematics, vol. 23, no. 3, pp. 309–311, Sep. 1978.

[22] R. A. Howard, Dynamic Programming and Markov Processes.
MIT˜Press, 1960.

[23] R. Bellman, “A markovian decision process,” Journal of Mathematics
and Mechanics, vol. 6, 1957.

[24] A. J. Hoffman et al., “On nonterminating stochastic games,” Manage-
ment Science, vol. 12, no. 5, pp. pp. 359–370, 1966.

[25] J. Gunawardena, “From max-plus algebra to nonexpansive mappings: a
nonlinear theory for discrete event systems,” Theor. Comput. Sci., vol.
293, pp. 141–167, February 2003.

[26] S. Gaubert et al., “The duality theorem for min-max functions,” Comptes
Rendus de l’Acad?ie des Sciences - Series I - Mathematics, vol. 326,
no. 1, pp. 43 – 48, 1998.

[27] J. Cochet-Terrasson et al., “A constructive fixed point theorem for min-
max functions,” Dynamics and Stability of Systems, vol. 14, no. 4, pp.
407–433, Dec. 1999.

[28] G. Behrmann et al., “Resource-optimal scheduling using priced timed
automata,” in SIGMETRICS Perform. Eval. Rev. Springer, 2004, pp.
220–235.

[29] P. Bouyer et al., “Optimal strategies in priced timed game automata,”
in In FSTTCS 04, LNCS 3328. Springer, 2004, pp. 148–160.

[30] S. Gaubert, “Performance evaluation of (max,+) automata,” IEEE Trans.
on Automatic Control, vol. 40, pp. 2014–2025, 1993.

[31] S. Gaubert et al., “Asymptotic analysis of heaps of pieces and application
to timed petri nets,” in PNPM’99, 1999, pp. 158–170.

[32] S. Gaubert et al., “Modeling and analysis of timed petri nets using heaps
of pieces,” IEEE Trans. on Automatic Control, vol. 44, pp. 683–697,
1999.

[33] J. Cochet-Terrasson et al., “Numerical computation of spectral elements
in max-plus algebra,” in Proc. IFAC Conf. on Syst. Structure and Control,
1998.

[34] B. Bhattacharya et al., “Parameterized dataflow modeling for dsp
systems,” IEEE Trans. on Signal Processing, vol. 49, no. 10, pp. 2408
–2421, Oct. 2001.

[35] M. Geilen, “Synchronous dataflow scenarios,” ACM Trans. Embed.
Comput. Syst., vol. 10, pp. 16:1–16:31, January 2011.

